A Riesz-Thorin Interpolation Theorem

Lemma A.1 (Riesz-Thorin interpolation theorem , see Lemma 8.5 in [?). Let (X;, 9, i;),
1=20,1,2,--- ,n be measure spaces. Let V; represent the complex vector space of simple functions
on X;. Suppose that

AZle‘/vQX"'XVn%VE).
is a multi-linear operator of types po and py where py,p1 € [1,00], with constants My and My,
respectively. i.e.,

HA(flaf27"'afn) PZSMIM fl Di f2 ;m”fn Di*
fori=0,1. Let 0 € [0,1] and define
1 1-6 6
[+ —.
Po Po p1
Then, A is of type pg with constant My, := MZ}O’@MZ?I, that is,

HA(flaf2a to afn)Hpo < MP@HflllperQHps e anHpe'

Lemma ?? is a direct corollary of this theorem.

B Lower Bounds

In this section, we will prove Theorem ??. The proof is constructive: we prove the theorem by

showing for all € > 0, we can construct a matrix A(e), such that selecting every & columns of A(e)
_1

¢ D) p

(14kea)t/a

Our choice of A(g) is a perturbation of Hadamard matrices, defined below.

leads to an approximation ratio at leas Then, the theorem follows by letting e — 0.

Throughout the proof of Theorem ??, we assume that ¥ = 2" — 1, for some r € Z*, and ¢ > 0 is an
arbitrarily small constant.

Proof. of Theorem ??: We consider the well known Hadamard matrix of order (k + 1) = 2", defined
below:

HY =1,
-1 -1
oy HEC) g
H() — <H(2ll) _H(zlfl) 7l Z 1

The Hadamard matrix has the following properties: (we will use H to represent H2") when it’s clear
from context)

o Hdi =1 Oeri =—1.
e All entries on the first row are ones, i.e. Hy; = 1.

e The columns of H are pairwisely orthogonal, i.e.
k+1
> HyiHg =0
d=1
holds when i # j.

Now we can define A(e): itis a perturbation of H by replacing all the entries on the first row by &,
ie.,
€ when i=1
Ae)y; = ’
(E) J {H” when 1 7é 1.
We can see that A(e) is close to a rank-k matrix. In fact, A(0) has rank at most k. Also, A(0) is an
2" x 27, or equivalently, (k 4+ 1) x (k + 1) matrix, and it has all zeros on the first row. Therefore, we
can upper bound OPT by

OPT < || A(e) — A(0)[|, = ((k + 1)e”)/? = (k + 1)"/7e.

)

The remaining work is to give a lower bound on the approximation error using any k£ columns. For
simplicity of notations, we use A as shorthand for A(e) when it’s clear from context. Say we are
using all (k+1) columns except the j-th, i.e. the column subset is A 1)—(;}. Obviously, we achieve
zero error on all the columns other than the j-th. Therefore, the approximation error is essentially the
¢, distance from A; to span { Ay 1)—;} }- Thus,

Brr(Ap1)- 7)) = inf [|4; =Y @il

i#J
b1 p\ 1/p
= xllIgI‘R Z Adj — ZzzAdv
d=1 iF£]
P p\ 1/p
— 3 p —
— xlfé%e ePl1 in + Z Hg — szHdl
i#] i#]
By Holder’s inequality,
P p\ /P ¢ k1 1/q
s Eheson]) ())
i#£] i#]
E+1
> |1- sz + ZHd] Hgj — ZfUini
i#j 7
1,1 _
where »T o= 1.
We can actually show that RHS = k + 1.
Using the fact that Hy; = Hy; = 1 and ZZE Hq;Hg =0,
k+1
RHS = [1-) =z Zde Hy — Y xiHa;
i#j i#£]
k+1
= 1—ZH1,H1]1', +Z 1_Zx1Hledj
i#] i£j
k+1
=2 |1 - D wituHy
d=1 i#j
E+1
(B+1)=> (Z Hled]>
1#£] d=1
=k+ 1

Now we can finally bound the approximation error

P p\ 1/p
Err(A[kH},{j}) = IH.IE% el |1 — ZCL’Z' + Z Hgy — inHdi

' i#j d=2 ij

> E+1 -
k

()" + 2453 1Hgle)
B kE+1

(e + k)l/q

(k+1)e

(1 + kea)/®’

Thus, .

Err(Apsi-gy) o (4177
OPT T (L4 ket

Note that this bound can be arbitrarily close to (k + 1) =% when ¢ is small enough, thus we complete
the proof. O

C Proof of Equation (??)

Now we are going to prove (??). First, we need to extend the definition of b; for all J =
(1, ,jk) € [m]*. This definition is similar to the property of determinants.
e Whenl < j1 <jo<: - <jpr<m,ie. JE ([ZL]), b is already defined.
e When there exists s # t, js = j, define by = 0.
e Otherwise, there exists 1 < ji < j5 < --- < j;. < m and a permutation 7, such that
(jla e 7j]€) = W(ji,jé, e a.]]/f)
Let J' = (ji, 44, - ,j%)- In such case, we define

by = sign(m)by,

where sign(7) is the parity of 7, i.e. sign(m) = 1 if 7 is an even permutation, and
sign(m) = —1 otherwise.
Note that if J is a transposition (2-element exchanges) of J,thenby = —b -

We can also define [A(a, b)]; for all I € [m]**!, by

k+1
[A(CL, b)]l = Z(_l)tJrlaith—t'
=1
Here, I_; = (i1, ,it—1,4t41, " ,iks1) € [m]*. Similarly, if T is a transposition (2-element

exchanges) of I , then [A(a,b)]; = —[A(a,b)];.

As mentioned before, we only need to verify (??) for the special cases p = 1,2, co. In the proof
below, we will use either ordered subsets (e.g. I € [m]*) or unordered subsets (e.g. I € ([7,?])),
whichever is more convenient.

Case 1: p = 1. The inequality is equivalent to

[A(a,b)[lx < llall1[[b]]-
In fact, by the definition, we always have

IAahlh = 3 MOl = gy > (@bl
re(f7h) Tefm]*+!

Therefore,

k+1
1
||A(a7b)||1 = (k+1)' Z Z(_l)t+1aitb1—t
" Ie[m]k+1 [t=1
k+1
< S S Jaullbr,|
(k+) Ie[m]k+t t=1
1
= (k+1) lai, [[br_,|
(k+1)']€%+1 1 1
1
= > el Y fbl
T i€[m] Je[m])k
= Z lai,| Y bl
i1€[m] JG([m])
= [lall1[|bl]:-

Case 2: p = oo. The inequality is equivalent to

1A (@, b)[loo < (K + Dllalloo[blloo

[1A(a;0)[loc = max [[A(a,b)]/]
re()

Wy
k+1
= max Z(—l)t+1ajitb17t
re({h) | =
k+1
— maX Z|alf”bl—f|
k+1 =
k+1
<Z max_|a;,| max [0
p ztE[m] ()

= (kJrl) max |a;,| max |bs]
ir€[m] ge(tm)
= (k+ Dllafloo[b -

Case 3: p = 2. The inequality is equivalent to

[A(a; b)[l2 < [lall2[b]l2-

IAG@O)l3= > A b))

Te({1h)
1 2
— LS (A@b)
CESVP=T
1 k+1
= Z Z(_l)tJrlaith—t
kD!, 2 |5

2

Note that

k+1 2 kt1 k1)
S 1" aibr| = (D—””l““b“) (Z(_l)ﬁlaisb’s)
t=1 t=1 s=1
k+1
= Z|ait|2|b1—t‘2 + Z (_1)t+sa’itbl—ta‘isb1—s'
t=1 1<t#s<k+1
Therefore,
k+1
(k+ DA = Y Y lawlPlor P+ Y Yo (D)aibrai b
Ie[m]k+1 t=1 I€[m]*+1 1<t#s<k+1
The first term can be simplified as
k+1

S0 lai Plor,

T€[m]k+1 t=1

=(k+1) > lan > D [bsl?

i1 €[m] Je[m]k

= (k+ 1)ll|all3]1Bl]3.

Therefore, we only need to prove that the second term is non-positive.

Whent < s,
bI—s = b(ih"' Vis—1y8s41, 0 yikt1)
_ t—1
= (_1) b(iz,ih"' Vit — 150t 15 " s hs— 1,041,500 yTk41)
_ t—1
- (_1) b(ityl—{t,s})’
and
blft = b(ily”' V1,041, ythg1)
_ s—2
= (_1) b(isxilu”' Vit 150t 415 sl — 1504157 Tk41)
_ s—2
= (=1 "bG 1 hy)-
Therefore,

(=10 br_, = —bg,,)b¢
The same argument holds for the case ¢ > s. Thus, for each pair of (¢, s), we have
Y (=D aibrabr

I€[m]k+1

= E aitdisb(isal—{t,s})b(itylf{t,s})

I€[m]k+1

- _ Z Z Z i, i, b,)b,

Jem]k—1iz=14i,=1

=- Z (Z aij’(z},,J)) (Z di&(g,J))

Je[m]E—1 \ir=1 Go=1

T g,s)) YT qe,51)"

2

Z aitB(it,J)

=1

- ¥

JE[m]k—1

Thus, the second term can be simplified as

S ()™ abrai b

Ie[m]h+1 1<tz£s<k+1

¢ -
= E E +*a“b17taisb175

1<t#s<k+1]e m]k+1

<0.

m 2
Z aitg(iz;J)

=1

=—2k(k+1) >

JE[m]k—1

D Analysis for A poly(nm)-Time Bi-Criteria Algorithm

We can prove that Algorithm ?? from [?] runs in time poly(nm) but returns O(k log m) columns of
A that can be used in place of U, with an error O(cy, ;) times the error of the best k-factorization. In
other words, it obtains more than k columns but achieves a polynomial running time. The analysis
can derived by slightly modifying the definition and proof in [?].

Definition D.1 (Approximate coverage). Let S be a subset of k column indices. We say that column
A; is \,-approximately covered by S if for p € [1,00) we have mingegex1 [[Asz — Ai|[h <

)\%, and for p = oo, mingcprxi [|Ast — Aillcc < Ak + 1)||A]lco- If A =1, we say A; is

covered by S.

We first show that if we select a set R columns of size 2k uniformly at random in ([;’Z]) , with constant
probability we cover a constant fraction of columns of A.

Lemma D.1. Suppose R is a set of 2k uniformly random chosen columns of A. With probability at
least 2/9, R covers at least a 1/10 fraction of columns of A.

Proof. Same as the proof of Lemma 6 in [?] except that we use cz . instead of (k + 1) in the
approximation bounds. O

We are now ready to introduce Algorithm ??. As mentioned in [?], we can without loss of generality
assume that the algorithm knows a number N for which |[A|, < N < 2|A|,. Indeed, such a value
can be obtained by first computing |A|5 using the SVD. Note that although one does not know A,
one does know |A| since this is the Euclidean norm of all but the top k singular values of A, which
one can compute from the SVD of A. Then, note that for p < 2, |Aly < |A], < n?7P|Al, while for
p>2,|Al, < |Aly < n'~2/P|Al,. Hence, there are only O(log n) values of N to try, given |Als,
one of which will satisfy |A|, < N < 2]A|,. One can take the best solution found by Algorithm ??
for each of the O(logn) guesses to N.

Theorem D.1. With probability at least 9/10, Algorithm ?? runs in time poly(nm) and returns
O(klogm) columns that can be used as a factor of the whole matrix inducing ¢,, error O(cp 1| Alp).

Proof. Same as the proof of Theorem 7 in [?] except that we use cﬁ . instead of (k 4 1) in the
approximation bounds. O

E Analysis for A ((klogn)® poly(mn))-Time Algorithm

In this section we show how to get a rank-k, O(kklog m)-approximation efficiently starting
from a rank-O(k log m) approximation. This algonthm runs in polynomial time as long as k =

9] logn
loglogn | *

Let U be the columns of A selected by Algorithm ??.

E.1 An Isoperimetric Transformation

The first step of the proof is to show that we can modify the selected columns of A to span the same
space but to have small distortion. For this, we need the following notion of isoperimetry.

Definition E.1 (Almost isoperimetry). A matrix B € R™*™ is almost-£,,-isoperimetric if for all ,
we have
21l

e < 1Ballp < Jlal

The following lemma from [?] show that given a full rank A € R™*™ it is possible to construct in
polynomial time a matrix B € R™*™ such that A and B span the same space and B is almost-{,,-
isoperimetric.

Lemma E.1 (Lemma 10 in [?]). Given a full (column) rank A € R™*™, there is an algorithm that
transforms A into a matrix B such that span { A} = span{B} and B is almost-{,-isoperimetric.
Furthermore the running time of the algorithm is poly(nm).

E.2 Reducing the Rank to &

Here we give an analysis of Algorithm ?? from [?]. It reduces the rank of our low-rank approximation
from O(klogm) to k. Let 6 = ||A||, = OPT.

Theorem E.1. Let A € R"*™, U € R7*Oklogm) 7 ¢ RO(klogm)xm o gych that | A — UV, =

O(kd). Then, Algorithm ?? runs in time O(klogm)* (mn)°M) and outputs W € R**F* 7 ¢ Rkxm
such that |A—-WZ|, = O((cg’kklogm)d).

Proof. We start by bounding the running time. Step 3 is computationally the most expensive since it
requires to execute a brute-force search on the O(k logm) columns of (Z°)T. So the running time is

O((klogm)*(mn)°W) .

Now we have to show that the algorithm returns a good approximation. The main idea behind the
proof is that UV is a low-rank approximable matrix. So after applying LemmalE.I|to U to obtain
a low-rank approximation for UV we can simply focus on Z° € RO(logm)xn Next, by applying
Algorithm ?? to Z°, we obtain a low-rank approximation in time O(k log m)* (mn)°("). Finally we
can use this solution to construct the solution to our initial problem.

We know by assumption that || A—UV||, = O(cp,6). Therefore, it suffices by the triangle inequality
to show [UV — WZ|, = O(c} ,klogmd). First note that UV = W°Z° since Lemma
guarantees that span {U} = span {W°}. Hence we can focus on proving |[W°Z° — WZ]|, <
O((c;kklog m)o).

We first prove two useful intermediate steps.

Lemma E.2. There exist matrices U* € R™k V* € RF¥*™ such that ||W°Z° — U*V*|, =
O(CpJC(S).

Proof. Same as the proof of Lemma 12 in [?] except that we use O(c,, ;0) instead of O(kd). O

Lemma E.3. There exist matrices F € RO(klogm)xk) ¢ REX qych that WO (Z° — FD)|, =
o(c2 1.0).

Proof. Same as the proof of Lemma 13 in [?] except that we use O(c, 0) and O(ci -0)instead of
O(k6) and O(k26). O
Now from the guarantees of Lemmawe know that for any vector y, ||[W]|, < %. So we
have || Z°— FD||, < O((C;kk logm)é), Thus ||(Z2°)T — DTFT||, < O((C;kk logm)d), so (Z9)T
has a low-rank approximation with error at most O((c;. ;. k log m)d). So we can apply Theorem ??

again and we know that there are k columns of (Z°)7 such that the low-rank approximation obtained
starting from those columns has error at most O((c) , klogm)d). We obtain such a low-rank

approximation from Algorithm ?? with input (Z°)7 € R**O(klogm) and k. More precisely, we
obtainan X € R"*F and Y € RF*O(klogm) gych that ||(Z2°)7 — XY ||, < O((cg}kk:log m)J). Thus

[2° = YTXT|, <O((c] yklogm)d).

Now using again the guarantees of Lemma for W9, we get |[WO(Z° — YTXT)|, <
O((¢3 ,klogm)d). So [[WO(Z0 — YTXT)|, = [WOZ° — WZ)|, = |[UV - WZ||, <
O((c} yklogm)d). By combining it with |A — UV, = O(c,x0) and using the Minkowski
inequality, the proof is complete. O

	Riesz-Thorin Interpolation Theorem
	Lower Bounds
	Proof of Equation (4)
	Analysis for A poly(nm)-Time Bi-Criteria Algorithm
	Analysis for A (k log(n))k poly(mn)-Time Algorithm
	An Isoperimetric Transformation
	Reducing the Rank to k

