
A Riesz-Thorin Interpolation Theorem

Lemma A.1 (Riesz-Thorin interpolation theorem , see Lemma 8.5 in [?]). Let (Xi,Mi, µi),
i = 0, 1, 2, · · · , n be measure spaces. Let Vi represent the complex vector space of simple functions
on Xi. Suppose that

Λ : V1 × V2 × · · · × Vn → V0.

is a multi-linear operator of types p0 and p1 where p0, p1 ∈ [1,∞], with constants M0 and M1,
respectively. i.e.,

‖Λ(f1, f2, · · · , fn)‖pi ≤Mpi‖f1‖pi‖f2‖pi · · · ‖fn‖pi .
for i = 0, 1. Let θ ∈ [0, 1] and define

1

pθ
:=

1− θ
p0

+
θ

p1
.

Then, Λ is of type pθ with constant Mpθ := M1−θ
p0 Mθ

p1 , that is,

‖Λ(f1, f2, · · · , fn)‖pθ ≤Mpθ‖f1‖pθ‖f2‖pθ · · · ‖fn‖pθ .

Lemma ?? is a direct corollary of this theorem.

B Lower Bounds

In this section, we will prove Theorem ??. The proof is constructive: we prove the theorem by
showing for all ε > 0, we can construct a matrix A(ε), such that selecting every k columns of A(ε)

leads to an approximation ratio at least (k+1)
1− 1

p

(1+kεq)1/q
. Then, the theorem follows by letting ε → 0+.

Our choice of A(ε) is a perturbation of Hadamard matrices, defined below.

Throughout the proof of Theorem ??, we assume that k = 2r − 1, for some r ∈ Z+, and ε > 0 is an
arbitrarily small constant.

Proof. of Theorem ??: We consider the well known Hadamard matrix of order (k+ 1) = 2r, defined
below:

H(1) = 1,

H(2l) =

(
H(2l−1) H(2l−1)

H(2l−1) −H(2l−1)

)
, l ≥ 1.

The Hadamard matrix has the following properties: (we will use H to represent H(2r) when it’s clear
from context)

• Hdi = 1 or Hdi = −1.

• All entries on the first row are ones, i.e. H1j = 1.

• The columns of H are pairwisely orthogonal, i.e.
k+1∑
d=1

HdiHdj = 0

holds when i 6= j.

Now we can define A(ε): it is a perturbation of H by replacing all the entries on the first row by ε,
i.e.,

A(ε)ij =

{
ε when i = 1,

Hij when i 6= 1.
(1)

We can see that A(ε) is close to a rank-k matrix. In fact, A(0) has rank at most k. Also, A(0) is an
2r × 2r, or equivalently, (k+ 1)× (k+ 1) matrix, and it has all zeros on the first row. Therefore, we
can upper bound OPT by

OPT ≤ ‖A(ε)−A(0)‖p = ((k + 1)εp)
1/p

= (k + 1)1/pε.

1

The remaining work is to give a lower bound on the approximation error using any k columns. For
simplicity of notations, we use A as shorthand for A(ε) when it’s clear from context. Say we are
using all (k+1) columns except the j-th, i.e. the column subset isA[k+1]−{j}. Obviously, we achieve
zero error on all the columns other than the j-th. Therefore, the approximation error is essentially the
`p distance from Aj to span

{
A[k+1]−{j}

}
. Thus,

Err(A[k+1]−{j}) = inf
xi∈R
‖Aj −

∑
i 6=j

xiAi‖p

= inf
xi∈R

k+1∑
d=1

∣∣∣∣∣∣Adj −
∑
i6=j

xiAdi

∣∣∣∣∣∣
p1/p

= inf
xi∈R

εp
∣∣∣∣∣∣1−

∑
i6=j

xi

∣∣∣∣∣∣
p

+

k+1∑
d=2

∣∣∣∣∣∣Hdj −
∑
i 6=j

xiHdi

∣∣∣∣∣∣
p1/p

.

By Hölder’s inequality,

εp
∣∣∣∣∣∣1−

∑
i 6=j

xi

∣∣∣∣∣∣
p

+

k+1∑
d=2

∣∣∣∣∣∣Hdj −
∑
i 6=j

xiHdi

∣∣∣∣∣∣
p1/p((

1

ε

)q
+

k+1∑
d=2

|Hdj |q
)1/q

≥

1−
∑
i 6=j

xi

+

k+1∑
d=2

Hdj

Hdj −
∑
i6=j

xiHdi



where 1
p + 1

q = 1.

We can actually show that RHS = k + 1.

Using the fact that H1i = H1j = 1 and
∑k+1
d=1 HdiHdj = 0,

RHS =

1−
∑
i6=j

xi

+

k+1∑
d=2

Hdj

Hdj −
∑
i 6=j

xiHdi


=

1−
∑
i6=j

H1iH1jxi

+

k+1∑
d=2

1−
∑
i6=j

xiHdiHdj


=

k+1∑
d=1

1−
∑
i 6=j

xiHdiHdj


= (k + 1)−

∑
i 6=j

xi

(
k+1∑
d=1

HdiHdj

)
= k + 1.

2

Now we can finally bound the approximation error

Err(A[k+1]−{j}) = inf
xi∈R

εp
∣∣∣∣∣∣1−

∑
i6=j

xi

∣∣∣∣∣∣
p

+

k+1∑
d=2

∣∣∣∣∣∣Hdj −
∑
i 6=j

xiHdi

∣∣∣∣∣∣
p1/p

≥ k + 1((
1
ε

)q
+
∑k+1
d=2 |Hdj |q

)1/q

=
k + 1

(ε−q + k)
1/q

=
(k + 1)ε

(1 + kεq)
1/q

.

Thus,
Err(A[k+1]−{j})

OPT
≥ (k + 1)1− 1

p

(1 + kεq)
1/q

.

Note that this bound can be arbitrarily close to (k+ 1)1− 1
p when ε is small enough, thus we complete

the proof.

C Proof of Equation (??)

Now we are going to prove (??). First, we need to extend the definition of bJ for all J =
(j1, · · · , jk) ∈ [m]k. This definition is similar to the property of determinants.

• When 1 ≤ j1 < j2 < · · · < jk ≤ m, i.e. J ∈
(

[m]
k

)
, bJ is already defined.

• When there exists s 6= t, js = jt, define bJ = 0.
• Otherwise, there exists 1 ≤ j′1 < j′2 < · · · < j′k ≤ m and a permutation π, such that

(j1, · · · , jk) = π(j′1, j
′
2, · · · , j′k).

Let J ′ = (j′1, j
′
2, · · · , j′k). In such case, we define

bJ = sign(π)bJ′ ,

where sign(π) is the parity of π, i.e. sign(π) = 1 if π is an even permutation, and
sign(π) = −1 otherwise.

Note that if J is a transposition (2-element exchanges) of J̃ , then bJ = −bJ̃ .

We can also define [Λ(a, b)]I for all I ∈ [m]k+1, by

[Λ(a, b)]I =

k+1∑
t=1

(−1)t+1aitbI−t .

Here, I−t = (i1, · · · , it−1, it+1, · · · , ik+1) ∈ [m]k. Similarly, if I is a transposition (2-element
exchanges) of Ĩ , then [Λ(a, b)]I = −[Λ(a, b)]Ĩ .

As mentioned before, we only need to verify (??) for the special cases p = 1, 2,∞. In the proof
below, we will use either ordered subsets (e.g. I ∈ [m]k) or unordered subsets (e.g. I ∈

(
[m]
k

)
),

whichever is more convenient.

Case 1: p = 1. The inequality is equivalent to

‖Λ(a, b)‖1 ≤ ‖a‖1‖b‖1.
In fact, by the definition, we always have

‖Λ(a, b)‖1 =
∑

I∈([m]
k+1)

|[Λ(a, b)]I | =
1

(k + 1)!

∑
I∈[m]k+1

|[Λ(a, b)]I | .

3

Therefore,

‖Λ(a, b)‖1 =
1

(k + 1)!

∑
I∈[m]k+1

∣∣∣∣∣
k+1∑
t=1

(−1)t+1aitbI−t

∣∣∣∣∣
≤ 1

(k + 1)!

∑
I∈[m]k+1

k+1∑
t=1

|ait ||bI−t |

=
1

(k + 1)!
(k + 1)

∑
I∈[m]k+1

|ai1 ||bI−1
|

=
1

k!

∑
i1∈[m]

|ai1 |
∑

J∈[m]k

|bJ |

=
∑
i1∈[m]

|ai1 |
∑

J∈([m]
k)

|bJ |

= ‖a‖1‖b‖1.

Case 2: p =∞. The inequality is equivalent to

‖Λ(a, b)‖∞ ≤ (k + 1)‖a‖∞‖b‖∞

‖Λ(a, b)‖∞ = max
I∈([m]

k+1)
|[Λ(a, b)]I |

= max
I∈([m]

k+1)

∣∣∣∣∣
k+1∑
t=1

(−1)t+1aitbI−t

∣∣∣∣∣
≤ max
I∈([m]

k+1)

k+1∑
t=1

|ait ||bI−t |

≤
k+1∑
t=1

max
it∈[m]

|ait | max
J∈([m]

k)
|bJ |

= (k + 1) max
i1∈[m]

|ai1 | max
J∈([m]

k)
|bJ |

= (k + 1)‖a‖∞‖b‖∞.

Case 3: p = 2. The inequality is equivalent to

‖Λ(a, b)‖2 ≤ ‖a‖2‖b‖2.

‖Λ(a, b)‖22 =
∑

I∈([m]
k+1)

|[Λ(a, b)]I |2

=
1

(k + 1)!

∑
I∈[m]k+1

|[Λ(a, b)]I |2

=
1

(k + 1)!

∑
I∈[m]k+1

∣∣∣∣∣
k+1∑
t=1

(−1)t+1aitbI−t

∣∣∣∣∣
2

.

4

Note that ∣∣∣∣∣
k+1∑
t=1

(−1)t+1aitbI−t

∣∣∣∣∣
2

=

(
k+1∑
t=1

(−1)t+1aitbI−t

)(
k+1∑
s=1

(−1)s+1āis b̄I−s

)

=

k+1∑
t=1

|ait |2|bI−t |2 +
∑

1≤t6=s≤k+1

(−1)t+saitbI−t āis b̄I−s .

Therefore,

(k + 1)!‖Λ(a, b)‖22 =
∑

I∈[m]k+1

k+1∑
t=1

|ait |2|bI−t |2 +
∑

I∈[m]k+1

∑
1≤t6=s≤k+1

(−1)t+saitbI−t āis b̄I−s .

The first term can be simplified as ∑
I∈[m]k+1

k+1∑
t=1

|ait |2|bI−t |2

= (k + 1)
∑
i1∈[m]

|ai1 |2
∑

J∈[m]k

|bJ |2

= (k + 1)!‖a‖22‖b‖22.

Therefore, we only need to prove that the second term is non-positive.

When t < s ,

bI−s = b(i1,··· ,is−1,is+1,··· ,ik+1)

= (−1)t−1b(il,i1,··· ,it−1,it+1,··· ,is−1,is+1,··· ,ik+1)

= (−1)t−1b(it,I−{t,s}),

and

bI−t = b(i1,··· ,it−1,it+1,··· ,ik+1)

= (−1)s−2b(is,i1,··· ,it−1,it+1,··· ,is−1,is+1,··· ,ik+1)

= (−1)s−2b(is,I−{t,s}).

Therefore,
(−1)t+sbI−t b̄I−s = −b(is,I−{t,s})b̄(it,I−{t,s}).

The same argument holds for the case t > s. Thus, for each pair of (t, s), we have∑
I∈[m]k+1

(−1)t+saitbI−t āis b̄I−s

= −
∑

I∈[m]k+1

ait āisb(is,I−{t,s})b̄(it,I−{t,s})

= −
∑

J∈[m]k−1

m∑
it=1

m∑
is=1

ait āisb(is,J)b̄(it,J)

= −
∑

J∈[m]k−1

(
m∑
it=1

ait b̄(it,J)

)(
m∑
is=1

āisb(is,J)

)

= −
∑

J∈[m]k−1

∣∣∣∣∣
m∑
it=1

ait b̄(it,J)

∣∣∣∣∣
2

.

Thus, the second term can be simplified as

5

∑
I∈[m]k+1

∑
1≤t 6=s≤k+1

(−1)t+saitbI−t āis b̄I−s

=
∑

1≤t 6=s≤k+1

∑
I∈[m]k+1

(−1)t+saitbI−t āis b̄I−s

= −2k(k + 1)
∑

J∈[m]k−1

∣∣∣∣∣
m∑
it=1

ait b̄(il,J)

∣∣∣∣∣
2

≤ 0.

D Analysis for A poly(nm)-Time Bi-Criteria Algorithm

We can prove that Algorithm ?? from [?] runs in time poly(nm) but returns O(k logm) columns of
A that can be used in place of U , with an error O(cp,k) times the error of the best k-factorization. In
other words, it obtains more than k columns but achieves a polynomial running time. The analysis
can derived by slightly modifying the definition and proof in [?].

Definition D.1 (Approximate coverage). Let S be a subset of k column indices. We say that column
Ai is λp-approximately covered by S if for p ∈ [1,∞) we have minx∈Rk×1 ‖ASx − Ai‖pp ≤
λ

100cpp,k‖∆‖
p
p

n , and for p =∞, minx∈Rk×1 ‖ASx−Ai‖∞ ≤ λ(k + 1)‖∆‖∞. If λ = 1, we say Ai is
covered by S.

We first show that if we select a set R columns of size 2k uniformly at random in
(

[m]
2k

)
, with constant

probability we cover a constant fraction of columns of A.

Lemma D.1. Suppose R is a set of 2k uniformly random chosen columns of A. With probability at
least 2/9, R covers at least a 1/10 fraction of columns of A.

Proof. Same as the proof of Lemma 6 in [?] except that we use cpp,k instead of (k + 1) in the
approximation bounds.

We are now ready to introduce Algorithm ??. As mentioned in [?], we can without loss of generality
assume that the algorithm knows a number N for which |∆|p ≤ N ≤ 2|∆|p. Indeed, such a value
can be obtained by first computing |∆|2 using the SVD. Note that although one does not know ∆,
one does know |∆|2 since this is the Euclidean norm of all but the top k singular values of A, which
one can compute from the SVD of A. Then, note that for p < 2, |∆|2 ≤ |∆|p ≤ n2−p|∆|2, while for
p ≥ 2, |∆|p ≤ |∆|2 ≤ n1−2/p|∆|p. Hence, there are only O(log n) values of N to try, given |∆|2,
one of which will satisfy |∆|p ≤ N ≤ 2|∆|p. One can take the best solution found by Algorithm ??
for each of the O(log n) guesses to N .

Theorem D.1. With probability at least 9/10, Algorithm ?? runs in time poly(nm) and returns
O(k logm) columns that can be used as a factor of the whole matrix inducing `p error O(cp,k|∆|p).

Proof. Same as the proof of Theorem 7 in [?] except that we use cpp,k instead of (k + 1) in the
approximation bounds.

E Analysis for A ((k log n)k poly(mn))-Time Algorithm

In this section we show how to get a rank-k, O(c3p,kk logm)-approximation efficiently starting
from a rank-O(k logm) approximation. This algorithm runs in polynomial time as long as k =

O
(

logn
log logn

)
.

Let U be the columns of A selected by Algorithm ??.

6

E.1 An Isoperimetric Transformation

The first step of the proof is to show that we can modify the selected columns of A to span the same
space but to have small distortion. For this, we need the following notion of isoperimetry.
Definition E.1 (Almost isoperimetry). A matrix B ∈ Rn×m is almost-`p-isoperimetric if for all x,
we have

‖x‖p
2m

≤ ‖Bx‖p ≤ ‖x‖p.

The following lemma from [?] show that given a full rank A ∈ Rn×m, it is possible to construct in
polynomial time a matrix B ∈ Rn×m such that A and B span the same space and B is almost-`p-
isoperimetric.
Lemma E.1 (Lemma 10 in [?]). Given a full (column) rank A ∈ Rn×m, there is an algorithm that
transforms A into a matrix B such that span {A} = span {B} and B is almost-`p-isoperimetric.
Furthermore the running time of the algorithm is poly(nm).

E.2 Reducing the Rank to k

Here we give an analysis of Algorithm ?? from [?]. It reduces the rank of our low-rank approximation
from O(k logm) to k. Let δ = ‖∆‖p = OPT.

Theorem E.1. Let A ∈ Rn×m, U ∈ Rn×O(k logm), V ∈ RO(k logm)×m be such that ‖A−UV ‖p =

O(kδ). Then, Algorithm ?? runs in time O(k logm)k(mn)O(1) and outputs W ∈ Rn×k, Z ∈ Rk×m
such that ‖A−WZ‖p = O((c3p,kk logm)δ).

Proof. We start by bounding the running time. Step 3 is computationally the most expensive since it
requires to execute a brute-force search on the O(k logm) columns of (Z0)T . So the running time is
O((k logm)k(mn)O(1)) .

Now we have to show that the algorithm returns a good approximation. The main idea behind the
proof is that UV is a low-rank approximable matrix. So after applying Lemma E.1 to U to obtain
a low-rank approximation for UV we can simply focus on Z0 ∈ RO(k logm)×n. Next, by applying
Algorithm ?? to Z0, we obtain a low-rank approximation in time O(k logm)k(mn)O(1). Finally we
can use this solution to construct the solution to our initial problem.

We know by assumption that ‖A−UV ‖p = O(cp,kδ). Therefore, it suffices by the triangle inequality
to show ‖UV − WZ‖p = O(c3p,kk logmδ). First note that UV = W 0Z0 since Lemma E.1
guarantees that span {U} = span

{
W 0
}

. Hence we can focus on proving ‖W 0Z0 −WZ‖p ≤
O((c3p,kk logm)δ).

We first prove two useful intermediate steps.

Lemma E.2. There exist matrices U∗ ∈ Rn×k, V ∗ ∈ Rk×m such that ‖W 0Z0 − U∗V ∗‖p =
O(cp,kδ).

Proof. Same as the proof of Lemma 12 in [?] except that we use O(cp,kδ) instead of O(kδ).

Lemma E.3. There exist matrices F ∈ RO(k logm)×k, D ∈ Rk×n such that ‖W 0(Z0 − FD)‖p =
O(c2p,kδ).

Proof. Same as the proof of Lemma 13 in [?] except that we use O(cp,kδ) and O(c2p,kδ)instead of
O(kδ) and O(k2δ).

Now from the guarantees of Lemma E.1 we know that for any vector y, ‖W 0y‖p ≤ ‖y‖p
k logm . So we

have ‖Z0−FD‖p ≤ O((c2p,kk logm)δ), Thus ‖(Z0)T −DTFT ‖p ≤ O((c2p,kk logm)δ), so (Z0)T

has a low-rank approximation with error at most O((c2p,kk logm)δ). So we can apply Theorem ??
again and we know that there are k columns of (Z0)T such that the low-rank approximation obtained
starting from those columns has error at most O((c3p,kk logm)δ). We obtain such a low-rank

7

approximation from Algorithm ?? with input (Z0)T ∈ Rn×O(k logm) and k. More precisely, we
obtain anX ∈ Rn×k and Y ∈ Rk×O(k logm) such that ‖(Z0)T −XY ‖p ≤ O((c3p,kk logm)δ). Thus
‖Z0 − Y TXT ‖p ≤ O((c3p,kk logm)δ).

Now using again the guarantees of Lemma E.1 for W 0, we get ‖W 0(Z0 − Y TXT)‖p ≤
O((c3p,kk logm)δ). So ‖W 0(Z0 − Y TXT)‖p = ‖W 0Z0 − WZ)‖p = ‖UV − WZ‖p ≤
O((c3p,kk logm)δ). By combining it with ‖A − UV ‖p = O(cp,kδ) and using the Minkowski
inequality, the proof is complete.

8

	Riesz-Thorin Interpolation Theorem
	Lower Bounds
	Proof of Equation (4)
	Analysis for A poly(nm)-Time Bi-Criteria Algorithm
	Analysis for A (k log(n))k poly(mn)-Time Algorithm
	An Isoperimetric Transformation
	Reducing the Rank to k

