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Abstract

Hyperbolic embeddings achieve excellent performance when embedding hierar-
chical data structures like synonym or type hierarchies, but they can be limited by
numerical error when ordinary floating-point numbers are used to represent points
in hyperbolic space. Standard models such as the Poincaré disk and the Lorentz
model have unbounded numerical error as points get far from the origin. To address
this, we propose a new model which uses an integer-based tiling to represent any
point in hyperbolic space with provably bounded numerical error. This allows
us to learn high-precision embeddings without using BigFloats, and enables us
to store the resulting embeddings with fewer bits. We evaluate our tiling-based
model empirically, and show that it can both compress hyperbolic embeddings
(down to 2% of a Poincaré embedding on WordNet Nouns) and learn more accurate
embeddings on real-world datasets.

1 Introduction

In the real world, valuable knowledge is encoded in datasets with hierarchical structure, such as
the IBM Information Management System to describe the structure of documents, the large lexical
database WordNet [14], various networks [8] and natural language sentences [24, 5]. It is challenging
but necessary to embed these structured data for the use of modern machine learning methods. Recent
work [11, 26, 27, 7] proposed using hyperbolic spaces to embed these structures and has achieved
exciting results. A hyperbolic space is a manifold with constant negative curvature and endowed with
various geometric properties, in particular, Bowditch [4] shows that any finite subset of an hyperbolic
space looks like a finite tree according to the definition in [18]. Therefore, the hyperbolic space is
well suited to model hierarchical structures.

A major difficulty that arises when learning with hyperbolic embeddings is the numerical instability,
sometimes informally called “the NaN problem”. Models of hyperbolic space commonly used to
learn embeddings, such as the Poincaré ball model [26] and the Lorentz hyperboloid model [27],
suffer from significant numerical error caused by floating-point computation and amplified by the
ill-conditioned Riemannian metrics involved in their construction. To address this when embedding a
graph, one technical solution exploited by Sarkar [32] is to carefully scale down all the edge lengths
by a factor before embedding, then recover the original distances afterwards by dividing by the factor.
However, this scaling increases the distortion of the embedding, and the distortion gets worse as the
scale factor increases [30]. Sala et al. [30] suggested that, to produce a good embedding in hyperbolic
space, one can either increase the number of bits used for the floating-point numbers or increase the
dimension of the space.

While these methods can greatly improve the accuracy of an embedding empirically, they come with a
computational cost, and the floating-point error is still unbounded everywhere. Despite these previous
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adopted methods, as points move far away from the origin, the error caused by using floating-point
numbers to represent them will be unbounded. Even if we try to compensate for this effect by using
BigFloats (non-standard floating-point numbers that use a large quantity of bits), no matter how many
bits we use, there will always be numerical issues for points sufficiently far away from the origin. No
amount of BigFloat precision is sufficient to accurately represent points everywhere in hyperbolic
space.

To address this problem, it is desirable to have a way of representing points in hyperbolic space
that: (1) can represent any point in the space with small fixed bounded error; (2) supports standard
geometric computations, such as hyperbolic distances, with small numerical error; and (3) avoids
potentially expensive BigFloat arithmetic.

One solution is to avoid floating-point arithmetic and do as much computation as possible with
integer arithmetic, which introduces no error. To gain intuition, imagine solving the same problem
in the more familiar setting of the Euclidean plane. A simple way to construct a constant-error
representation is by using the integer-lattice square tiling (or tessellation) [9] of the Euclidean plane.
With this, we can represent any point in the plane by (1) storing the coordinates of the square where
the point is located as integers and (2) storing the coordinates of the point within that square as
floating point numbers. In this way, the worst-case representation error (Definition 1) will only be
proportional to the machine epsilon of the floating-point format—but not the distance of the point
from the origin.

We propose to do the same thing in the hyperbolic space: we call this a tiling-based model. Given
some tiling of hyperbolic space, we can represent a point in hyperbolic space as a pair of (1) the tile
it is on and (2) its position within the tile represented with floating point coordinates. In this paper,
we show how we can do this, and we make the following contributions:

• We identify tiling-based models for both the hyperbolic plane and for higher-dimensional
hyperbolic space in various dimensions. We prove that the representation error (Definition 1)
is bounded by a fixed value, further, the error of computing distances and gradients are
independent of how far the points are from the origin.

• We show how to compute efficiently over tiling-based models, and we offer algorithms to
compress and learn embeddings for real-world datasets.

The reminder of this paper is organized as follows. In Section 2, we discuss related work regarding
hyperbolic embeddings on various models. In Section 3, we detail the standard models of hyperbolic
space which we use in our theory and experiments. In Section 4, we introduce the L-tiling model and
show how it can be used to accurately represent any point in the hyperbolic plane (2-dimensional
hyperbolic space). In Section 5, we show how to use the L-tiling model to learn embeddings with
traditional manifold optimization algorithms. In Section 6, we develop the H-tiling model, which
generalizes our methods to higher dimensional spaces. Finally, in Section 7, evaluate our methods on
two different tasks: (1) compressing a learned embedding and (2) learning embeddings on multiple
real-world datasets.

2 Related Work

Hyperbolic space [1] is a simply connected Riemannian manifold with constant negative (sectional)
curvature, which is analogous to a high dimensional sphere with constant positive curvature. The
negative-curvature metric of the hyperbolic space results in very different geometric properties, which
makes it widely employed in many settings. One noticeable property is the volume of the ball in
hyperbolic space: it increases exponentially with respect to the radius (for large radius), rather than
polynomially as in the Euclidean case [6]. For comparison to hierarchical data, consider a tree with
branching factor b, where the number of leaf nodes increases exponentially as the tree depth increases
[27], this property makes hyperbolic space particularly well suited to represent hierarchies.

Nickel and Kiela [26] introduced the Poincaré embedding for learning hierarchical representations
of symbolic data, which captured the attention of the machine learning community. The Poincaré
ball model of hyperbolic space was used to embed taxonomies and graphs with state-of-the-art
results in link prediction and lexical entailment. Similarly, it was also proposed in [7] to learn
neural embeddings of graphs in hyperbolic space, where the performances on downstream tasks were
improved significantly. The Poincaré ball model was used in several subsequent works, including
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unsupervised learning of word and sentence embeddings [35, 13], directed acyclic graph embeddings
and hierarchical relations learning using a family of nested geodesically convex cones [16]. Fur-
ther, Ganea et al. [15] proposed hyperbolic neural networks to embed sequential data and perform
classification based on the Poincaré ball model.

In a later work [27], the Poincaré model and the Lorentz model of hyperbolic space were compared
to learn the same embeddings, and the Lorentz model was observed to be substantially more efficient
than the Poincaré model to learn high-quality embeddings of large taxonomies, especially in low
dimensions. Similarly, Gulcehre et al. [20] built the new hyperbolic attention networks on top of the
Lorentz model rather than the Poincaré model. Further along this direction, Gu et al. [19] explored a
product manifold combining multiple copies of different model spaces to get better performance on a
range of datasets and reconstruction tasks. This suggests that the numerical model used for learning
embeddings can have significant impact on its performance. Sala et al. [30] analyzed the tradeoffs
between precision and dimensionality of hyperbolic embeddings to show this is a fundamental
problem when using float arithmetic. More broadly, different models have been used in different
tasks like hierarchies embedding [26], text embedding [35, 13] and question answering system [34].
However, all these models can be limited by numerical precision issues.

3 Models of Hyperbolic Space

Typically, people work with hyperbolic space by using a model, a representation of hyperbolic space
within Euclidean space. There exists multiple important models for hyperbolic space, most notably
the Poincaré ball model, the Lorentz hyperboloid model, and the Poincaré upper-half space model [1],
which will be described in this section. These all model the same geometry in the sense that any two
of them can be related by a transformation that preserves all the geometrical properties of the space,
including distances and gradient [6]. Generally, one can choose whichever model is best suited for a
given task [27].
Poincaré ball model. The Poincaré ball model is the Riemannian manifold (Bn, gp), where
Bn = {x ∈ Rn : ‖x‖ < 1} is the open unit ball. The metric and distance on Bn are defined as

gp(x) =

(
2

1− ‖x‖2

)2

ge, dp(x,y) = arcosh

(
1 + 2

‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
,

where ge is the Euclidean metric, due to its conformality (angles measured at a point are the same
as they are in the actual hyperbolic space), its convenient parameterization, and clear visualization
results, the Poincaré ball model is widely used in many applications. However, it can be seen from
this equation that the distance within the Poincaré ball model changes rapidly when the points are
close to the boundary (i.e. ‖x‖ ≈ 1), and hence it is very poorly conditioned.
Lorentz hyperboloid model. The Lorentz model is arguably the most natural model algebraically
for hyperbolic space. It is defined in terms of a nonstandard scalar product called the Lorentzian
scalar product. For two-dimensional hyperbolic space, it is defined as

〈x,y〉L = xT gly, where gl =

[−1 0 0
0 1 0
0 0 1

]
.

The Lorentz model of 2-dimensional hyperbolic space is then defined as the Riemannian manifold
(L2, gl), where L2 and associated distance function are given as

L2 = {x ∈ R3 : 〈x,x〉L = −1, x0 > 0}, dl(x,y) = arcosh(−〈x,y〉L).

This model generalizes easily to higher dimensional spaces by increasing the number of 1s on the
diagonal of the matrix gl. Points in the Lorentz model lie on the upper sheet of a two-sheeted
n-dimensional hyperbola. Unlike the Poincaré disk model, which is confined in the Euclidean unit
ball, the Lorentz model is unbounded. However, like other models, it can experience severe numerical
error for points far away in hyperbolic distance from the origin as shown in Theorem 1.
Definition 1. [Representation error] We are concerned with representing points in hyperbolic
space Hn using floating-points fl. Define the representation error of a particular point x ∈ Hn as
δfl(x) = dHn(x,fl(x)), and the worst case representation error of floating-points representation as a
function of the distance-to-origin d, which is the maximum representation error of any point with a
distance-to-origin at most d,

δdfl = max
x∈Hn, dHn (x,O)≤d

δfl(x).
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Theorem 1. The worst-case representation error (Definition 1) in the Lorentz model using floating-
point arithmetic (with machine epsilon εm) is δdl = arcosh(1 + εm(2 cosh2(d) − 1)), where d
is the hyperbolic distance to origin. This becomes δdl = 2d + log(εm) + o(ε−1m exp(−2d)) if
d = O(− log εm).
Poincaré half-space model. The Poincaré upper half-space model of the hyperbolic space is the
manifold (Un, gu), where Un = {x ∈ Rn : xn > 0} is the upper half space of the n-dimensional
Euclidean space. The metric and corresponding distance function is

gu(x) =
ge
x2n
, du(x,y) = arcosh

(
1 +
‖x− y‖2

2xnyn

)
Here ge is the Euclidean metric. The half-space model is also unbounded and conformal, and has
a particularly nice interpretation in two dimensions as a mapping on the complex plane. Note that
although it is unbounded, this model still has an “edge” where xn = 0 and it can exhibit numerical
issues similar to the Poincaré ball as xn approaches 0.

4 A Tiling-Based Model for Hyperbolic Plane

As we saw in the previous section, the standard models of hyperbolic space exhibit unbounded
numerical error as the hyperbolic distance from the origin increases. In this section, we will describe
a tiling-based model that avoids this problem. Our model is constructed on top of the Lorentz model
for the two-dimensional hyperbolic plane H2.

In hyperbolic geometry, a uniform tiling [9, 12, 33] is an edge-to-edge filling of the hyperbolic plane
which has regular congruent polygons as faces and is vertex-transitive (there is an isometry mapping
any vertex onto any other) [28]. Any tiling is associated with a discrete group G of orientation-
preserving isometries of H2 that preserve the tiling [38, 22]; discrete subgroups of isometries of H2

(like G) are called Fuchsian groups [21, 2, 37]. Importantly, not only does the tiling determine G,
but G also determines the shape of the tiling. One way to see this is to consider the images of a
single point in H2 under the group action G (called an orbit of the action). Then the Voronoi diagram
associated with the orbit (which partitions each point in H2 into tiles based on which point in the
orbit it is closest to) will be a regular tiling of H2. This equivalence between tilings and groups means
that we can reason about tilings by reasoning about Fuchsian groups.

In the 2-dimensional Lorentz model, isometries can be represented as matrices operating on R3 that
preserve the Lorentzian scalar product. That is, a matrix A ∈ R3×3 is an isometry if AT glA = gl. If
we have some discrete group of isometries G, and we choose the tile which contains the origin to be
the fundamental domain [37, 36] F , then we can start to define a tiling-based model on top of the
Lorentz model of the hyperbolic plane.
L-tiling model. Our first insight is to represent points in the hyperbolic plane as a pair consisting of
an element of the group and an element of the fundamental domain. The point represented by this
pair is the result of the group element applied to the fundamental domain element. For example, the
ordered pair (g,x) ∈ G × F would represent the point gx. The L-tiling model of the hyperbolic
plane is defined as the Riemannian manifold (T nl , glt), where glt = gl and

T nl = {(g,x) ∈ G× F : 〈x,x〉L = −1}, dlt((gx,x), (gy,y)) = arcosh
(
−xTgTx gltgyy

)
.

Of course, this is useless unless we have a group G that we can store and compute with easily. Our
second insight is to construct a Fuchsian group that can be represented with integers so that group
operations can be computed exactly and efficiently. The naive way to do this is to try the subgroup of
orientation-preserving isometries in R3×3 that have all-integer coordinates: unfortunately, this group
(called the modular group) results in a tiling with unbounded fundamental domain, which makes
it impossible to bound the representation error, so it is not suitable for our purpose. Instead, we
constructed a special Fuchsian group to get a particularly useful L-tiling model of hyperbolic plane.
Definition 2. Let ga and gb ∈ Z3×3 and L ∈ R3×3 be defined as

ga =

[
2 1 0
0 0 −1
3 2 0

]
, gb =

[
2 −1 0
0 0 −1
−3 2 0

]
, and L =

√3 0 0
0 1 0
0 0 1

 .
Define G to be the fuchsian group generated by L · ga · L−1 and L · gb · L−1. It is straightforward
to verify that (L · ga · L−1)T gl(L · ga · L−1) = (L · gb · L−1)T gl(L · gb · L−1) = gl. Note that
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Figure 1: The regular quadrilateral
tiling of hyperbolic space produced
by the groupG on the Poincaré disk.

Algorithm 1 Map Lorentz model to L-tiling model

Require: x ∈ L2

initialize R← I
while x /∈ F do

if x2 ≤ −|x3| then S ← g−1a
else if x2 ≥ |x3| then S ← g−1b
else if x3 < −|x2|| then S ← gb
else if x3 > |x2| then S ← ga
(R,x)← (R · S,L · S−1 · L−1 · x)

x1 =
√
x22 + x23 + 1 . renormalize x

end while
output (R,x)

g6a = g6b = (gagb)
3 = I , and so this group has presentation

G = L · 〈ga, gb|g6a = g6b = (gagb)
3 = 1〉 · L−1.

Importantly, any element of G can be represented in the form g = LZL−1 where Z ∈ Z3×3 is
an all-integers matrix. For this reason, we can store elements of G and take group products and
inverses using only integer arithmetic. This property makes G of particular interest for use with an
L-tiling model. But before we can construct an L-tiling model for this group, we need to choose an
appropriate fundamental domain.
Theorem 2. F = {(x1, x2, x3) ∈ L2|max(2x22 − x23, 2x23 − x22) < 1} is a fundamental domain of
G. Any point in L2 can be mapped by G to one unique point in F or to a point on its boundary.

Figure 1 illustrates the tiling generated by group G and F centered at the origin in the Poincaré disk
model. Now that we have a group and a fundamental domain, we can start computing with our new
L-tiling model. The first step is to build a relationship between standard hyperbolic models and the
L-tiling model, i.e., convert points into the L-tiling model from other models: to this end, we offer a
“normalization” procedure (Algorithm 1), which transforms the Lorentz model to the L-tiling model.
The convergence and complexity of this algorithm are characterized in Theorem 3.
Theorem 3. For any point in the Lorentz model, Algorithm 1 converges and stops within 1 + 7d
steps, where d = d(x,O) denotes the distance from x to the origin.
Representing points. For a point (g,x) in the L-tiling model, where g ∈ G, x ∈ F , we represent
this point with (g,fl(x)). Here g is exact because it is represented by the related integer matrix,
while fl denotes float arithmetic with error bounded by some machine epsilon εm. This floating point
arithmetic introduces some representation error, which we can bound as follows:

dlt((g,x), (g,fl(x))) = arcosh(−xT gT gltgfl(x)) = arcosh(−xT gltfl(x))

Since x ∈ F , which is bounded as shown in Theorem 2, this approximation error can also be bounded
(Theorem 4). In comparison, for the Lorentz model, the worst case error (Theorem 1) is unbounded.
Theorem 4. The representation error (Definition 1) in L-tiling model is bounded as δdlt ≤

√
5εm +

15εm/4 + o(εm), where εm is the machine error.
By convention, for (g,x) in the L-tiling model, where g ∈ G, x ∈ F , firstly we will usually denote
g using its related integer matrix ĝ = L−1gL; Secondly for the point x ∈ F , even though x is part of
the Lorentz model and lies in 3-dimensional space, in fact only two coordinates suffice to determine
its position. For simplicity, we define a biejective function h(x2, x3) = (

√
1 + x22 + x23, x2, x3)

which maps R2 to the hyperboloid model (this is sometimes called the Gans model [17]). In this
way, we can represent (g,x) ∈ T 2

lt as (ĝ, h−1(x)). We can then store the integer matrix and floating-
point coordinates h−1(x) ∈ R2. In future sections, we assume we will use this integer matrix and
two-coordinate representation rather than (g,x) unless otherwise specified.
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5 Learning in the L-tiling Model

Algorithm 2 RSGD in the L-tiling model

Require: Objective function f , fuchsian group G
with fundamental domain F , exponential map
expβt

(v) = cosh (‖v‖L)βt+sinh (‖v‖L) v
‖v‖L ,

where ‖v‖L =
√
〈v, v〉L.

Require: (βt, Ut) ∈ F ×G, Epochs T , and learn-
ing rate η
for t = 0 to T − 1 do
lt ⇐ g−1βt

∇βt
f(LUtL

−1βt) . Riemannian
grad f ⇐ lt + 〈βt, lt〉Lβt . Projection
βt+1 ⇐ expβt

(−η gradf) . Update
if βt+1 /∈ F then
W⇐ arg min

W∈G
d(LW−1L−1βt+1, O)

Ut+1 ⇐ Ut ·W . Normalize if βt+1 /∈ F
βt+1 ⇐ LW−1L−1βt+1

else
Ut+1 ⇐ Ut

end if
end for

output (βt+1, Ut+1)

In this section, we provide an efficient and pre-
cise way to compute distances and gradients
accordingly in the L-tiling model, with which
we can construct learning algorithms to train
and derive embeddings. We also present error
bounds for these computations, which avoid the
“Nan” problem.
Distance and Gradient. For two points
(U, u), (V, v) in the L-tiling model, the formula
to compute distance is

d((U, u),(V, v)) = arcosh(h(u)TL−TQL−1h(v))

where Q = −UTLT gltLV can be computed
exactly with integer arithmetic. A potential dif-
ficulty here is that the entries in Q can be very
large (possibly even larger than can be repre-
sented in floating-point). To solve this, observe
thatQ11 has the largest absolute value in the ma-
trix (Lemma 2). So we define and compute Q̂ =
Q/Q11, which is guaranteed to not overflow the
floating-point format, since all the entries of Q̂
are in [−1, 1]. Let dc = h(u)TL−T Q̂L−1h(v),
this reduces our distance to

d((U, u), (V, v)) = arcosh(Q11 · dc) = log(Q11) + log

(
dc +

√
d2c −Q−211

)
Note that (assuming that we can compute log(Q11) without overflow) this expression can be computed
in floating-point without any overflow, since all the numbers involved are well within range. The
corresponding formula for the gradient can also be derived as

∇ud((U, u), (V, v)) =
∇h(u)TL−T Q̂L−1h(v)√

d2c −Q−211

, where ∇h(u) =

[
u√

1 + ‖u‖2
, I

]
.

Again, this avoids any possibility of overflow. We provide the error of computing distance (Theorem 6)
and gradient (Theorem 7) in L-tiling model together with that in Lorentz model in Appendix. By
computing with integer arithmetic, the error will be independent of how far the points are from the
origin, which guarantees that it avoids the “NaN” problem. Since we can compute distances and
derivatives, we can use all the standard gradient-based optimization algorithms. In Algorithm 2 we
present the most powerful one, RSGD, adapted for use with the L-tiling model.

6 Extension to Higher Dimensional Space

Extending the L-tiling model to higher dimension seems simple: just find a cocompact (to ensure a
bounded fundamental domain) discrete subgroup of the higher-dimensional space’s isometry group.
Such a group would induce a honeycomb, a higher-dimensional analog of a regular tiling of the
hyperbolic plane. Unfortunately, a classic result by Coxeter [10] says this is impossible in general:
there are no such regular honeycombs in six or more dimensions.

In order to derive a high dimensional tiling-based model which may be necessary for complicated
datasets, we consider two possibilities.

• Take the Cartesian product of multiple copies of the L-tiling model in the hyperbolic plane. The
use of multiple copies of models in the hyperbolic plane was previously proposed in Gu et al.
[19].
• Construct honeycombs and tilings from a set of isometries that is not a group.

Practically we can embed data into products of H2s as we do in Section 7, however, the first
possibility (tilings over H2 ×H2 × · · ·H2) is something fundamentally different from tiling a single
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(0,1)

Datasets Nodes Edges

Bio-yeast[29] 1458 1948
WordNet[14] 74374 75834�

Nouns 82115 769130�

Verbs 13542 35079�

Mammals 1181 6541
Gr-QC[23] 4158 13422

Figure 2: (Left) The infinite square tiling of hyperbolic space on the half-plane model; (Right) Datasets.

high dimensional hyperbolic space (tilings over Hn), which we aims to do in this section. Fortunately
for the second possibility, in half-space model, we find that horizontal translation and homotheties
are hyperbolic isometries, which can produce the (infinite) square tiling illustrated in Figure 2 [1, 6].
It consists of the image of the unit square S, with vertical and horizontal sides and whose lower left
corner is at (0, ..., 0, 1), under the maps

p→ 2j(p+ k), (j, k) ∈ Z× (Zn−1 × {0}).
Here each square is isometric to every other square, and the unit square S takes on the role of the
fundamental domain in Theorem 2. With these maps, we can define a tiling-based model on top of
the half-space model as follows.
H-tiling model. The H-tiling model of the hyperbolic space is defined as the Riemannian manifold
(T nh , ght), where

T nh = {(j,k,x) ∈ Z× (Zn−1 × {0})× S}, ght(j,k,x) =
ge

(2jxn)2

The associated distance function on T nh is then given as

d((j1,k1,x), (j2,k2,y)) = arcosh

(
1 +
‖2j1z1 − 2j2z2 + 2j1k1 − 2j2k2)‖2

2j1+j2+1z1nz2n

)
.

Similarly, we derive the representation error for this model, which is bounded by a constant depending
on the machine epsilon as shown in Theorem 5.
Theorem 5. The representation error (Definition 1) in H-tiling model is bounded as δdht =√

(n+ 3)εm/2 + (n+ 3)εm/4 + o(εm), where εm is the machine error.

We can compute distances and gradients in a numerically accurate way, and run RSGD algorithm
on this model for optimization, just as we could in the L-tiling model. For lack of space, we defer
that discussion and more learning details of Sections 5 and 6 to Appendix A. Also note that we are
not tied to the half-space model here: while the half-space model gives a convenient way to describe
the set of transformations we are using, we could use the same transformations with any underlying
model we choose by adding an appropriate conversion.

7 Experiments

Compressing embeddings. We consider storing 2-dimensional embeddings using the L-tiling
model for compression: storage using few bits. While storing the integer matrices exactly is
convenient for computation, it does tend to take up a lot of extra memory (especially when BigInts
are needed to store the integer values in the matrix). This motivates us to look for alternative storage
methods. To store the matrix g, we prorpose and evaluate the following methods:

• Matrix: store all 9 integers in the matrix g as Int or BigInt.
• Entries: store just g21, g31 as Int or BigInt, which we can show is sufficient to reconstruct

the whole matrix (Lemma 1 in Appendix D).
• Order: store the generator order with respect to ga, gb as a string.
• VBW: store the generator order with respect to ga, gb using a variable bit-width encoding.

We use binary code 10 to represent g1a and g1b , 001 to represent g2a and g2b , 010 to represent
g3a and g3b , 011 to represent g4a and g4b , 11 to represent g5a and g5b , and 000 to represent the
end of the string. This encoding disambiguates the generators by taking advantage of the
fact that powers of ga and gb must alternate to appear.

7



4000 6000 8000 10000 12000

-40

-30

-20

-10

Hyperbolic Error-Bits

bits per node

lo
g(

M
S

H
E

)

L-tiling
Lorentz
Poincare

Models size (MB) bzip (MB)

Poincaré(16512B) 372 119

Poincaré(12688B) 287 81
Lorentz(11898B) 396 171

Matrix(VLQ) 600(286) 260(251)
Entries(VLQ) 132(63) 57(55)
Order 111 8.52
VBW 33.1 6.07

fpt-f32 6.2 1.96
fpt-f16 4.25 1.07

Figure 3: (Left) Hyperbolic error for WordNet Nouns; (Right) Compression statistics for WordNet under the
same MSHE, first block contains the size of original poincare embedding, second block contains the size
of compressed baseline models, third block contains the size of matrix part in the L-tiling model (size of
compressed integers using VLQ is also reported), the last block contains size of float points (fpt, f32 or f16) in
the fundamental domain of L-tiling model.
The generator order and corresponding VBW encoding of a given matrix can be derived using
Algorithm 1 as shown in Lemma 1. Additionally, for Int or BigInt, we can use variable length quantity
(VLQ) to compress [31]. To test our compression methods, we use combinatorial construction [30]
to derive 2-dimensional Poincaré disk embeddings for WordNet (Tree-like) and Bio-yeast datasets
(Figure 2), then we transform embeddings and compress them. We calculate the mean squared
hyperbolic error (MSHE) with respect to the original embedding to show the error of compression.

For Bio-yeast, we evaluate different compressions using MSHE and mean average precision (MAP).
As shown in Table 1, representation and compression in the L-tiling model (with different floating
number for points in the fundamental domain) does not hurt MAP performance, while the compression
of the Poincaré embedding to the same size hurts MAP severely. For WordNet, we plot the scatter of
the relationship between log(MSHE) and bits to store per node in Figure 3. Under the same MSHE,
the L-tiling model requires approximately 2/3 less bits per node compared to that of Lorentz and
Poincaré models. We measure the size of different models under the same MSHE in Figure 3. The
L-tiling model can represent the hyperbolic embedding with only (6.07+1.07) MB, which is 2% of
the original 372 MB, while it will cost at least 81 MB for any reasonably accurate baseline model.

Learning embeddings. As we have shown, our tiling-based models represent hyperbolic space
accurately, and so they can be used for learning embeddings with generic objective functions.
However, since we analyzed hyperbolic distance and gradient computation error in this paper, we
evaluate our learning methods empirically on objective functions that depend on distances. As
proposed by Nickel and Kiela [26], to consider the ability to embed data that exhibits a clear latent
hierarchical structure, we conduct reconstruction experiments on the transitive closure of the Gr-QC,
WordNet Nouns, Verbs and Mammals hierarchy as summarized in Table 2. We firstly embed the data
and then reconstruct it from the embedding to evaluate the representation capacity of the embedding.
Let D = {(u, v)} be the set of observed relations between objects. We aim to learn embeddings of D
such that related objects are close in the embedding space. To do this, we minimize the loss [26]

L(Θ) =
∑

(u,v)∈D

log
e−d(u,v)∑

v′∈N (u) e
−d(u,v′) , (1)

where N (u) = {v | (u, v) 6∈ D} ∪ {u} is the set of negative examples for u (including u). We
randomly sample |N (u)| = 50 negative examples per positive example during training.

Table 1: Compression of Bio-yeast
Models MSHE MAP

Poincaré(8128B) 0.00 0.873
Poincaré(6360B) 4.84e-17 0.873
Poincaré(1832B) 1.01e+03 0.310

L-tiling-f64(1832B) 9.76e-17 0.873
L-tiling-f32(1768B) 5.12e-08 0.873
L-tiling-f16(1736B) 4.30e-05 0.873
L-tiling-f0(1704B) 5.90e-01 0.873

Table 2: Learning Mammals
Models MAP MR

Poincaré 0.805±0.011 2.22±0.10
Lorentz 0.855±0.013 1.89±0.13

L-tiling-SGD 0.892±0.031 2.14±0.70
L-tiling-RSGD 0.9300.9300.930±0.005 1.491.491.49±0.09
H-tiling-RSGD 0.923±0.016 1.56±0.20
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DIMENSION MODELS
WORDNET NOUNS WORDNET VERBS GR-QC

MAP MR MAP MR MAP MR

2

POINCARÉ 0.124±0.001 68.75±0.26 0.537±0.005 4.74±0.17 0.561± 0.004 67.91±1.14
LORENTZ 0.382±0.004 17.80±0.55 0.7500.7500.750±0.004 2.11±0.06 0.563±0.003 68.40±1.20
H -TILING-RSGD 0.390±0.002 17.18±0.52 0.747±0.003 2.10±0.05 0.560±0.004 66.17±1.05
L-TILING-SGD 0.341±0.001 20.27±0.39 0.696±0.003 2.33±0.07 0.5740.5740.574±0.005 63.0463.0463.04±1.97
L-TILING-RSGD 0.4130.4130.413±0.007 15.2615.2615.26±0.57 0.746±0.004 2.072.072.07±0.03 0.564± 0.002 63.88±1.47

4 2×LORENTZ 0.460±0.001 10.12±0.03 0.8730.8730.873±0.001 1.31±0.01 0.7180.7180.718±0.003 11.59±0.32
2×L-TILING-RSGD 0.4640.4640.464±0.002 9.999.999.99±0.09 0.871±0.004 1.33±0.01 0.716±0.005 10.8810.8810.88±0.42

5
POINCARÉ 0.848±0.001 4.16±0.04 0.948±0.001 1.19±0.01 0.714±0.000 34.60±0.52
LORENTZ 0.865±0.005 3.703.703.70±0.12 0.947±0.001 1.161.161.16±0.00 0.7150.7150.715±0.003 33.51± 1.04
H -TILING-RSGD 0.8690.8690.869±0.001 3.703.703.70±0.06 0.9490.9490.949±0.001 1.161.161.16±0.01 0.714±0.002 33.4633.4633.46±0.66

10
POINCARÉ 0.876±0.001 3.47±0.02 0.953±0.002 1.16±0.01 0.729±0.000 29.51±0.21
LORENTZ 0.865±0.004 3.36±0.04 0.948±0.001 1.15±0.00 0.724±0.001 29.34±0.23
H -TILING-RSGD 0.8880.8880.888±0.004 3.223.223.22±0.02 0.954±0.002 1.15±0.00 0.729±0.001 27.75±0.39
5×LORENTZ 0.672±0.000 4.42±0.00 0.958±0.003 1.07±0.01 0.944±0.007 3.06±0.03
5×L-TILING-RSGD 0.674±0.000 4.41±0.00 0.9610.9610.961±0.002 1.061.061.06±0.00 0.9530.9530.953±0.002 3.033.033.03±0.01

Table 3: Learning experiments on different datasets. Results are averaged over 5 runs and reported in
mean+std style.

We consider the L-tiling models trained with RSGD and SGD, H-tiling models trained with RSGD
and the Cartesian product of multiple copies of 2-dimensional L-tiling models (proposed in Gu et al.
[19]). The Poincaré ball model [26] and Lorentz model [27] were included as baselines. All models
were trained in float64 for 1000 epochs with the same hyper-parameters. To evaluate the quality of
the embeddings, we make use of the standard graph embedding metrics in [3, 25]. For an observed
relationship (u, v), we rank the distance d(u,v) among the set {d(u, v′)|(u, v′) ∈ D)}, then we
evaluate the ranking on all objects in the dataset and record the mean rank (MR) as well as the mean
average precision (MAP) of the ranking.

We start by evaluating all 2-dimensional embeddings on the Mammals dataset. As shown in Table 2,
all tiling-based models outperform baseline models: the performances of L-tiling model and H-tiling
model with RSGD are nearly the same. In particular, the L-tiling model achieves a 8.8% MAP
improvement on Mammals compared to Lorentz model.

Embedding experiments on other three large datasets are presented in Table 3. These results show
that tiling-based models generally perform better than baseline models in various dimensions. We
found three observations particularly interesting here. First, the group-based tiling model (L-tiling)
performs better than the non-group tiling model (H-tiling) in two dimensions. Second, tiling-based
models perform particularly better than baseline models for the largest WordNet Nouns dataset,
which further validates that numerical issue happens when the embeddings are far from the origin and
affects the embedding performances. Third, the Cartesian product of multiple copies of 2-dimensional
L-tiling models performs even better than high dimensional models when the datasets are not too
large and complex such as WordNet Verbs and Gr-QC, especially for the dense graph Gr-QC.

More experiment details are provided in Appendix B. We release our compression code∗ in Julia and
learning code† in PyTorch publicly for reproducibility.

8 Discussions and Conclusions

In this paper, we introduced tiling-based models of hyperbolic space, which use a tiling backed by
integer arithmetic to represent any point in hyperbolic space with fixed and provably bounded error.
We showed that L-tiling model using one particular group G can achieve substantial compression
of an embedding with minimal loss, and can perform well on embedding tasks compared with
other methods. A notable observation that could motivate future work is that our group based tiling
model (L-tiling) performs better than the non-group tiling model (H-tiling) in two dimensions: it is
interesting to ask if this reflects some advantages of the group, and if we can use this to find better
non-regular tilings in high dimensions. Overall, it is our hope that this work can help make hyperbolic
embeddings more numerically robust and thereby make them easier for practitioners to use.

∗https://github.com/ydtydr/HyperbolicTiling_Compression
†https://github.com/ydtydr/HyperbolicTiling_Learning
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Supplementary Material: Numerically Accurate Hyperbolic
Embeddings Using Tiling-Based Models

A Learning Details

Efficient Computation in L-tiling Model For two points (U, u), (V, v) in L-tiling model, the
formula to compute distance is

d((U, u), (V, v)) = arcosh (h(u)TL−TQL−1h(v))

= arcosh(Q11 · dc)

= log(Q11) + log

(
dc +

√
d2c −Q−211

)
where Q = −UTLT gltLV, Q̂ = Q

Q11
, dc = h(u)TL−T Q̂L−1h(v). Since Q11 can be super large,

then we extract Q11 out here to avoid potential overflow, also there is no underflow problem since
Q11 is a positive integer. Then the corresponding formula for the gradient of this distance is ∇ud((U, u), (V, v)) = ∇h(u)TL−T Q̂L−1h(v)√

(h(u)TL−T Q̂L−1h(v))2−Q−2
11

= ∇h(u)TL−T Q̂L−1h(v)√
d2c−Q

−2
11

∇vd((U, u), (V, v)) = ∇h(v)TL−T Q̂TL−1h(u)√
(h(u)TL−T Q̂L−1h(v))2−Q−2

11

= ∇h(v)TL−T Q̂TL−1h(u)√
d2c−Q

−2
11

where

∇h(u) =

[
u√

1 + ||u||2
, I

]
,∇h(v) =

[
v√

1 + ||v||2
, I

]
We provide the error bound for distance and gradient computation in L-tiling model using float
arithmetic in Theorem 6, Theorem 7, where errors are independent of how far points are from the
origin and solves the “Nan" problem.

SGD in the L-tiling model We offer SGD algorithm below, with the addition of a normalization
when the parameter goes out of the L-tiling model, which is performed using Algorithm 1, whose
convergence and complexity were shown in Theorem 3.

Algorithm 3 SGD using group representation

Require: Objective function f , fuchsian group G with fundamental domain F ⊂ R2

Require: Tuple (θt, Ut) ∈ F ×G
Require: Number of epochs T , and learning rate α

for t = to T − 1 do
lt ⇐ ∇θtf(LUtL

−1h(θt)) . Euclidean gradient w.r.t. θt
θt+1 ⇐ θt − αlt . Update θt ∈ F
if θt+1 /∈ F then
W ⇐ arg minW∈G d(LW−1L−1h(θt+1), 0)
Ut+1 ⇐ Ut ·W . Normalize if θt+1 /∈ F
θt+1 ⇐ LW−1L−1h(θt+1)

else
Ut+1 ⇐ Ut

end if
end for

output (θt+1, Ut+1)

RSGD in theL-tiling model We show RSGD in theL-tiling model here, which is in correspondence
to Algorithm 1. Equivalence of this algorithm to that in Lorentz model is shown in Theorem D
For (Ut, ut) in the L-tiling model, let f be the objective function, denote ∇ut

f to be the Euclidean
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gradient of f w.r.t. ut. To do RSGD in the L-tiling model, firstly transform the Euclidean gradient to
Riemannian gradient using the pull-back hyperbolic metric:

ht = g−1ut
∇utf,

then project it into the tangent space at ut,

gradut
f = ht + 〈ut, ht〉Lut.

then the RSGD algorithm in the L-tiling model updates ut as follows:

ut+1 = exput
(v) = cosh (||v||L)ut + sinh (||v||L)

v

||v||L
,

where v = −η · gradut
f and ‖v‖L =

√
〈v, v〉L.

Efficient Computation inH-tiling Model For points (j1, k1, z1) and (j2, k2, z2) inH-tiling model,
directly computing distance as follows works in most cases,

dh((j1,k1, z1), (j2,k2, z2)) = arcosh(1 +
||2j1(z1 + k1)− 2j2(z2 + k2)||2

2j1+j2+1z1nz2n
)

However, we do consider situations where overflows may happen and provide an alternative way to
compute distance. Suppose without loss of generality that j2 ≥ j2, then we can write distance as

dh((j1,k1, z1), (j2,k2, z2)) = arcosh(1 + 2j1−j2
||z1 − 2j2−j1z2 + k1 − 2j2−j1k2)||2

2z1nz2n
)

let k1 − 2j2−j1k2 = 2sI where s is some natural number scale factor such that ‖I‖ < 1. This is easy
to compute exactly using integer arithmetic. (Note that k1 − 2j2−j1k2 is an integer vector, choose
s = dlog2(‖k1 − 2j2−j1k2‖2)/2e, where the values inside the log2 are all integers). Then we get

dh((j1,k1, z1), (j2,k2, z2)) = arcosh(1 + 2j1−j2
||2sI + z1 − 2j2−j1z2||2

2z1nz2n
)

= arcosh(1 + 22s+j1−j2
||I + 2−sz1 − 2j2−j1−sz2||2

2z1nz2n
)

= arcosh(1 + 22s+j1−j2X)

= log(1 + 22s+j1−j2X +
√

(1 + 22s+j1−j2X)2 − 1)

=(2s+j1−j2)log(2)+log(2−2s−j1+j2 +X+
√
X2 + 21−2s−j1+j2X)

where

X =
||I + 2−sz1 − 2j2−j1−sz2||2

2z1nz2n
then we can get following gradients,

∂d

∂X
=

1 + X+2−2s−j1+j2√
X2+21−2s−j1+j2X

2−2s−j1+j2 +X +
√
X2 + 21−2s−j1+j2X

∇z1iX =
Ii + 2−sz1i − 2j2−j1−sz2i

2sz1nz2n

∇z2iX = −Ii + 2−sz1i − 2j2−j1−sz2i
2s+j1−j2z1nz2n

∇z1nX =
In + 2−sz1n − 2j2−j1−sz2n

2sz1nz2n
− ||I + 2−sz1 − 2j2−j1−sz2||2

2z21nz2n

∇z2nX = −In + 2−sz1n − 2j2−j1−sz2n
2s+j1−j2z1nz2n

− ||I + 2−sz1 − 2j2−j1−sz2||2

2z1nz22n

Using chain rule, Euclidean gradients of dh w.r.t. z1, z2 can be derived. We provide the error bound
for this distance computation in H-tiling model using float arithmetic in Theorem 8. we neglect the
error bound for gradient computation here which can also be derived similarly. In H-tiling model,
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these computation errors are independent of how far points are from the origin and solves the “Nan"
problem.

RSGD in the H-tiling model For (jt, kt, z
t) in the H-tiling model, let f be the objective function,

denote∇ztf to be the Euclidean gradient of f w.r.t. zt. To do RSGD in the H-tiling model, firstly
transform the Euclidean gradient to Riemannian gradient using the pull-back metric:

gradzt f = ztn∇ztf

take the learning rate η into consideration, denote v = −η · gradztf , firstly compute its norm as
s =
√
vT v, then the RSGD algorithm in the H-tiling model updates zt as follows:

zt+1
i =zti +

ztn
s

tanh s − vn
· vi

zt+1
n =

ztn
cosh s− sinh s

s vn

B Experiment Details

Compression Compression experiments were implemented in Julia. We compress L-tiling model
using storage methods mentioned in Section 7, round Poincaré ball model towards zero since it is
bounded in the Euclidean unit ball, round Lorentz model to the nearest to compress baseline models.

Learning We implemented learning experiments in PyTorch using float64. Notably, for tiling-based
models, we also use float64 to store the integers, in order to avoid potential numerical imprecision
when the integers overflow and are out of the expressible range of float64, we developed a secure
method to express a integer matrix U and do accurate integer arithmetic using two float64 type
matrices. Specifically, we express it as U = U1 +U2, where 2t|U1, |U2| < 2t, and U1, U2 are float64
type. Alternatively, we can similarly use n float64 type matrices to express the integer matrix and
pick suitable t to prevent overflow. In our experiments, we found that two float matrices and t = 20
are sufficient to prevent overflow and get exact computation of integer arithmetic using float64.

We initialize embeddings randomly from the uniform distribution U(−0.0001, 0.0001), except
from embeddings in the H-tiling model, whose last elements zn were initialized from the uniform
distribution U(1, 1.0001) in order to make the division to zn stable. Matrices g ∈ G in L-tiling
model were initialized to be identity matrices, integer vectors and the exponential integer in H-tiling
model were initialized to be zeros. Then we project those embedding to the manifold accordingly
before training.

Second, similar as [26], to get a good initial angular layout which is helpful to find good embeddings,
we train during an initial "burn-in" phase (20 epochs) with a reduced learning rate η/100. We train
the embedding using multi-threads N to speed up convergence. Those hyperparameters together with
batch size b for different datasets were summarized in Table 4.

Hyperparameters η b N

Gr-QC 0.3 10 2
WordNet Mammals 0.3 10 2
WordNet Verbs 0.5 10 5
WordNet Nouns 0.5 50 5

Table 4: Hyperparameters

C More Experiments

Embedding in hyperbolic space reaches better performance compared to Euclidean space, as a simple
experiment, consider embedding of a simple tree in Figure 4, where the lengths of edges are in
different scale. When embedded into Euclidean space, the global distortion is 0.1395, the worst-case
distortion is 2.15. However, when embedded into Poincaré ball model of hyperbolic space, the
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Figure 4: A simple tree.
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Figure 5: hyperbolic error for bio-yeast dataset.

global distortion is just 0.0007 and the worst-case distortion is 1.025, which is far better than that in
Euclidean space.

Compression Experiments For compression of Bio-yeast dataset mentioned in Section 7, we plot
the scatter of the relationship between log(MSHE) and bits to store per node in Figure 5, under the
same MSHE, L-tiling model store per node with approximately 3/4 less bits compared to that of
Poincaré model.

We also consider compressing embeddings that were trained using optimization algorithms like SGD
and RSGD, to learn 2-dimensional Poincaré disk embedding with great performance, but this method
fails to learn a great embedding for larger dataset like WordNet Nouns using 2 dimension model, so
we use this method to derive 2-dimensional embeddings for Mammals (Tree-like) and Gr-QC (Dense)
dataset. We show the MSHE of different compressions in Table 5, and it leads to the same conclusion
that those compression will not hurt the performance of the embedding such as MAP and MR while
largely shrinking the size of embeddings.

Table 5: Compression Performance

Models Mammals grqc

MSHE MAP MR MSHE MAP MR

Poincaré(128b) 0 0.7936 2.36 0 0.5382 73.88

Poincaré(64b) 1.59e-2 0.7935 2.36 1.65e-1 0.5382 73.88
Lorentz(128b) 1.51e-11 0.7935 2.36 1.39e-10 0.5382 73.88
Lorentz(64b) 9.44e-3 0.7935 2.36 1.77e-1 0.5382 73.88
L-tiling-f32 5.17e-08 0.7935 2.36 5.29e-8 0.5382 73.88
L-tiling-f16 4.16e-04 0.7935 2.36 4.19e-4 0.5382 73.88

Learning Experiments We also include the previous results where all models were trained using
float32 in PyTorch as shown in Table 6.

D Mathematical Background and Proofs

Definition 1. [Representation error] We are concerned with representing points in hyperbolic
space Hn using floating-points fl. Define the representation error of a particular point x ∈ Hn as
δfl(x) = dHn(x,fl(x)), and the worst case representation error of floating-points representation as a
function of the distance-to-origin d, which is the maximum representation error of any point with a
distance-to-origin at most d,

δdfl = max
x∈Hn, dHn (x,O)≤d

δfl(x).

Definition 3 ([9, 12, 33, 28]). A tiling of the plane is a collection of sets (“tiles") whose union is the
entire plane, but the interiors of different tiles are disjoint. A uniform tiling is an edge-to-edge filling
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Table 6: Previous Learning Experiments

DIMENSION MODELS
WORDNET NOUNS WORDNET VERBS GR-QC

MAP MR MAP MR MAP MR

2

POINCARÉ 0.092 95.01 0.478 6.24 0.566 69.11
LORENTZ 0.371 19.07 0.701 2.35 0.556 63.6263.6263.62
L-TILING-RSGD 0.3900.3900.390 17.5217.5217.52 0.721 2.36 0.564 71.36
L-TILING-SGD 0.341 21.53 0.726 2.102.102.10 0.5820.5820.582 65.19
H -TILING 0.385 17.70 0.7410.7410.741 2.28 0.568 65.84

4 2*L-TILING-RSGD / / 0.858 1.37 0.717 12.32

5
POINCARÉ 0.850 4.76 0.9530.9530.953 1.23 0.712 34.77
LORENTZ 0.851 3.78 0.935 1.19 0.712 33.95
H -TILING 0.8690.8690.869 3.623.623.62 0.9530.9530.953 1.171.171.17 0.7160.7160.716 32.5732.5732.57

6 3*L-TILING-RSGD / / 0.935 1.13 0.8520.8520.852 4.454.454.45

10
POINCARÉ 0.875 3.88 0.9540.9540.954 1.23 0.7300.7300.730 29.86
LORENTZ 0.872 3.45 0.951 1.141.141.14 0.724 29.50
H -TILING 0.8940.8940.894 3.253.253.25 0.9540.9540.954 1.15 0.726 29.4529.4529.45

of the hyperbolic plane, which has regular congruent polygons as faces and is vertex-transitive (there
is an isometry mapping any vertex onto any other).

Definition 4 ([21, 2, 37]). A Fuchsian group G is a discrete subgroup of the 2×2 projective special
linear group over R, PSL(2,R).

Definition 5 ([37]). The Dirichlet domain for G centered at z0 ∈ H2 is

�(G; z0) = {z ∈ H2 : d(z, z0) ≤ d(gz, z0),∀g ∈ G}

Definition 6 ([37, 36]). A fundamental domain for G is a close set F ⊂ H2 such that

• {gx|∀g ∈ G, x ∈ F} = H2

• {gx|∀x ∈ F o} ∩ F o = ∅,∀g ∈ G/{1}, where o denotes the interior.

Theorem 1. The worst-case representation error (Definition 1) in the Lorentz model using floating-
point arithmetic (with machine epsilon εm) is δdl = arcosh(1 + εm(2 cosh2(d) − 1)), where d
is the hyperbolic distance to origin. This becomes δdl = 2d + log(εm) + o(ε−1m exp(−2d)) if
d = O(− log εm).

Theorem 4. The representation error (Definition 1) in L-tiling model is bounded as δdlt ≤
√

5εm +
15εm/4 + o(εm), where εm is the machine error.

Proof of Theorem 1 and Theorem 4. For a real point (g,x) in L-tiling model, where g ∈ G, x ∈ F ,
we represent it as (g,fl(x)), then we get the representation error as follows:

δdlt = dlt((g,x), (g,fl(x))) = arcosh(−xT gT gltgfl(x)) = arcosh(−xT gltfl(x))

Note that |xi − fl(xi)| ≤ εmxi, so we have

δdlt = arcosh

(
− (x1, x2, x3) glt

(
(1 + ε1)x1
(1 + ε2)x2
(1 + ε3)x3

))
= arcosh((1 + ε1)x21 − (1 + ε2)x22 − (1 + ε3)x23)

= arcosh(1 + ε1x
2
1 − ε2x22 − ε3x23)

since x21 + x22 + x23 ≤ Bf , then we derive that δdlt ≤ arcosh(1 + εmBf ) =
√
εmBf + 3εmBf/4 +

o(εm), simple calculation will lead to Bf = 5, then δdlt ≤
√

5εm + 15εm/4 + o(εm). If we
consider the representation error in Lorentz model, the only difference is that x is not bounded in
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the fundamental domain any more. Then we can get that δdl = arcosh(1 + εm||x||2), noticed that
cosh d = −xT gltO = x1, where d is the distance to origin, then

δdl = arcosh(1+εm(x21+x22+x23)) = arcosh(1+εm(2x21−1)) = arcosh(1+εm(2 cosh2(d)−1)),

which becomes δdl = 2d+log(εm)+o(ε−1m exp(−2d)) if d = O(− log εm), this error also generalize
similarly to high dimensional Lorentz model.

Theorem 2. F = {(x1, x2, x3) ∈ L2|max(2x22 − x23, 2x23 − x22) < 1} is a fundamental domain of
G. Any point in L2 can be mapped by G to one unique point in F or to a point on its boundary.

Proof. To begin with, we prove that F is the Dirichlet domain for G centered at O ∈ H2 denoted as
�(G). Firstly, we show that F ⊂ �(G), that is, for any z ∈ F , we have d(z,O) ≤ d(Uz,O) for all
U ∈ G. It suffices to show

z1 ≤ z1u11 + z2u12 + z3u13,

where z21 = 1 + z22 + z23 . Also note that U ∈ G, then UT glU = gl, from which we can derive
that u211 = 1 + u212 + u213. Further, from the construction of G, we can write u11 = t11, u12 =√

3t12, u13 =
√

3t13, where t1i is an integer, then t211 = 1 + 3t212 + 3t213. Consider following:

z1 ≤ z1u11 + z2u12 + z3u13

⇐⇒ z1 ≤ z1t11 +
√

3z2t12 +
√

3z3t13

⇐⇒ −
√

3(z2t12 + z3t13) ≤ z1(t11 − 1)

⇐= 3(z2t12 + z3t13)2 ≤ z21(t11 − 1)2 . z1, t11 ≥ 1

⇐⇒ 3(z22t
2
12 + z23t

2
13 + 2t12t13z2z3) ≤ (1 + z22 + z23)(1 + 3t212 + 3t213 − 2t11 + 1)

⇐⇒ 6t12t13z2z3 ≤ (3t212 + 3t213 − 2t11 + 2) + z22(3t213 − 2t11 + 2) + z23(3t212 − 2t11 + 2)

⇐= 2t11z
2
1 ≤ (3t212 + 3t213) + 2z21 . z22t

2
13 + z23t

2
12 ≥ 2z2z3t13t12

⇐⇒ 2t11z
2
1 ≤ (t211 − 1) + 2z21

⇐⇒ 2z21(t11 − 1) ≤ t211 − 1

⇐⇒ 2z21 ≤ t11 + 1 . t11 − 1 ≥ 0

⇐= 5 ≤ t11 . z1 ≤
√

3⇐ z ∈ F
Hence, if t11 ≥ 5, then the inequality is proved. If t11 < 5, since t11 is an integer, then t11 = 1, 2, 3, 4.

• If t11 = 1, then U is identity matrix, the inequality is satisfied.

• If t11 = 2, then the integer solutions to t211 = 1 + 3t212 + 3t213 is {ga, gb, g−1a , g−1b }, the
inequality is satisfied by simply checking one by one.

• If t11 = 3, then there is no integer solutions to t211 = 1 + 3t212 + 3t213.

• If t11 = 4, then the solutions to t211 = 1 + 3t212 + 3t213 is (t11, t13, t13) = (4, 2, 1), (4, 1, 2).
Manually check will find that the inequality is satisfied in both cases.

Then F ⊂ �(G), also note that with Algorithm 1, for any z ∈ �(G), it will be mapped by some V ∈
G such that V z ∈ F and d(V z,O) ≤ d(z,O). From the definition of �(G), d(V z,O) ≥ d(z,O),
then (V z)T glO = d(V z,O) = d(z,O) = zT glO, which leads to V11 = 1, then V = I considering
V T glV = gl, thus, z = V z ∈ F and �(G) ⊂ F , which shows that F = �(G).

For the second part of the proof, we show that F is a fundamental domain for G. According to
Theorem 37.1.10 in [37], it suffices to show that StabG(O) = {1}. Consider TOH = OH , where
T ∈ G. From (T − I)OH = 0, we can get that

T =

[
1 0
0 B

]
.

where BT = B. Also note T ∈ G, then B2 = I , these two conditions lead to that B = I . Hence,
StabG(O) = {1}, then F is a fundamental domain forG. Since fundamental domain F only contains
one element in the orbit, then for any point in the space, it can only be mapped to one unique point in
F .
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Theorem 3. For any point in the Lorentz model, Algorithm 1 converges and stops within 1 + 7d
steps, where d = d(x,O) denotes the distance from x to the origin.

Proof. We just consider x2 ≤ −|x3| case in the Algorithm, other cases can be proved in the same
way, then we have

cosh d(L · ga · L−1 · x, O)

cosh d(x,O)
= 2 +

√
3x2√

1 + x22 + x23
< 1

then the distance to the origin in the space is monotonically decreasing as Algorithm 1 goes, note that
this distance is bounded by 0, then it will converge.

To see the steps required for the algorithm to finish, we may assume that max{|x2|, |x3|} ≥ C0 > 1,
due to the symmetry of this algorithm, also consider the case x2 ≤ −|x3|, then |x2| ≥ C0, we have

cosh d(L · ga · L−1 · x,O)

cosh d(x,O)
≤ 2−

√
3C0

2C0 + 1
≤ 1

Hence,

d(x,O)− d(L · ga · L−1 · x,O)

≥ arcosh(
√

1 + x22 + x23)− arcosh

(
(2−

√
3C0

2C0 + 1
)
√

1 + x22 + x23

)

≥− log(2−
√

3C0

2C0 + 1
)

so d(x,O) will decrease monotonically for at most s0(C0) steps, where

s0(C0) =
d(x,O)

− log(2−
√

3C0

2C0+1 )

Consider max{|x2|, |x3|} at the boundary between F and its neighborhood tiles:

min
x∈L{ga,gb,g−1

a ,g−1
b }L−1F

max{|x2|, |x3|} =
5

2

√
2

Hence, we can chooseC0 = 5
2

√
2, then d(x,O) will decrease monotonically until max{|x2|, |x3|} <

C0 within s0(5
√

2/2) steps, which means x lies either in F or its 4 neighborhood tiles, so totally it
will cost at most s0(5

√
2/2) + 1 ≤ 1 + 7d steps.

Lemma 1. If the integer matrix U is given, then corresponding VBW encoding can be derived using
Algorithm 1. Further, if only U21, U31 are given, then U can be reconstructed using Algorithm 1.

Proof. If U is given, consider the point (U,O) in the L-tiling model, which is in correspondence
to x = LUL−1O in the Lorentz model, then we can map x to (U ′, u′) with Algorithm 1, where
we choose a generator at each step to get a generator order string, with which we can reconstruct
U ′. Since each point in the Lorentz model will be mapped to a unique point in F as Theorem 2
states, also x can be mapped to (U,O) and (U ′, u′), then u′ = O. The question is whether U = U ′,
consider LUL−1O = LU ′L−1O, which leads to (LU ′−1UL−1− I)O = 0, since StabG(O) = {1}
as the second part in the proof of Theorem 2 proved, then LU ′−1UL−1 = I to get U = U ′. Hence,
given U , we can get its generator order string, which can be then used to get the VBW encoding
accordingly. Further, note that UTM3U = M3, then we have

U2
11 = 1 +

U2
21 + U2

31

3
.

Therefore, we can compute U11 if only U21, U31 were given to get the first column of U . Since
x = LUL−1O and O = (1, 0, 0), then the first column of U suffices to get x, then we can reconstruct
U out using Algorithm 1.

Lemma 2. Q11 has the largest absolute value in Q = UTM3V .
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Proof. Note that Q = UTM3V = M3U
−1V = M3T , where T is an integer matrix generated by ga

and gb, so we have TTM3T = M3, using this relation, we can get following equations:

t211 =1 +
t221 + t231

3

t211 =1 + 3(t212 + t213)

3t212 =(t222 + t232)− 1

3t213 =(t223 + t233)− 1

since Q11 = 3t11, from first formula, we get that Q2
11 = 9t211 ≥ 3t211 > t221 + t231 = Q2

21 +Q2
31, so

Q11 has the largest absolute value in the first column of Q. From the second formula, we get that
Q2

11 ≥ t211 > t212 + t213, so Q11 has the largest absolute value in the first row of Q. Then combine
formulas 2,3,4 and we get that

1 + t211 = t222 + t232 + t223 + t233

From first formula, we know that t11 ≥ 1, then we haveQ2
11 ≥ 2t211 ≥ 1+t211 = t222+t232+t223+t233

Combine above results, clearly that Q11 has the largest absolute value in Q, which finishes our
proof

Theorem 5. The representation error (Definition 1) in H-tiling model is bounded as δdht =√
(n+ 3)εm/2 + (n+ 3)εm/4 + o(εm), where εm is the machine error.

Proof. For a real point (j,k,x) ∈ Z × (Zn−1 × {0}) × S in H-tiling model, we represent it as
(j,k,fl(x)), then we get the representation error as follows:

δdht = dht((j,k,x), (j,k,fl(x))) = arcosh(1 +
||x− fl(x))||2

2xnfl(xn)
)

Note that |xi − fl(xi)| ≤ εmxi, so we have

δdht = arcosh(1 +

n∑
i=1

εix
2
i

2(1 + εn)x2n
)

since 0 ≤ x1, · · · , xn−1 < 1 ≤ xn < 2, then we derive that δdht ≤ arcosh(1 + (n+3)εm
2(1−εm) ) =√

(n+ 3)εm/2 + (n+ 3)εm/4 + o(εm).

Proof of RSGD algorithm. Here we show the equivalence between the RSGD algorithm of L-tiling
model described in appendix A and that in Lorentz model. To begin with, consider the RSGD
algorithm in Lorentz model. Let xt, yt ∈ H2, then we have d(xt, yt) = arcosh(−xTt glyt), the
Euclidean gradient of xt can be computed as

∇xtd(xt, yt) =
−glyt√

(xTt glyt)
2 − 1

,

to get the Riemannian gradient in the model, we make use of the pull-back metric as follows,

ht = g−1l,xt
∇xtd(xt, yt) =

−yt√
(xTt glyt)

2 − 1
,

further we project this Riemannian gradient into the tangent space at xt,

gradxt
d = ht + 〈xt, ht〉Lxt = − yt + (xTt glyt)xt√

(xTt glyt)
2 − 1

,

then we make use of the exponential map in Lorentz model to update,

xt+1 = expxt
(v) = cosh (||v||L)xt + sinh (||v||L)

v

||v||L
,
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where

v = −η · gradxt
d = η

yt + (xTt glyt)xt√
(xTt glyt)

2 − 1
.

Now consider the norm of v under hyperbolic metric,

||v||2L =vT glv

=
η2

(xTt glyt)
2 − 1

(yTt glyt + (xTt glyt)
2 + (xTt glyt)

2 + (xTt glyt)
2xTt glxt)

=
η2

(xTt glyt)
2 − 1

(−1 + (xTt glyt)
2 + (xTt glyt)

2 − (xTt glyt)
2)

=η2

hence we derived the RSGD algorithm in the Lorentz model as

xt+1 = expxt
(v) = cosh (η)xt + sinh (η)

yt + (xTt glyt)xt√
(xTt glyt)

2 − 1
(2)

For the second part, we turn to L-tiling model, let xt = LUL−1ut, yt = LV L−1vt, the distance is

d(xt, yt) = arcosh(uTt L
−TQL−1vt),

then the Euclidean gradient of ut can be computed as

∇ut
d(x, y) =

L−TQL−1vt√
(uTt L

−TQL−1vt)2 − 1
.

In the same way, make use of the pull-back by the metric matrix, we derived the Riemannian gradient

ht = g−1lt,ut
∇ut

d(xt, yt) =
gltL

−TQL−1vt√
(uTt L

−TQL−1vt)2 − 1
,

also project it into the tangent space at ut,

gradut
d = ht + 〈ut, ht〉Lut =

gltL
−TQL−1vt + (vTt L

−TQTL−1ut)ut√
(uTt L

−TQL−1vt)2 − 1
.

then the update rule in the tiling-based model is

ut+1 = exput
(v),

where

v = −η · gradut
d = −η gltL

−TQL−1vt + (vTt L
−TQTL−1ut)ut√

(uTt L
−TQL−1vt)2 − 1

,

then consider the norm of v under hyperbolic metric,

||v||2L =vT gltv

=
η2

(uTt L
−TQL−1vt)2 − 1

[gltL
−TQL−1vt + (vTt L

−TQTL−1ut)ut]
T ·

glt[gltL
−TQL−1vt + (vTt L

−TQTL−1ut)ut]

=
η2

(uTt L
−TQL−1vt)2 − 1

[vTt L
−TQTL−1gltL

−TQL−1vt

+ 2(vTt L
−TQTL−1ut)

2 + (vTt L
−TQTL−1ut)u

T
t gltut]

=
η2

(uTt L
−TQL−1vt)2 − 1

[vTt L
−TQTL−1gltL

−TQL−1vt

+ 2(vTt L
−TQTL−1ut)

2 − (vTt L
−TQTL−1ut)]

=
η2

(uTt L
−TQL−1vt)2 − 1

[(L−TQL−1vt)
T glt(L

−TQL−1vt) + (vTt L
−TQTL−1ut)

2]
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Since U ∈ G0, then it follows

Q = UTM3V = M3U
−1V = M3W, W ∈ G.

So we get
L−TQL−1vt = L−TM3WL−1vt,

hence

(L−TQL−1vt)
T glt(L

−TQL−1vt) =vTt L
−TWTMT

3 L
−1gltL

−TM3WL−1vt

=− vTt L−TWTM3WL−1vt

=− vTt L−TM3L
−1vt

=vTt gltvt
=− 1

so ‖v‖2L = η2, then the RSGD algorithm in L-tiling model is

ut+1 = exput
(v) = cosh (η)ut − sinh (η)

gltL
−TQL−1vt + (vTt L

−TQTL−1ut)ut√
(uTt L

−TQL−1vt)2 − 1
(3)

For the third part, again consider the RSGD algorithm in Lorentz model, from Equation 2, we have
that

LUL−1ut+1 = cosh (η)LUL−1ut + sinh (η)
LV L−1vt − (vTt L

−TQTL−1ut)LUL
−1ut√

(vTt L
−TQTL−1ut)2 − 1

,

so RSGD algorithm in Lorentz model is equivalent to:

ut+1 = cosh (η)ut + sinh (η)
LU−1V L−1vt − (vTt L

−TQTL−1ut)ut√
(vTt L

−TQTL−1ut)2 − 1
, (4)

note that UTM3U = M3, then U−1 = M−13 UTM3, with simple computation, we get that

LU−1V L−1 = LM−13 UTM3V L
−1 = LM−13 QL−1 = −gL−TQL−1,

hence, RSGD algorithm in L-tiling model (Equation 3) becomes the same as RSGD algorithm in
Lorentz model (Equation 4), which finishes our proof.

Error for Computing in L-tiling Model We approximate (U, u), (V, v) with (U,fl(u)) and
(V,fl(v)), here we provide the error of computing in L-tiling model together with that in Lorentz
model.

Theorem 6. The worst case error of computing distance in Lorentz model using float is

|dfl
l (fl(x), fl(y))− dl(x, y)| = 2 cosh (d(x,O)) cosh (d(y,O))

sinh (d(x, y))
εm + εmd(x, y) + o(εm),

the error of computing distance in L-tiling model using float is

|dfl
lt((U, fl(u)), (V, fl(v)))−dlt((U, u), (V, v))|=


dεm+A1(C0)εm + o(C−20 + εm), d ≥ C0

dεm+[A2(C0) +
A3(C0)

tanh(d)
]εm + o(εm), d < C0

where d is the real distance between two points, Ai(C0) are constants only depends on C0, dfl means
that inside computation like multiplication are performed with machine error εm.

Remark: The worst case error of distance computation in Lorentz model using float is dominated by
d(x,O), d(y,O), this will cause the "NaN" problem when two points are far away from the origin.
However, in L-tiling model, the error only depends on d, i.e., how far two points are to each other,
also tanh term is bounded, which controls the distance error and solves the "NaN" problem.
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Proof. We consider the Lorentz model at first, let z = xTMy, ẑ = fl(x)TMfl(y), then

|ẑ − z| ≤ |(1 + εm)6z − z| = 6εm|x|T |y|+ o(εm) ≤ 2εmx0y0 + o(εm)

= 2εm cosh (dx) cosh (dy) + o(εm) = δz

thus,

|dfl
l (fl(x),fl(y))− dl(x, y)| = |(1 + ε) arcosh (xTMy + δz)− arcosh (xTMy)|

=
δz√

(xTMy)2 − 1
+ εdl + o(δz) =

2 cosh (dx) cosh (dy)

sinh (dl)
εm + εmdl + o(εm)

As for the distance error in L-tiling model, here in the same way denote z = h(u)TL−T Q̂L−1h(v),
since h(u), h(v) are in the fundamental domain, which is bounded by Bf , so ‖h(u)‖, ‖h(v)‖ ≤√
Bf =

√
5, also Q̂ is bounded, then using Cauchy inequality, we have

|z| ≤ ‖h(u)‖(
√

7

3
|h(v)1|+

√
7

3
|h(v)2|+

√
7

3
|h(v)3|) ≤

7

3
‖h(u)‖‖h(v)‖ ≤ 7

3
B2
f = 35/3

so the distance is

dlt((U, u), (V, v)) = log(Q11) + log

(
z +

√
z2 −Q−211

)

then log(Q11) ≤ d, further note that

arcosh(Q11/3) =d(L−TUL−1O,L−TV L−1O)

≤d(L−TUL−1O,L−TUL−1h(u)) + d(L−TUL−1h(u), L−TV L−1h(v))

+ d(L−TV L−1O,L−TV L−1h(v))

=d(O, h(u)) + d(L−TUL−1h(u), L−TV L−1h(v)) + d(O, h(v))

≤d+ 2 arcosh(
√

3) = d+ 2 log(
√

3 +
√

2)

in this way, we get

z2 = z2 −Q−211 +Q−211 =Q−211 (cosh2(d)− 1) +Q−211 ≥ Q
−2
11 +

sinh2(d)

9 cosh2(d+ 2Bf )

z =Q−111 cosh(d) ≥ cosh(d)

3 cosh(d+ 2 log(
√

3 +
√

2))

Now, we consider the first term of calculating distance log(Q11), in order to avoid overflow, we
computed with following formula.

log(Q11) =
log(3)

2
+ log(U11) + log(V11) + log(1 +

U12

U11

V12
V11

+
U13

U11

V13
V11

)
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then

flc(log(Q11)) =

(
log(3)

2
+ log(U11) + log(V11)

)
(1 + ε)

+ fl
(

log(1 +
U12

U11

V12
V11

(1 + ε)2 +
U13

U11

V13
V11

(1 + ε)2)

)
=

(
log(3)

2
+ log(U11) + log(V11)

)
(1 + ε)

+

(
log(1 +

U12

U11

V12
V11

(1 + ε)2 +
U13

U11

V13
V11

(1 + ε)2)

)
(1 + ε)

=

(
log(3)

2
+ log(U11) + log(V11)

)
(1 + ε)

+ (1 + ε) log(1 +
U12

U11

V12
V11

(1 + 2ε) +
U13

U11

V13
V11

(1 + 2ε) + o(ε))

=

(
log(3)

2
+log(U11)+log(V11)

)
(1+ε)+(1+ε) log(1+

U12

U11

V12
V11

+
U13

U11

V13
V11

)

+ (1 + ε)
2ε(U

12

U11
V12

V11
+ U13

U11
V13

V11
) + o(ε)

1 + U12

U11
V12

V11
+ U13

U11
V13

V11

= log(Q11)(1 + ε) + (1 + ε)

(
2ε(U

12

U11
V12

V11
+ U13

U11
V13

V11
) + o(ε)

1 + U12

U11
V12

V11
+ U13

U11
V13

V11

)

= log(Q11)(1 + ε) + 2ε
U12V12 + U13V13

U11V11 + U12V12 + U13V13
+ o(ε)

Here flc means calculating with float arithmetic, hence, the error of computing the first term is

δQ = |flc(log(Q11))− log(Q11)| ≤ log(Q11)εm +
1

2
εm + o(εm)

Then we consider the error of computing z = h(u)TL−T Q̂L−1h(v), given by following formula:

|flc(z)− z| ≤ |(1 + ε)7h(u)TL−T Q̂L−1h(v)− z| ≤ 7εm|h(u)|TL−T |Q̂|L−1|h(v)|+ o(εm)

≤ 245

3
εm + o(εm) = δz

based on this error, we consider the error for the second term of distance

δ2 =flc
(

log(z +

√
z2 −Q−211 )

)
− log(z +

√
z2 −Q−211 )

=(1 + ε1)(log((1 + ε2)(z + δz + (1 + ε3)

√
(1 + ε4)((1 + ε5)(z + δz)2 − (1 + ε6)Q−211 ))))

− log(z +

√
z2 −Q−211 )

=(1 + ε1)(log(z + δz + (1 + ε3)

√
(1 + ε4)((1 + ε5)(z + δz)2 − (1 + ε6)Q−211 )))

− log(z +

√
z2 −Q−211 ) + ε2 + o(εm)

=(1 + ε1)(log(z + δz + (1 + ε3)
√

(1 + ε4) ·
√

(z + δz)2 −Q−211 + ε7((z + δz)2 +Q−211 )))

− log(z +

√
z2 −Q−211 ) + ε2 + o(εm)

=(1 + ε1)(log(z +
245

3
εm + (1 +

2

3
ε8)

√
(z +

245

3
εm)2 −Q−211 + ε7((z + δz)2 +Q−211 )))

− log(z +

√
z2 −Q−211 ) + ε2 + o(εm)
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We divide it into two cases, firstly, consider Taylor expansion here when Q11z ≥ C0, where C0 ≥ 1
is a large constant, then

log(z +
245

3
εm + (1 +

2

3
ε8)

√
(z +

245

3
εm)2 −Q−211 + ε7((z +

245

3
εm)2 +Q−211 ))

= log(z + (1 +
2

3
ε8)

√
z2 −Q−211 + ε7(z2 +Q−211 )) +

245εm

3
√
z2 −Q−211 + ε7(z2 +Q−211 )

+ o(εm)

= log(z +

√
z2 −Q−211 + ε7(z2 +Q−211 )) +

2

3
ε8 −

2ε8z

3[z +
√
z2 −Q−211 + ε7(z2 +Q−211 )]

+
245εm

3
√
z2 −Q−211 + ε7(z2 +Q−211 )

+ o(εm)

= log(z +

√
z2 −Q−211 ) +

(z2 +Q−211 )ε7

2
√
z2 −Q−211 (z +

√
z2 −Q−211 )

+
2

3
ε8 −

2ε8z

3[z +
√
z2 −Q−211 ]

+
245εm

3
√
z2 −Q−211

+ o(εm)

= log(z +

√
z2 −Q−211 ) +

ε7
4

+
7ε7

16(Q11z)2
+

2

3
ε8 −

ε8
3
− ε8

12(Q11z)2
+

245εm
3z

+O(εmQ
−2
11 z
−3) + o((Q11z)

−3) + o(εm)

= log(z +

√
z2 −Q−211 ) +

ε7
4

+
7ε7

16(Q11z)2
+

1

3
ε8 −

ε8
12(Q11z)2

+
245εm

3z

+O(εmQ
−2
11 z
−3) + o((Q11z)

−3) + o(εm)

= log(z +

√
z2 −Q−211 ) +

ε7
4

+
7ε7

16(Q11z)2
+

1

3
ε8 −

ε8
12(Q11z)2

+
245εm

3z
+ o(C−20 ) + o(εm)

= log(z +

√
z2 −Q−211 ) + (

7

12
+

25

48(Q11z)2
)ε9 +

245εm
3z

+ o(C−20 ) + o(εm)

where |εi| ≤ εm, the machine error, then the error is

|(1 + ε1)(log(z +

√
z2 −Q−211 ) + (

7

12
+

25

48(Q11z)2
)ε9 +

245εm
3z

+ o(C−20 ) + o(εm))

− log(z +

√
z2 −Q−211 ) + ε2 + o(εm)|

=|(1+ε1)

(
(

7

12
+

25

48(Q11z)2
)ε9+

245εm
3z

+o(C−20 )

)
+ε1 log(z+

√
z2−Q−211 )+ε2+o(εm)|

=|( 7

12
+

25

48(Q11z)2
)ε9+

245εm
3z

+ε1 log(z+

√
z2−Q−211 )+ε2+o(C−20 )+o(εm)+

7

12
ε1|

≤277

432
εm + 63εmC0Q

−1
11 + εm log 70/3 +

19

12
εm + o(C−20 ) + o(εm)

≤(
961

432
+

245C0

3
+ log 70/3)εm + o(C−20 ) + o(εm) = δ2

On the other hand, if Q11z ≤ C0, then notice that

arcosh(Q11/3) =d(L−TUL−1O,L−TV L−1O)

≤d(L−TUL−1O,L−TUL−1h(u)) + d(L−TUL−1h(u), L−TV L−1h(v))

+ d(L−TV L−1O,L−TV L−1h(v))

=d(O, h(u)) + d(L−TUL−1h(u), L−TV L−1h(v)) + d(O, h(v))

≤ arcosh(Q11z) + 2 log(
√

3 +
√

2)

≤ arcosh(C0) + 2 log(
√

3 +
√

2)
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so we can get Q11 ≤ E(C0), where E(C0) is a constant depending on C0, then we further have

log(z +
245

3
εm + (1 +

2

3
ε8) ·

√
(z +

245

3
εm)2 −Q−211 + ε7((z +

245

3
εm)2 +Q−211 ))

= log(Q11z +
245

3
εmQ11 − log(Q11)

+ (1 +
2

3
ε8) ·

√
(Q11z +

245

3
εmQ11)2 − 1 + ε7((Q11z +

245

3
εmQ11)2 + 1))

= log(Q11z + (1 +
2

3
ε8)
√

(Q11z)2 − 1 + ε7((Q11z)2 + 1))− log(Q11) + o(εm)

+
245

3
εmQ11[1 +

Q11z√
(Q11z)2 − 1

]
1

Q11z +
√

(Q11z)2 − 1

= log(Q11z +
√

(Q11z)2 − 1 + ε7((Q11z)2 + 1))− log(Q11) + o(εm)

+ (
245

3
εmQ11 +

2

3
ε8)[1 +

Q11z√
(Q11z)2 − 1

]
1

Q11z +
√

(Q11z)2 − 1

= log(Q11z +
√

(Q11z)2 − 1)− log(Q11) + o(εm)

+ (
245

3
εmQ11 +

2

3
ε8 + ε7) · [1 +

Q11z√
(Q11z)2 − 1

]
1

Q11z +
√

(Q11z)2 − 1

= log(z +

√
z2 −Q−211 ) + o(εm)

+ (
245

3
εmQ11 +

2

3
ε8 + ε7) · [1 +

Q11z√
(Q11z)2 − 1

]
1

Q11z +
√

(Q11z)2 − 1

=(
245

3
C0E(C0) +

5

3
)εm · [1 +

Q11z√
(Q11z)2 − 1

]
1

Q11z +
√

(Q11z)2 − 1
+ o(εm)

+ log(z +

√
z2 −Q−211 )

Hence, we get the error to be

δ2 =|ε1 log(z +

√
z2 −Q−211 ) + ε2 + o(εm)

+ (
245

3
C0E(C0) +

5

3
)εm · [1 +

Q11z√
(Q11z)2 − 1

]
1

Q11z +
√

(Q11z)2 − 1
|

≤(
245

3
C0E(C0) +

5

3
) · [1 +

Q11z√
(Q11z)2 − 1

] + 1)εm + (log(C0 +
√
C2

0 − 1)

− log(Q11) + o(εm)

≤[log(C0 +
√
C2

0 − 1)− log(Q11) + (
245

3
C0E(C0) +

8

3
) · (1 +

45

8 tanh(d)
)]εm

+ o(εm)

≤[log(2C0) + (
245

3
C0E(C0) +

8

3
) · (1 +

45

8 tanh(d)
)]εm + o(εm)

All in all, we can get the total error of computing distance

δ = δQ + δ2 = log(Q11)εm +
1

2
εm + o(εm) + δ2

Because log(Q11) ≤ d, then we get that if Q11z ≥ C0,

δ ≤ dεm + (
1825

432
+

245C0

3
+ log 70/3)εm + o(C−20 ) + o(εm)

if Q11z ≤ C0,

δ ≤ dεm + [
1

2
+ log(2C0) + (

245

3
C0E(C0) +

8

3
) · (1 +

45

8 tanh(d)
)]εm + o(εm)
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Also, in the same way, we give the error for computing gradient:

Theorem 7. The worst case error for computing gradient of distance in Lorentz model using float is

|∇xdfl
l (fl(x), fl(y))−∇xdl(x, y)| =2 cosh (d(x,O)) cosh (d(y,O))

sinh (d(x, y)) tanh (d(x, y))
εm∇xd

+
3

4 tanh2 (d(x, y))
εm∇xd+

1

2
εm∇xd+ o(εm)

the error of computing gradient of distance in L-tiling model using float is

|∇udfl
lt −∇udlt|1 =



[(B1(C0) +B2(C0) exp(d))|∇xd|1 +B3(C0) exp(d)]εm + o(εmC
−1
0 ),

d ≥ C0

[
B4(C0)

tanh(d)
+ (

B5(C0)

tanh2(d)
+
B6(C0)

tanh(d)
+B7(C0))|∇xd|1]εm + o(εm),

d ≤ C0

where d is the real distance between two points, Bi(C0) are constants only depends on C0, Bf is
a fixed constant, dfl means that inside computation like multiplication are performed with machine
error εm.

Remark: Similar to the worst case error of computing distance, the worst case error of computing
gradient in Lorentz model using float is dominated by d(x,O), d(y,O), this will also cause the "NaN"
problem when two points are far away from the origin. In L-tiling model, the gradient error only
depends on the gradient itself, i.e., also tanh term is bounded, which controls the error and solves the
"NaN" problem.

Proof. We consider the Lorentz model at first, the gradient is

∇xd =
My√

(xTMy)2 − 1
,

then we have the error to be

|flc(∇xd)−∇xd|

=|(1 + ε1)
(1 + ε2)My

(1 + ε3)
√

(1 + ε4)[(1 + ε5)(xTMy + δz)2 − 1]
− My√

(xTMy)2 − 1
|

=
εmMy

2
√

(xTMy)2 − 1
+

δz(x
TMy)My

((xTMy)2 − 1)3/2
+

3εm(xTMy)2My

4((xTMy)2 − 1)3/2

=
1

2
εm∇xd+

3

4 tanh2 (d(x, y))
εm∇xd+

2 cosh (d(x,O)) cosh (d(y,O))

sinh (d(x, y)) tanh (d(x, y))
εm∇xd+o(εm)

Here flc means calculating with float arithmetic. As for the gradient error in L-tiling model, note that
the gradient is

∇udlt((U, u), (V, v)) =
∇h(u)TL−T Q̂L−1h(v)√

z2 −Q−211
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where ∇h(u) =

[
u√

1+||u||2
, I

]
. First, consider

flc(

√
(z + δ1)2 −Q−211 )

=(1 + ε1)

√
(1 + ε2)((1 + ε3)(z +

245

3
εm)2 − (1 + ε4)Q−211 )

=(1 + ε1)(1 + ε2/2)

√
((1 + ε3)(z +

245

3
εm)2 − (1 + ε4)Q−211 ) + o(εm)

=(1 +
2

3
ε5)

√
(z +

245

3
εm)2 −Q−211 + ε6((z +

245

3
εm)2 +Q−211 )) + o(εm)

=(1 +
2

3
ε5)[

√
z2 −Q−211 + ε6(z2 +Q−211 ) +

245εmz

3
√
z2 −Q−211 + ε6(z2 +Q−211 )

] + o(εm)

=

√
z2 −Q−211 + ε6(z2 +Q−211 ) +

245εmz

3
√
z2 −Q−211 + ε6(z2 +Q−211 )

+
2

3
ε5

√
z2 −Q−211 + ε6(z2 +Q−211 ) + o(εm)

=

√
z2 −Q−211 + ε6(z2 +Q−211 ) +

245εmz

3
√
z2 −Q−211

+
2

3
ε5

√
z2 −Q−211 + o(εm)

=

√
z2 −Q−211 +

ε6(z2 +Q−211 )

2
√
z2 −Q−211

+
245εmz

3
√
z2 −Q−211

+
2

3
ε5

√
z2 −Q−211 + o(εm)

In the same way, we divide this into two cases, if Q11z ≥ C0, then the error of this term is

δ4 =|fl(

√
(z + δz)2 −Q−211 )−

√
z2 −Q−211 |

=|ε6(z2 +Q−211 )

2
√
z2 −Q−211

+
245εmz

3
√
z2 −Q−211

+
2

3
ε5

√
z2 −Q−211 + o(εm)|

=|ε6z
2

(1 +
3

2(Q11z)2
) +

245

3
εm(1 +

1

2(Q11z)2
) +

2

3
ε5

√
z2 −Q−211

+O(εm(Q11z)
−4) + o(εm)| ≤ E1εm +O(εmC

−2
0 ) + o(εm)

Also, if Q11z ≤ C0, then the error of this term is

δ4 =|fl(

√
(z + δ1)2 −Q−211 )−

√
z2 −Q−211 |

=|ε6(z2 +Q−211 )

2
√
z2 −Q−211

+
245εmz

3
√
z2 −Q−211

+
2

3
ε5

√
z2 −Q−211 + o(εm)|

≤ E2

tanh(d)
εm + E3εm + o(εm)

For the numerator term zp = ∇h(u)TL−T Q̂L−1h(v), where ∇h(u) =

[
u√

1+||u||2
, I

]
, also

because |zp| is bounded, then we can easily get that ‖fl(zpi) − zpi‖ ≤ E4εm + o(εm). Hence, we
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have

∇udlt((U, u), (V, v))i = (1 + ε1)
zpi + E4εm√
z2 −Q−211 + δ4

= (1 + ε1)[
zpi + E4εm√
z2 −Q−211

− zpiδ4

z2 −Q−211

]

=
zpi + E4εm√
z2 −Q−211

+
zpiδ4

z2 −Q−211

+
zpiε1√
z2 −Q−211

Then, the error of gradient is

δgi =
E4εm√
z2 −Q−211

+
zpiδ4

z2 −Q−211

+
zpiε1√
z2 −Q−211

=
E4εm√
z2 −Q−211

+
δ4∇udlti√
z2 −Q−211

+ ε1∇udlti

So using this formula, we can get that if Q11z ≥ C0, then the error of this term is

δgi ≤E4Q11εmC
−1
0 + [δ4Q11C

−1
0 + εm]∇udlti + o(εmC

−1
0 )

≤E4Q11εmC
−1
0 + [E1Q11C

−1
0 + 1]εm∇udlti + o(εmC

−1
0 )

≤E4εmC
−1
0 exp(d) + [E1C

−1
0 exp(d) + 1]εm∇udlti + o(εmC

−1
0 )

If Q11z ≤ C0, then the error of this term is

δgi ≤
E4

tanh(d)
εm + [

δ4
tanh(d)

+ εm]∇udlti

≤ E4

tanh(d)
εm + [

E2

tanh2(d)
+

E3

tanh(d)
+ 1]εm∇udlti + o(εm)

All in all, if Q11z ≥ C0, then the error of gradient is

|δg|1 ≤3E4εmC
−1
0 exp(d) + [E1C

−1
0 exp(d) + 1]εm|∇udlt|1 + o(εmC

−1
0 )

if Q11z ≤ C0, then

|δg|1 ≤
3E4

tanh(d)
εm + [

E2

tanh2(d)
+

E3

tanh(d)
+ 1]εm|∇udlt|1 + o(εm)
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Error for Computing in H-tiling Model Here we provide the error of computing in H-tiling
model.

Theorem 8. The error of computing distance in H-tiling model using float is

|dfl
h((j1,k1, fl(z1)), (j2,k2, fl(z2)))− dh((j1,k1, z1), (j2,k2, z2))|

=[C3(n)(j2 − j1) + C4(n)d]εm + (3e−d +
1

ed sinh d
)[C1(n)22j2−2j1(1 + ed/2)2 + C2(n)]εm

where d is the real distance between two points, Ci(n) are constants only depends on n, dfl means
that inside computation like multiplication are performed with machine error εm.

Remark: Similar to the worst case error of distance computation in L-tiling model, the worst case
error in H-tiling model using float only depends on the distance itself, rather than how far points are
from the origin, and hence controls the error and solves the "NaN" problem.

Proof. Firstly, note the distance is

d = (2s+ j1 − j2) log(2) + log(2−2s−j1+j2 +X +
√
X2 + 21−2s−j1+j2X),

where

X =
‖I + 2−sz1 − 2j2−j1−sz2‖2

2z1nz2n
, I = 2−s(k1 − 2j2−j1k2)

Note that ‖I‖ ≤ 1, ‖z1‖, ‖z2‖ ≤
√
n+ 3, then we can be bound X in following way:

X =
‖I + 2−sz1 − 2j2−j1−sz2‖2

2z1nz2n

≤‖I‖
2 + 2−2s‖z1‖2 + 22j2−2j1−2s‖z2‖2

2z1nz2n

+
21−2s‖z1‖‖I‖+ 21+2j2−2j1−2s‖z2‖‖I‖+ 21−2s+j2−j1‖z1‖‖z2‖

2z1nz2n

≤1 + 2−2s(n+ 3) + 22j2−2j1−2s(n+ 3)

2z1nz2n

+
21−2s

√
n+ 3 + 21+2j2−2j1−2s

√
n+ 3 + 21−2s+j2−j1(n+ 3)

2

≤1

2
+ 2−2s−1(n+ 3)(1 + 22j2−2j1 + 21+j2−j1) + 2−2s(1 + 22j2−2j1)

√
n+ 3

≤1

2
+ 2−2s+1((n+ 3) +

√
n+ 3) ≤ 1 + 2−2s+2(n+ 2)

now consider the error for computing I

|Îi − Ii| =|(1 + ε1)2−s(k1i − 2j2−j1k2i)− Ii| ≤ εm|Ii| = δi,1

here denote Xu = I + 2−sz1 − 2j2−j1−sz2, then

|X̂ui −Xui| =|[(Ii + δi,1 + (1 + ε1)2−sz1i)(1 + ε)− (1 + ε2)2j2−j1−sz2i](1 + ε)−Xui|
=|[Ii+2−sz1i+δi,1+ε12−sz1i+ε(Ii+2−sz1i)−(1+ε2)2j2−j1−sz2i](1+ε)−Xui|
≤|[Ii+2−sz1i−2j2−j1−sz2i+δi,1+εm(Ii+21−sz1i+2j2−j1−sz2i)](1+ε)−Xui|
≤|εmXui + δi,1 + εm(Ii + 21−sz1i + 2j2−j1−sz2i)|
≤εm(|Xui|+ 2|Ii|+ 21−s|z1i|+ 2j2−j1−s|z2i)|) = δi,2
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next, make use of float arithmetic to get the norm of Xu, the error becomes

|‖X̂u‖2 − ‖Xu‖2|

≤|(1 + nεm)‖Xu + δ2‖2 − ‖Xu‖2| = |nεm‖Xu‖2 +

n∑
i=1

(δ2i,2 + 2Xuiδi,2)|

≤|nεm‖Xu||2 +

n∑
i=1

2Xuiδi,2 + o(εm)|

=

n∑
i=1

(4|Ii|+ 22−s|z1i|+ 21+j2−j1−s|z2i)|)εm|Xui|+ (n+ 2)εm||Xu||2 + o(εm)

≤(4‖z1‖+21+j2−j1‖z2‖)εm2−s‖Xu‖+ 4εm‖I‖‖Xu‖+ (n+ 2)εm||Xu||2 + o(εm) = δ3

Note that X =
X2

u

2z1nz2n
, then we bound the error of computing X here:

|X̂ −X| =| ‖X̂u‖2

2z1nz2n(1 + 2ε)
−X| = | ‖Xu‖2 + δ3

2z1nz2n
(1− 2ε)−X| ≤ | δ3

2z1nz2n
− 2εX|

≤2|εmX|+ |
δ3

2z1nz2n
| ≤ 2|εmX|+ |

δ3
2
|

≤2|εmX|+ (2‖z1‖+2j2−j1‖z2‖)εm2−s‖Xu‖+ 2εm‖I‖‖Xu‖
+(n/2 + 1)εm||Xu||2 + o(εm)

≤2εmX + (2 + 2j2−j1)
√
n+ 3εm21−s

√
2X + 4εm

√
2X + 4(n+ 2)εmX + o(εm)

≤2εmX + 22+j2−j1−sεm
√

2(n+ 3)X + 4εm
√

2X + 4(n+ 2)εmX + o(εm)

≤2εm(1 + 2−2s+2(n+ 2)) + 23+j2−j1−sεm
√

(n+ 3)(1 + 2−2s+2(n+ 2))

+ 6εm
√

1 + 2−2s+2(n+ 2) + 4(n+ 2)(1 + 2−2s+2(n+ 2))εm = δ4

After having these errors, consider the computation error for the second log in distance:

log(2−2s−j1+j2 + (1 + ε)(X̂ +
√

1 + ε

√
(1 + ε)X̂2 + 21−2s−j1+j2X̂)) + log(1 + ε)

= log(2−2s−j1+j2 + (1 + ε)(X̂ +
√
X2 + 21−2s−j1+j2X +

1

2
ε
√
X2 + 21−2s−j1+j2X

+
δ4(2−1−2s−j1+j2 +X/2)√

X2 + 21−2s−j1+j2X
)) + ε

= log(2−2s−j1+j2 +X + δ4 +
√
X2 + 21−2s−j1+j2X +

1

2
ε
√
X2 + 21−2s−j1+j2X

+
δ4(2−1−2s−j1+j2 +X/2)√

X2 + 21−2s−j1+j2X
)) + ε(X +

√
X2 + 21−2s−j1+j2X)) + ε

= log(2−2s−j1+j2 +X +
√
X2 + 21−2s−j1+j2X) + ε

+
δ4 + 1

2ε
√
X2 + 21−2s−j1+j2X + δ4(2

−1−2s−j1+j2+X/2)√
X2+21−2s−j1+j2X

)) + ε(X +
√
X2 + 21−2s−j1+j2X)

2−2s−j1+j2 +X +
√
X2 + 21−2s−j1+j2X
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All in all, we combine all errors to derive the error for distance computation:

δ0 =(2s+ j1 − j2) log(2)ε+ log(1 + ε)

+
δ5+ 1

2ε
√
X2+21−2s−j1+j2X+ δ5(2

−1−2s−j1+j2+X/2)√
X2+21−2s−j1+j2X

))+ε(X+
√
X2+21−2s−j1+j2X)

2−2s−j1+j2 +X+
√
X2+21−2s−j1+j2X

=(2s+ j1 − j2) log(2)ε+ ε

+
δ5 + 1

2ε
√
X2 + 21−2s−j1+j2X + δ5(2

−1−2s−j1+j2+X/2)√
X2+21−2s−j1+j2X

)) + ε(X +
√
X2 + 21−2s−j1+j2X)

2−2s−j1+j2 +X +
√
X2 + 21−2s−j1+j2X

=(2s+ j1 − j2) log(2)ε+ ε+
δ5( 3

2 + 2−1−2s−j1+j2√
X2+21−2s−j1+j2X

) + 3
2ε
√
X2 + 21−2s−j1+j2X + εX

2−2s−j1+j2 +X +
√
X2 + 21−2s−j1+j2X

=(2s+ j1 − j2) log(2)ε+ ε+
3

2
ε+ 22s+j1−j2

( 3
2 + 1

2 sinh d )

cosh d+ sinh d
δ5

=(2s+ j1 − j2) log(2)ε+
5

2
ε+ 22s+j1−j2−1

(3 + 1
sinh d )

cosh d+ sinh d
[2(1 + 2−2s+2(n+ 2))

+ 23+j2−j1−s
√

(n+ 3)(1 + 2−2s+2(n+ 2)) + 6
√

1 + 2−2s+2(n+ 2)

+ 4(n+ 2)(1 + 2−2s+2(n+ 2))]εm

We simplify the constants with Ci(n), also note that k1 − 2j2−j1k2 is an integer vector, then
s = dlog2(‖k1 − 2j2−j1k2‖2)/2e ≥ 0, also we have j2 ≥ j1, then the error for distance computation
is

δ0 ≤(3+2s+j1−j2)ε+22s+j1−j2−1
(3+ 1

sinh d )

cosh d+sinh d
[C1(n)+2−2sC2(n)+2j2−j1−2sC3(n)]εm

≤(3 + 2s+ j1 − j2)ε+
(3 + 1

sinh d )

cosh d+ sinh d
[22s+j1−j2C1(n) + 2j1−j2C2(n) + C3(n)]εm

≤(3 + 2s)ε+
(3 + 1

sinh d )

cosh d+ sinh d
[22sC1(n) + C2(n)]εm

=dlog2(‖k1 − 2j2−j1k2‖2)eεm +
(3 + 1

sinh d )

cosh d+ sinh d
[C1(n)‖k1 − 2j2−j1k2‖2 + C2(n)]εm

To bound the norm in the distance error, consider

‖2j1k1 − 2j2k2‖ =‖2j1z1 − 2j2z2 + 2j1k1 − 2j2k2 + 2j2z2 − 2j1z1‖
≤‖2j1z1 − 2j2z2 + 2j1k1 − 2j2k2‖+ ‖2j2z2 − 2j1z1‖

≤2
j1+j2+1

2

√
(cosh d− 1)z1nz2n|+ 2j2‖z2‖+ 2j1‖z1‖

≤2
j1+j2

2 +2 sinh (d/2) + (2j2 + 2j1)
√
n+ 3

then scale it by 2−j1 , we have

‖k1 − 2j2−j1k2‖ ≤2
j2−j1

2 +2 sinh (d/2) + (2j2−j1 + 1)
√
n+ 3

Therefore, we bound the distance computation error as follows:

δ0 ≤[C3(n)(j2 − j1) + C4(n)d]εm + (3e−d +
1

ed sinh d
)[C1(n)22j2−2j1(1 + ed/2)2 + C2(n)]εm
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