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Abstract

We introduce a new tool for interpreting neural net responses, namely full-gradients,
which decomposes the neural net response into input sensitivity and per-neuron
sensitivity components. This is the first proposed representation which satisfies
two key properties: completeness and weak dependence, which provably cannot
be satisfied by any saliency map-based interpretability method. For convolutional
nets, we also propose an approximate saliency map representation, called FullGrad,
obtained by aggregating the full-gradient components.
We experimentally evaluate the usefulness of FullGrad in explaining model be-
haviour with two quantitative tests: pixel perturbation and remove-and-retrain.
Our experiments reveal that our method explains model behavior correctly, and
more comprehensively, than other methods in the literature. Visual inspection
also reveals that our saliency maps are sharper and more tightly confined to object
regions than other methods.

1 Introduction

This paper studies saliency map representations for the interpretation of neural network functions.
Saliency maps assign to each input feature an importance score, which is a measure of the usefulness
of that feature for the task performed by the neural network. However, the presence of internal
structure among features sometimes makes it difficult to assign a single importance score per feature.
For example, input spaces such as that of natural images are compositional in nature. This means that
while any single individual pixel in an image may be unimportant on its own, a collection of pixels
may be critical if they form an important image region such as an object part.

For example, a bicycle in an image can still be identified if any single pixel is missing, but if the
entire collection of pixels corresponding to a key element, such as a wheel or the drive chain, are
missing, then it becomes much more difficult. Here the importance of a part cannot be deduced from
the individual importance of its constituent pixels, as each such individual pixel is unimportant on
its own. An ideal interpretability method would not just provide importance for each pixel, but also
capture that of groups of pixels which have an underlying structure.

This tension also reveals itself in the formal study of saliency maps. While there is no single formal
definition of saliency, there are several intuitive characteristics that the community has deemed
important [1, 2, 3, 4, 5, 6]. One such characteristic is that an input feature must be considered
important if changes to that feature greatly affect the neural network output [5, 7]. Another desirable
characteristic is that the saliency map must completely explain the neural network output, i.e., the
individual feature importance scores must add up to the neural network output [1, 2, 3]. This is done
by a redistribution of the numerical output score to individual input features. In this view, a feature
is important if it makes a large numerical contribution to the output. Thus we have two distinct
notions of feature importance, both of which are intuitive. The first notion of importance assignment
is called local attribution and second, global attribution. It is almost always the case for practical
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neural networks that these two notions yield methods that consider entirely different sets of features
to be important, which is counter-intuitive.

In this paper we propose full-gradients, a representation which assigns importance scores to both the
input features and individual feature detectors (or neurons) in a neural network. Input attribution helps
capture importance of individual input pixels, while neuron importances capture importance of groups
of pixels, accounting for their structure. In addition, full-gradients achieve this by simultaneously
satisfying both notions of local and global importance. To the best of our knowledge, no previous
method in literature has this property.

The overall contributions of our paper are:

1. We show in § 3 that weak dependence (see Definition 1), a notion of local importance,
and completeness (see Definition 2), a notion of global importance, cannot be satisfied
simultaneously by any saliency method. This suggests that the counter-intuitive behavior of
saliency methods reported in literature [3, 5] is unavoidable.

2. We introduce in § 4 the full-gradients which are more expressive than saliency maps, and
satisfy both importance notions simultaneously. We also use this to define approximate
saliency maps for convolutional nets, dubbed FullGrad, by leveraging strong geometric
priors induced by convolutions.

3. We perform in § 5 quantitative tests on full-gradient saliency maps including pixel perturba-
tion and remove-and-retrain [8], which show that FullGrad outperforms existing competitive
methods.

2 Related Work

Within the vast literature on interpretability of neural networks, we shall restrict discussion solely to
saliency maps or input attribution methods. First attempts at obtaining saliency maps for modern
deep networks involved using input-gradients [7] and deconvolution [9]. Guided backprop [10] is
another variant obtained by changing the backprop rule for input-gradients to produce cleaner saliency
maps. Recent works have also adopted axiomatic approaches to attribution by proposing methods
that explicitly satisfy certain intuitive properties. Deep Taylor decomposition [2], DeepLIFT [3],
Integrated gradients [1] and DeepSHAP [4] adopt this broad approach. Central to all these approaches
is the requirement of completeness which requires that the saliency map account for the function
output in an exact numerical sense. In particular, Lundberg et al.[4] and Ancona et al.[11] propose
unifying frameworks for several of these saliency methods.

However, some recent work also shows the fragility of some of these methods. These include
unintuitive properties such as being insensitive to model randomization [6], partly recovering the
input [12] or being insensitive to the model’s invariances [5]. One possible reason attributed for the
presence of such fragilities is evaluation of attribution methods, which are often solely based on
visual inspection. As a result, need for quantitative evaluation methods is urgent. Popular quantitative
evaluation methods in literature are based on image perturbation [13, 11, 2]. These tests broadly
involve removing the most salient pixels in an image, and checking whether they affect the neural
network output. However, removing pixels can cause artifacts to appear in images. To compensate
for this, RemOve And Retrain (ROAR) [8] propose a retraining-based procedure. However, this
method too has drawbacks as retraining can cause the model to focus on parts of the input it had
previously ignored, thus not explaining the original model. Hence we do not yet have completely
rigorous methods for saliency map evaluation.

Similar to our paper, some works [3, 14] also make the observation that including biases within
attributions can enable gradient-based attributions to satisfy the completeness property. However,
they do not propose attribution methods based on this observation like we do in this paper.

3 Local vs. Global Attribution

In this section, we show that there cannot exist saliency maps that satisfy both notions of local and
global attribution. We do this by drawing attention to a simple fact that D−dimensional saliency
map cannot summarize even linear models in RD, as such linear models have D + 1 parameters. We
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prove our results by defining a weak notion of local attribution which we call weak dependence, and
a weak notion of global attribution, called completeness.

Let us consider a neural network function f : RD → R with inputs x ∈ RD. A saliency map
S(x) = σ(f,x) ∈ RD is a function of the neural network f and an input x. For linear models of the
form f(x) = wTx+ b , it is common to visualize the weights w. For this case, we observe that the
saliency map S(x) = w is independent of x. Similarly, piecewise-linear models can be thought of as
collections of linear models, with each linear model being defined on a different local neighborhood.
For such cases, we can define weak dependence as follows.
Definition 1. (Weak dependence on inputs) Consider a piecewise-linear model

f(x) =


wT

0 x+ b0 x ∈ U0
...

wT
nx+ bn x ∈ Un

where all Ui are open connected sets. For this function, the saliency map S(x) = σ(f,x) restricted
to a set Ui is independent of x, and depends only on the parameters wi, bi.

Hence in this case S(x) depends weakly on x by being dependent only on the neighborhood Ui
in which x resides. This generalizes the notion of local importance to piecewise-linear functions.
A stronger form of this property, called input invariance, was deemed desirable in previous work
[5], which required saliency methods to mirror model sensitivity. Methods which satisfy our weak
dependence include input-gradients [7], guided-backprop [10] and deconv [9]. Note that our definition
of weak dependence also allows for two disconnected sets having the same linear parameters (wi, bi)
to have different saliency maps, and hence in that sense is more general than input invariance [5],
which does not allow for this. We now define completeness for a saliency map by generalizing
equivalent notions presented in prior work [1, 2, 3].
Definition 2. (Completeness) A saliency map S(x) is

• complete if there exists a function φ such that φ(S(x),x) = f(x) for all f,x.

• complete with a baseline x0 if there exists a function φc such that φc(S(x), S0(x0),x,x0) =
f(x)− f(x0) for all f,x,x0, where S0(x0) is the saliency map of x0.

The intuition here is that if we expect S(x) to completely encode the computation performed by f ,
then it must be possible to recover f(x) by using the saliency map S(x) and input x. Note that the
second definition is more general, and in principle subsumes the first. We are now ready to state our
impossibility result.
Proposition 1. For any piecewise-linear function f , it is impossible to obtain a saliency map S that
satisfies both completeness and weak dependence on inputs, in general.

The proof is provided in the supplementary material. A natural consequence of this is that methods
such as integrated gradients [1], deep Taylor decomposition [2] and DeepLIFT [3] which satisfy
completeness do not satisfy weak dependence. For the case of integrated gradients, we provide
a simple illustration showing how this can lead to unintuitive attributions. Given a baseline x′,
integrated gradients (IG) is given by IGi(x) = (xi − x′i)×

∫ 1

α=0
∂f(x′+α(x−x′))

∂xi
dα, where xi is the

ith input co-ordinate.
Example 1. (Integrated gradients [1] can be counter-intuitive)

Consider the piecewise-linear function for inputs (x1, x2) ∈ R2.

f(x1, x2) =


x1 + 3x2 x1, x2 ≤ 1

3x1 + x2 x1, x2 > 1

0 otherwise

Assume baseline x′ = (0, 0). Consider three points (2, 2), (4, 4), (1.5, 1.5) , all of which satisfy
x1, x2 > 1 and thus are subject to the same linear function of f(x1, x2) = 3x1 + x2. However,
depending on which point we consider, IG yields different relative importances among the input
features. E.g: IG(x1 = 4, x2 = 4) = (10, 6) where it seems that x1 is more important (as 10 > 6),
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while for IG(1.5, 1.5) = (2.5, 3.5), it seems that x2 is more important. Further, at IG(2, 2) = (4, 4)
both co-ordinates are assigned equal importance. However in all three cases, the output is clearly
more sensitive to changes to x1 than it is to x2 as they lie on f(x1, x2) = 3x1 + x2, and thus
attributions to (2, 2) and (1.5, 1.5) are counter-intuitive.

Thus it is clear that two intuitive properties of weak dependence and completeness cannot be
satisfied simultaneously. Both are intuitive notions for saliency maps and thus satisfying just one
makes the saliency map counter-intuitive by not satisfying the other. Similar counter-intuitive
phenomena observed in literature may be unavoidable. For example, Shrikumar et al. [3] show counter-
intuitive behavior of local attribution methods by invoking a property similar global attribution, called
saturation sensitivity. On the other hand, Kindermans et al. [5] show fragility for global attribution
methods by appealing to a property similar to local attribution, called input insensitivity.

This paradox occurs primarily because saliency maps are too restrictive, as both weights and biases
of a linear model cannot be summarized by a saliency map. While exclusion of the bias term in
linear models to visualize only the weights seems harmless, the effect of such exclusion compounds
rapidly for neural networks which have bias terms for each neuron. Neural network biases cannot be
collapsed to a constant scalar term like in linear models, and hence cannot be excluded. In the next
section we shall look at full-gradients, which is a more expressive tool than saliency maps, accounts
for bias terms and satisfies both weak dependence and completeness.

4 Full-Gradient Representation

In this section, we introduce the full-gradient representation, which provides attribution to both inputs
and neurons. We proceed by observing the following result for ReLU networks.
Proposition 2. Let f be a ReLU neural network without bias parameters, then f(x) = ∇xf(x)

Tx.

The proof uses the fact that for such nets, f(kx) = kf(x) for any k > 0. This can be extended to
ReLU neural networks with bias parameters by incorporating additional inputs for biases, which is a
standard trick used for the analysis of linear models. For a ReLU network f(·;b) with bias, let the
number of such biases in f be F .
Proposition 3. Let f be a ReLU neural network with biases b ∈ RF , then

f(x;b) = ∇xf(x;b)
Tx+∇bf(x;b)Tb (1)

The proof for these statements is provided in the supplementary material. Here biases include both
explicit bias parameters and well as implicit biases, such as running averages of batch norm layers.
For practical networks, we have observed that these implicit biases are often much larger in magnitude
than explicit bias parameters, and hence might be more important.

We can extend this decomposition to non-ReLU networks by considering implicit biases arising due
to usage of generic non-linearities. For this, we linearize a non-linearity y = σ(x) at a neighborhood
around x to obtain y = dσ(x)

dx x + bσ. Here bσ is the implicit bias that is unaccounted for by the
derivative. Note that for ReLU-like non-linearities, bσ = 0. As a result, we can trivially extend
the representation to arbitrary non-linearities by appending bσ to the vector b of biases. In general,
any quantity that is unaccounted for by the input-gradient is an implicit bias, and thus by definition,
together they must add up to the function output, like in equation 1.

Equation 1 is an alternate representation of the neural network output in terms of various gradient
terms. We shall call∇xf(x,b) as input-gradients, and∇bf(x,b)�b as the bias-gradients. Together,
they constitute full-gradients. To the best our knowledge, this is the only other exact representation
of neural network outputs, other than the usual feed-forward neural net representation in terms of
weights and biases.

For the rest of the paper, we shall henceforth use the shorthand notation f b(x) for∇bf(x,b)� b,
the bias-gradient, and drop the explicit dependence on b in f(x,b).

4.1 Properties of Full-Gradients

Here discuss some intuitive properties of full-gradients. We shall assume that full-gradients comprise
of the pair G = (∇xf(x), f b(x)) ∈ RD+F . We shall also assume with no loss of generality that
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Figure 1: Visualization of bias-gradients at different layers of a VGG-16 pre-trained neural network.
While none of the intermediate layer bias-gradients themselves demarcate the object satisfactorily,
the full-gradient map achieves this by aggregating information from the input-gradient and all
intermediate bias-gradients. (see Equation 2).

the network contains ReLU non-linearity without batch-norm, and that all biases are due to bias
parameters.

Weak dependence on inputs: For a piecewise linear function f , it is clear that the input-gradient is
locally constant in a linear region. It turns out that a similar property holds for f b(x) as well, and a
short proof of this can be found in the supplementary material.

Completeness: From equation 1, we see that the full-gradients exactly recover the function output
f(x), satisfying completeness.

Saturation sensitivity: Broadly, saturation refers to the phenomenon of zero input attribution to
regions of zero function gradient. This notion is closely related to global attribution, as it requires
saliency methods to look beyond input sensitivity. As an example used in prior work [1], consider
f(x) = a− ReLU(b− x), with a = b = 1. At x = 2, even though f(x) = 1, the attribution to the
only input is zero, which is deemed counter-intuitive. Integrated gradients [1] and DeepLIFT [3]
consider handling such saturation for saliency maps to be a central issue and introduce the concept of
baseline inputs to tackle this. However, one potential issue with this is that the attribution to the input
now depends on the choice of baseline for a given function. To avoid this, we here argue that is better
to also provide attributions to some function parameters. In the example shown, the function f(x)
has two biases (a, b) and the full-gradient method attributes (1, 0) to these biases for input x = 2.

Full Sensitivity to Function Mapping: Adebayo et al. [6] recently proposed sanity check criteria
that every saliency map must satisfy. The first of these criteria is that a saliency map must be sensitive
to randomization of the model parameters. Random parameters produce incorrect input-output
mappings, which must be reflected in the saliency map. The second sanity test is that saliency maps
must change if the data used to train the model have their labels randomized. A stronger criterion
which generalizes both these criteria is that saliency maps must be sensitive to any change in the
function mapping, induced by changing the parameters. This change of parameters can occur by either
explicit randomization of parameters or training with different data. It turns out that input-gradient
based methods are insensitive to some bias parameters as shown below.

Example 2. (Bias insensitivity of input-gradient methods)

Consider a one-hidden layer net of the form f(x) = w1 ∗ relu(w0 ∗ x+ b0) + b1. For this, it is easy
to see that input-gradients [7] are insensitive to small changes in b0 and arbitrarily large changes in
b1. This applies to all input-gradient methods such as guided backprop [10] and deconv [9]. Thus
none of these methods satisfy the model randomization test on f(x) upon randomizing b1.

On the other hand, full-gradients are sensitive to every parameter that affects the function mapping.
In particular, by equation 1 we observe that given full-gradients G, we have ∂G

∂θi
= 0 for a parameter

θi, if and only if ∂f
∂θi

= 0.

4.2 FullGrad: Full-Gradient Saliency Maps for Convolutional Nets

For convolutional networks, bias-gradients have a spatial structure which is convenient to visualize.
Consider a single convolutional filter z = w ∗x+b where w ∈ R2k+1, b = [b, b....b] ∈ RD and (∗)
for simplicity refers to a convolution with appropriate padding applied so that w ∗ x ∈ RD, which is
often the case with practical convolutional nets. Here the bias parameter is a single scalar b repeated
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D times due to the weight sharing nature of convolutions. For this particular filter, the bias-gradient
f b(x) = ∇zf(x)� b ∈ RD is shaped like the input x ∈ RD, and hence can be visualized like the
input. Further, the locally connected nature of convolutions imply that each co-ordinate f b(x)i is a
function of only x[i−k, i+k], thus capturing the importance of a group of input co-ordinates centered
at i. This is easily ensured for practical convolutional networks (e.g.: VGG, ResNet, DenseNet,
etc) which are often designed such that feature sizes of immediate layers match and are aligned by
appropriate padding.

For such nets we can now visualize per-neuron and per-layer maps using bias-gradients. Per-neuron
maps are obtained by visualizing a spatial map ∈ RD for every convolutional filter. Per-layer maps
are obtained by aggregating such neuron-wise maps. An example is shown in Figure 1. For images,
we visualize these maps after performing standard post-processing steps that ensure good viewing
contrast. These post-processing steps are simple re-scaling operations, often supplemented with an
absolute value operation to visualize only the magnitude of importance while ignoring the sign. One
can also visualize separately the positive and negative parts of the map to avoid ignoring signs. Let
such post-processing operations be represented by ψ(·). For maps that are downscaled versions of
inputs, such post-processing also includes a resizing operation, often done by standard algorithms
such as cubic interpolation.

We can also similarly visualize approximate network-wide saliency maps by aggregating such layer-
wise maps. Let c run across channels cl of a layer l in a neural network, then the FullGrad saliency
map Sf (x) is given by

Sf (x) = ψ(∇xf(x)� x) +
∑
l∈L

∑
c∈cl

ψ
(
f b(x)c

)
(2)

Here, ψ(·) is the post-processing operator discussed above. For this paper, we choose ψ(·) =
bilinearUpsample(rescale(abs(·))), where rescale(·) linearly rescales values to lie be-
tween 0 and 1, and bilinearUpsample(·) upsamples the gradient maps using bilinear interpolation
to have the same spatial size as the image. For a network with both convolutional and fully-connected
layers, we can obtain spatial maps for only the convolutional layers and hence the effect of fully-
connected layers’ bias parameters are not completely accounted for. Note that omitting ψ(·) and
performing an additional spatial aggregation in the equation above results in the exact neural net
output value according to the full-gradient decomposition. Further discussion on post-processing is
presented in Section 6.

We stress here that the FullGrad saliency map described here is approximate, in the sense that the full
representation is in fact G = (∇xf(x), f b(x)) ∈ RD+F , and our network-wide saliency map merely
attempts to capture information from multiple maps into a single visually coherent one. This saliency
map has the disadvantage that all saliency maps have, i.e. they cannot satisfy both completeness and
weak dependence at the same time, and changing the aggregation method (such as removing �x in
equation 2, or changing ψ(·)) can help us satisfy one property or the other. Experimentally we find
that aggregating maps as per equation 2 produces the sharpest maps, as it enables neuron-wise maps
to vote independently on the importance of each spatial location.

5 Experiments

To show the effectiveness of FullGrad, we perform two quantitative experiments. First, we use a pixel
perturbation procedure to evaluate saliency maps on the Imagenet 2012 dataset. Second, we use the
remove and retrain procedure [8] to evaluate saliency maps on the CIFAR100 dataset.

5.1 Pixel perturbation

Popular methods to benchmark saliency algorithms are variations of the following procedure: remove
k most salient pixels and check variation in function value. The intuition is that good saliency
algorithms identify pixels that are important to classification and hence cause higher function output
variation. Benchmarks with this broad strategy are employed in [13, 11]. However, this is not a
perfect benchmark because replacing image pixels with black pixels can cause high-frequency edge
artifacts to appear which may cause output variation. When we employed this strategy for a VGG-16
network trained on Imagenet, we find that several saliency methods have similar output variation
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Figure 2: Quantitative results on saliency maps. (a) Pixel perturbation benchmark (see Section 5.1)
on Imagenet 2012 validation set where we remove k% least salient pixels and measure absolute value
of fractional output change. The lower the curve, the better. (b) Remove and retrain benchmark (see
Section 5.2) on CIFAR100 dataset done by removing k% most salient pixels, retraining a classifier
and measuring accuracy. The lower the accuracy, the better. Results are averaged across three runs.
Note that the scales of standard deviation are different for both graphs.

to random pixel removal. This effect is also present in large scale experiments by [13, 11]. This
occurs because random pixel removal creates a large number of disparate artifacts that easily confuse
the model. As a result, it is difficult to distinguish methods which create unnecessary artifacts from
those that perform reasonable attributions. To counter this effect, we slightly modify this procedure
and propose to remove the k least salient pixels rather than the most salient ones. In this variant,
methods that cause the least change in function output better identify unimportant regions in the
image. We argue that this benchmark is better as it partially decouples the effects of artifacts from
that of removing salient pixels.

Specifically, our procedure is as follows: for a given value of k, we replace the k image pixels
corresponding to k least saliency values with black pixels. We measure the neural network function
output for the most confident class, before and after perturbation, and plot the absolute value of the
fractional difference. We use our pixel perturbation test to evaluate full-gradient saliency maps on the
Imagenet 2012 validation dataset, using a VGG-16 model with batch normalization. We compare
with gradCAM [15], input-gradients [7], smooth-grad [16] and integrated gradients [1]. For this test,
we also measure the effect of random pixel removal as a baseline to estimate the effect of artifact
creation. We observe that FullGrad causes the least change in output value, and are hence able to
better estimate which pixels are unimportant.

5.2 Remove and Retrain

RemOve And Retrain (ROAR) [8] is another approximate benchmark to evaluate how well saliency
methods explain model behavior. The test is as follows: remove the top-k pixels of an image identified
by the saliency map for the entire dataset, and retrain a classifier on this modified dataset. If a saliency
algorithm indeed correctly identifies the most crucial pixels, then the retrained classifier must have
a lower accuracy than the original. Thus an ideal saliency algorithm is one that is able to reduce
the accuracy the most upon retraining. Retraining compensates for presence of deletion artifacts
caused by removing top-k pixels, which could otherwise mislead the model. This is also not a perfect
benchmark, as the retrained model now has additional cues such as the positions of missing pixels,
and other visible cues which it had previously ignored. In contrast to the pixel perturbation test which
places emphasis on identifying unimportant regions, this test rewards methods that correctly identify
important pixels in the image.

We use ROAR to evaluate full-gradient saliency maps on the CIFAR100 dataset, using a 9-layer VGG
model. We compare with gradCAM [15], input-gradients [7], integrated gradients [1] and a smooth
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Figure 3: Comparison of different neural network saliency methods. Integrated-gradients [1] and
smooth-grad [16] produce noisy object boundaries, while grad-CAM [15] indicates important regions
without adhering to boundaries. FullGrad combine both desirable attributes by highlighting salient
regions while being tightly confined within objects. For more results, please see supplementary
material.

grad variant called smooth grad squared [16, 8], which was found to perform among the best on this
benchmark. We see that FullGrad is indeed able to decrease the accuracy the most when compared to
the alternatives, indicating that they correctly identify important pixels in the image.

5.3 Visual Inspection

We perform qualitative visual evaluation for FullGrad, along with four baselines: input-gradients
[7], integrated gradients [1], smooth grad [16] and grad-CAM [15]. We see that the first three maps
are based on input-gradients alone, and tend to highlight object boundaries more than their interior.
Grad-CAM, on the other hand, highlights broad regions of the input without demarcating clear
object boundaries. FullGrad combine advantages of both – highlighted regions are confined to object
boundaries while highlighting its interior at the same time. This is not surprising as FullGrad includes
information both about input-gradients, and also about intermediate-layer gradients like grad-CAM.
For input-gradient, integrated gradients and smooth-grad, we do not super-impose the saliency map
on the image, as it reduces visual clarity. More comprehensive results without superimposed images
for gradCAM and FullGrad are present in the supplementary material.

6 How to Choose ψ(·)

In this section, we shall discuss the trade-offs that arise with particular choices of the post-processing
function ψ(·), which is central to the reduction from full-gradients to FullGrad. Note that by
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Proposition 1, any post-processing function cannot satisfy all properties we would like as the resulting
representation would still be saliency-based. This implies that any particular choice of post-processing
would prioritize satisfying some properties over others.

For example, the post-processing function used in this paper is suited to perform well with the
commonly used evaluation metrics of pixel perturbation and ROAR for image data. These metrics
emphasize highlighting important regions, and thus the magnitude of saliency seems to be more
important than the sign. However there are other metrics where this form of post-processing does
not perform well. One example is the digit-flipping experiment [3], where an example task is to turn
images of the MNIST digit "8" into those of the digit "3" by removing pixels which provide positive
evidence of "8" and negative evidence for "3". This task emphasizes signed saliency maps, and hence
the proposed FullGrad post-processing does not work well here. Having said that, we found that a
minimal form of post-processing, with ψm(·) = bilinearUpsample(·) performed much better on
this task. However, this post-processing resulted in a drop in performance on the primary metrics of
pixel perturbation and ROAR. Apart from this, we also found that pixel perturbation experiments
worked much better on MNIST with ψmnist(·) = bilinearUpsample(abs(·)), which was not the
case for Imagenet / CIFAR100. Thus it seems that the post-processing method to use may depend
both on the metric and the dataset under consideration. Full details of these experiments are presented
in the supplementary material.

We thus provide the following recommendation to practitioners: choose the post-processing
function based on the evaluation metrics that are most relevant to the application and datasets
considered. For most computer vision applications, we believe that the proposed FullGrad post-
processing may be sufficient. However, this might not hold for all domains and it might be important
to define good evaluation metrics for each case in consultation with domain experts to ascertain the
faithfulness of saliency methods to the underlying neural net functions. These issues arise because
saliency maps are approximate representations of neural net functionality as shown in Proposition 1,
and the numerical quantities in the full-gradient representation (equation 1) could be visualized in
alternate ways.

7 Conclusions and Future Work

In this paper, we proposed a novel technique dubbed FullGrad to visualize the function mapping
learnt by neural networks. This is done by providing attributions to both the inputs and the neurons
of intermediate layers. Input attributions code for sensitivity to individual input features, while
neuron attributions account for interactions between the input features. Individually, they satisfy
weak dependence, a weak notion for local attribution. Together, they satisfy completeness, a desirable
property for global attribution.

The inability of saliency methods to satisfy multiple intuitive properties both in theory and practice,
has important implications for interpretability. First, it shows that saliency methods are too limiting
and that we may need more expressive schemes that allow satisfying multiple such properties
simultaneously. Second, it may be the case that all interpretability methods have such trade-offs, in
which case we must specify what these trade-offs are in advance for each such method for the benefit
of domain experts. Third, it may also be the case that multiple properties might be mathematically
irreconcilable, which implies that interpretability may be achievable only in a narrow and specific
sense.

Another point of contention with saliency maps is the lack of unambiguous evaluation metrics. This
is tautological; if an unambiguous metric indeed existed, the optimal strategy would involve directly
optimizing over that metric rather than use saliency maps. One possible avenue for future work
may be to define such clear metrics and build models that are trained to satisfy them, thus being
interpretable by design.
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