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Outline

The supplementary material is organized as follows.

Section 1: We address function estimation and proves Theorem 4 in the main paper. Our objective is
to design a small-bias estimator whose approximation value is highly concentrated around its mean.

Section 1.1: We present several ancillary results that will be used in subsequent proofs.

Section 1.2: We construct the function estimator ĝ∗ using piecewise min-max polynomials.

Section 1.3, 1.4, and 1.5: We derive the bias, variance, and tail probability bounds presented in
Theorem 4, respectively, showing that the estimator ĝ∗ admits strong theoretical guarantees for a
broad class of functions.

In particular, in Section 1.5.1, we establish a McDiarmid’s inequality under Poisson sampling, which
is of independent interest.

Section 2: We apply the function estimation technique derived in Section 1 to derive our generic
method for learning additive properties, and prove other theorems in the main paper.

Section 2.1: We establish the results in Theorem 5 and show that for all sufficiently smooth properties,
our property estimator f̂∗ achieves the state-of-the-art performance.

Section 2.2: We consider the problem of estimating Lipschitz properties. By proving Theorem 1,
we show for the first time that all Lipschitz properties can be estimated up to a small error ε using
O(k/(ε2 log k)) samples, with probability at least 2/3.

Section 2.3: We establish a general result on private property estimation, which trivially implies those
stated in Section 2.2 of the main paper.

Section 2.4: We utilize Theorem 5 and some specific constructions to prove the upper and lower
bounds in Theorem 2, respectively.
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1 Proof of Theorem 4: Estimating functions of Bernoulli probabilities

1.1 Ancillary results

Useful tools

The following two lemmas provide tight bounds on the tail probability of a Poisson or binomial
random variable. We use these inequalities throughout the proofs.
Lemma 1 (Chernoff Bound [2]). Let X be a Poisson or binomial random variable with mean µ,
then for any δ > 0,

P(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ
≤ e−(δ2∧δ)µ/3

and for any δ ∈ (0, 1),

P(X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ
≤ e−δ

2µ/2.

By setting δ to be 1/2 and 1 in Lemma 1, we have the following corollary.
Lemma 2. Let X be a Poisson or binomial random variable with mean µ, then

P(X ≤ 1

2
µ) ≤ e−0.15µ

and
P(X ≥ 2µ) ≤ e−0.38µ.

The n-sensitivity of an estimator f̂ is the maximum possible change in its value when a sample
sequence of size-n input sequence is modified at exactly one location,

S(f̂ , n) := max{|f̂ (xn)− f̂ (yn) | : xn and yn differ in one location}.
The McDiarmid’s inequality relates S(f̂ , n) to the tail probability of f̂(Xn).

Lemma 3 (McDiarmid’s inequality [7]). Let f̂ be an estimator. For any constant ε > 0, distribution
~p ∈ ∆k, and i.i.d. sample sequence Xn ∼ ~p,

Pr
(∣∣∣f̂(Xn)− E[f̂(Xn)]

∣∣∣ > ε
)
≤ 2 exp

(
− 2ε2

nS2(f̂ , n)

)
.

As illustrated in the main paper, our construction relies on a variety of polynomials. To analyze these
polynomials and relate them to other quantities, we often need to bound the polynomials’ coefficients
based on their ranges. For a real polynomial, the next lemma provides tight upper bounds on the
magnitude of its non-constant coefficients.

Lemma 4. Let p(x) =
∑d
j=0 ajx

j be a degree-d real polynomial and

A := sup
x1,x2∈[0,1]

|p(x1)− p(x2)|,

then for j ≥ 1,
|aj | ≤ A · 23.5d.

We will utilize the above lemma to bound the variance of polynomial-based estimators.

Unbiased estimator of (p − x)v and its characterization

The following polynomial is related to the unbiased estimator of (p− x)v under Poisson sampling,
where we make the sample size an independent Poisson random variable. Note that both x ∈ R and
v ∈ N are given constant parameters.

hv,x (y) :=

v∑
l=0

(
v

l

)
(−x)v−l

l−1∏
l′=0

(
y

n
− l′

n

)
.

This polynomial will play an important role in our consecutive constructions and corresponding
proofs. First, we establish and present several useful attributes of hv,x (y) below.
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Lemma 5. For a Poisson random variable Y ∼ Poi(np),
E[hv,x(Y )] = (p− x)v.

Proof. By the linearity of expectation and definition of Poisson random variables,

E[hv,x(Y )] =

v∑
l=0

(
v

l

)
(−x)v−lE

[
l−1∏
l′=0

(
Y

n
− l′

n

)]

=

v∑
l=0

(
v

l

)
(−x)v−l

1

nl
E

[
l−1∏
l′=0

(Y − l′)

]

=

v∑
l=0

(
v

l

)
(−x)v−l

e−np

nl

∞∑
j=0

(np)j

j!

l−1∏
l′=0

(j − l′)

=

v∑
l=0

(
v

l

)
(−x)v−l

e−np

nl

∞∑
j=l

(np)j

(j − l)!

=

v∑
l=0

(
v

l

)
(−x)v−l

(np)l

nl

e−np ∞∑
j=l

(np)j−l

(j − l)!


=

v∑
l=0

(
v

l

)
(−x)v−lpl

= (x− p)v.

Lemma 5 implies that polynomial hv,x(Y ) is the unbiased estimator of (E[Y ]/n−x)v for Y ∼ Poi(·).
The next three lemmas bound the polynomial’s value when the input variable is close to its expectation.
Lemma 6. For a Poisson random variable Y ∼ Poi(np),

E[h2
v,0(Y )] ≤ E[Y 2v]

n2v
.

Furthermore, if for some positive constant c′, both np and 2v are at most ≤ c′ log n,

E[h2
v,0(Y )] ≤ 2p

(
2c′ log n

n

)2v−1

.

Proof. We consider the first inequality. Note that for all y ∈ Z+,

0 ≤
v−1∏
l′=0

(y − l′) = 1y≥v ·
v−1∏
l′=0

(y − l′) ≤ yv.

This inequality trivially implies that

E[h2
v,0(Y )] =

1

n2v
E

(
v−1∏
l′=0

(Y − l′)

)2

≤ E[Y 2v]

n2v
.

Based on the first inequality, we prove the second one as follows.

E[h2
v,0(Y )] ≤ E[Y 2v]

n2v

≤ 1

n2v

2v∑
t=1

t2v−t
(

2v

t

)
(np)t

≤ 1

n2v

2v∑
t=1

(2v)
2v−t

(
2v

t

)
(c′ log n)t

np

c′ log n

≤ 1

n2v
(2v + c′ log n)2v np

c′ log n

≤ 2p

(
2c′ log n

n

)2v−1

.
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Lemma 7. [6] For a Poisson random variable Y ∼ Poi(np) and a parameter

M ≥ max

{
n(p− x)2

p
, v

}
,

we have

E[h2
v,0(Y )] ≤

(
2Mp

n

)v
.

Lemma 8. [4] For x ∈ [0, 1], v ∈ N, m ∈ N, and a parameter

δ ≥ max

{∣∣∣x− m

n

∣∣∣ , √4mv

n

}
,

we have
|hv,x(m)| ≤ (2δ)v.

1.2 Function estimator construction

Let g be a continuous real function over the unit interval. Given i.i.d. samples Xn from a Bernoulli
distribution with unknown success probability p, our objective is to estimate the function value g(p).

Poisson sampling and sample splitting Generating exactly n samples creates dependencies be-
tween the counts of symbols. To simplify the derivations, we use the well-known Poisson sampling
technique and make the sample size an independent Poisson variable N with mean n. In addition,
we apply the standard sample splitting method and divide the sample sequence XN into two sub-
sample sequences by independently putting each sample into one of the two with equal probability.
Equivalently, we can simply generate two independent sample sequences from Bern(p), each of an
independent Poi(n/2) size. For notational convenience, we replace n by 2n and denote by N1 and
N ′1 the number of times symbol 1 appearing in the first and second sample sequences, respectively.

Covering the unit interval Let c be a sufficiently large constant and define cn := c logn
n . Cover

the unit interval [0, 1] by three sets of nested intervals

Ij := cn
[
(j − 1)2, j2

]
,

I∗j := cn
[
(j − 2)21j≥2, (j + 1)2

]
=

j+1
∪

j′=j−1
Ij′ ,

I∗∗j := cn
[
(j − 3)21j≥3, (j + 2)2

]
=

j+1
∪

j′=j−1
I∗j′ ,

where j = 1, . . . and in the union, I−2 and I−1 are taken to be empty.

Let Mn := 1/
√
cn be the number of intervals so that I1, . . . , IMn form a partition of [0, 1].

Parameter c and these intervals are chosen so that for all j ∈ [Mn], if N1/n ∈ Ij we can assume that
p ∈ I∗j and N ′1/n ∈ I∗∗j , and regardless of the value of p, with high probability we will be right.

Min-max polynomial approximation For each j ∈ [Mn], let xj := cn(j − 3)21j≥3 be the left
end point of I∗∗j , and |I∗∗j | := cn(j + 2)2 − cn(j − 3)21j≥3 be the length of the interval I∗∗j .

Then for any x ∈ I∗∗j , there exists yx ∈ [0, 1] such that x = xj + |I∗∗j | · yx. Let λ be a small absolute
constant in (0, 0.1), and define the degree parameter as

dn := max
{
d ∈ N : d · 24.5d+2 ≤ nλ

}
.

Denoting
rj(y) := g

(
xj + |I∗∗j |y

)
,

we can find the degree-dn min-max polynomial of rj(y) over y ∈ [0, 1], say

r̃j(y) :=

dn∑
v=0

ajvy
v.
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By Lemma 4, for all v ≥ 1, the following upper bound on |ajv| holds.

|ajv| ≤ 23.5dn sup
z1,z2∈I∗∗j

|g(z1)− g(z2)|.

Noting that yx = |I∗∗j |−1(x− xj), we can re-write r̃j(yx) as

g̃j(x) :=

dn∑
v=0

ajv|I∗∗j |−v(x− xj)v.

Piecewise-polynomial estimator ĝ∗ By Lemma 5, for j ∈ [Mn], an unbiased estimator of g̃j(p) is

Eg̃j (N1) :=

dn∑
v=0

ajv|I∗∗j |−vhv,xj
(N1) =

dn∑
v=0

ajv|I∗∗j |−v
v∑
l=0

(
v

l

)
(−xj)v−l

l−1∏
l′=0

(
N1

n
− l′

n

)
.

For j > Mn, we denote

Eg̃j (N1) := Eg̃Mn
(min

{
N1, cn(Mn + 2)2

}
).

Let T be a sufficiently large constant satisfying T � maxx∈[0,1] |g(x)|, and write [A]ba instead of
min{max{A, a}, b}. Utilizing sample splitting, we estimate g(p) by the following estimator,

ĝ∗(N1, N
′
1) :=

 ∞∑
j=1

Eg̃j (N1)1N1
n ∈I

∗∗
j

+
∑

j′ 6∈[j−2:j+2]

Eg̃j′ (N1)1N1
n ∈Ij′

1N′1
n ∈Ij

T
−T

.

1.3 Bounding the bias of ĝ∗

Recall that I1, . . . , IMn
form a partition of [0, 1]. For any x ∈ [0, 1], let jx denote the index j such

that x ∈ Ij . By the triangle inequality, the absolute bias of ĝ∗(N1, N
′
1) admits

|E[ĝ∗(N1, N
′
1)]− g(p)| ≤

∣∣g̃jp(p)− g(p)
∣∣+
∣∣E [ĝ∗(N1, N

′
1)− g̃jp(p)

]∣∣
≤
∣∣g̃jp(p)− g(p)

∣∣+ E
[
2T

(
1N1

n 6∈I
∗
jp

1N′1
n ∈I

∗
jp

+ 1N′1
n 6∈I

∗
jp

)]
+

∣∣∣∣E [(ĝ∗(N1, N
′
1)− g̃jp(p)

)
1N1

n ∈I
∗
jp

1N′1
n ∈I

∗
jp

]∣∣∣∣ .
The last summation has three terms. By definition, the first term is no larger than D∗g(n, p)/n. By
the Chernoff bound (Lemma 1) and the fact that p ∈ Ijp , for sufficiently large constant c, the second
term is at most Tp/n5. Therefore, it remains to consider the third term. By the triangle inequality
and definition of ĝ∗, the third term is at most

Bn(g, p) :=

∣∣∣∣E [(g̃jp−1(p)− g̃jp(p)
)
1N1

n ∈I
∗
jp

]∣∣∣∣+

∣∣∣∣E [(g̃jp+1(p)− g̃jp(p)
)
1N1

n ∈I
∗
jp

]∣∣∣∣
+

∣∣∣∣E [(Eg̃jp (N1)− g̃jp(p)
)
1N1

n ∈I
∗
jp

]∣∣∣∣+

∣∣∣∣E [(Eg̃jp−1
(N1)− g̃jp−1(p)

)
1N1

n ∈I
∗
jp

]∣∣∣∣
+

∣∣∣∣E [(Eg̃jp+1(N1)− g̃jp+1(p)
)
1N1

n ∈I
∗
jp

]∣∣∣∣ .
We bound the first term of Bn(g, p) as∣∣∣∣E [(g̃jp−1(p)− g̃jp(p)

)
1N1

n ∈I
∗
jp

]∣∣∣∣ ≤ ∣∣E [g̃jp−1(p)− g̃jp(p)
]∣∣

≤
∣∣g̃jp−1(p)− g(p)

∣∣+
∣∣g(p)− g̃jp(p)

∣∣
≤

2D∗g(2n, p)

n
,
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where the last step follows from the definition of D∗g(2n, p). The second term of Bn(g, p) satisfies
the same inequality, and is at most 2D∗g(2n, p)/n. Note that the last three terms of Bn(g, p) are
clearly of the same type. Hence for simplicity, below we only analyze the first one.

For any j ∈ [Mn], we can express Eg̃j (N1) in terms of hv,xj
(N1), i.e.,

Eg̃j (N1) =

dn∑
v=0

ajv|I∗∗j |−vhv,xj
(N1) .

In addition, recall that by definition,

g̃j(p) =

dn∑
v=0

ajv|I∗∗j |−v(p− xj)v.

The linearity of expectation combines the above two equalities and yields

E
[(
Ef̃j (N1)− f̃j(p)

)
1N1

n ∈I
∗
j

]
=

dn∑
v=0

ajv|I∗∗j |−vE
[(
hv,xj (N1)− (p− xj)v

)
1N1

n ∈I
∗
j

]
.

Therefore, given integers a and b satisfying b > a > dn, our new objective is to bound
INv,n(a, b, p, j) := E

[(
hv,xj

(N1)− (p− xj)v
)
1N1∈[a,b]

]
.

Bounding the magnitude of INv,n For all integer s ≥ 1, let us denote

Hv,n(s, p, j) :=

v∑
l=0

(
v

l

)
(−xj)v−lpl

∑
t∈[s−l,s−1]

e−np
(np)t

t!
.

We first relate INv,n to Hv,n through the following lemma.
Lemma 9. For any two integers a and b satisfying a > b > v,

INv,n(a, b, p, j) = Hv,n(a, p, j)−Hv,n(b+ 1, p, j).

Proof. By the linearity of expectation and binomial theorem, we can rewrite the left-hand side as

INv,n(a, b, p, j) =

v∑
l=0

(
v

l

)
(−xj)v−lE

[(
l−1∏
l′=0

(
N1

n
− l′

n

)
− pl

)
1N1∈[a,b]

]
.

For each l ≤ v, we evaluate the inner expectation as follows:

E

[(
l−1∏
l′=0

(
N1

n
− l′

n

)
− pl

)
1N1∈[a,b]

]
=
∑
t∈[a,b]

l−1∏
l′=0

(
t

n
− l′

n

)
e−np

(np)t

t!
− pl

∑
t∈[a,b]

e−np
(np)t

t!

=
∑
t∈[a,b]

1

nl
t!

(t− l)!
e−np

(np)t

t!
− pli

∑
t∈[a,b]

e−np
(np)t

t!

= pl
∑

t∈[a−l,b−l]

e−np
(np)t

t!
− pl

∑
t∈[a,b]

e−np
(np)t

t!

= pl
∑

t∈[a−l,a−1]

e−np
(np)t

t!
− pl

∑
t∈[b−l+1,b]

e−np
(np)t

t!
.

Therefore, to bound |INv,n(a, b, p, j)|, we only need to bound |Hv,n(a, p, j)| and |Hv,n(b+ 1, p, j)|.
We shall proceed by relating these quantities to hl,xj

(a− 1) for l = 0, . . . , v − 1.
Lemma 10. For any integer s satisfying s > v,

Hv,n(s, p, j) = pe−np
(np)s−1

(s− 1)!

v−1∑
l=0

(p− xj)v−l−1hl,xj
(s− 1).

Proof. The following recursive formula of binomial coefficients is well-known:(
v

l

)
=

(
v − 1

l

)
+

(
v − 1

l − 1

)
,
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Utilizing this recursive formula, we can re-write the quantity of interest as

Hv,n(s, p, j) =

v−1∑
l=0

(
v − 1

l

)
(−xj)v−(l+1)pl+1

∑
t∈[s−l,s−1]

e−np
(np)t

t!

+

v−1∑
l=0

(
v − 1

l

)
(−xj)v−lpl

∑
t∈[s−l,s−1]

e−np
(np)t

t!

+

v−1∑
l=0

(
v − 1

l

)
(−xj)v−(l+1)pl+1e−np

(np)t

t!

∣∣∣∣∣
t=s−(l+1)

= (p− xj)
v−1∑
l=0

(
v − 1

l

)
(−xj)(v−1)−lpl

∑
t∈[s−l,s−1]

e−np
(np)t

t!

+

v−1∑
l=0

(
v − 1

l

)
(−xj)v−(l+1)pl+1e−np

(np)s−(l+1)

(s− (l + 1))!

= (p− xj)Hv−1,n(s, p, j) +

v−1∑
l=0

(
v − 1

l

)
(−xj)v−(l+1)pl+1e−np

(np)s−(l+1)

(s− (l + 1))!
.

This equation establishes a standard recursive relation between Hv,n(s, p, j) and Hv−1,n(s, p, j).
To prove our desired result, we relate the second quantity on the right-hand side to hv−1,xj (s− 1),

v−1∑
l=0

(
v − 1

l

)
(−xj)v−(l+1)pl+1e−np

(np)s−(l+1)

(s− (l + 1))!

= e−npp

v−1∑
l=0

(
v − 1

l

)
(−xj)(v−1)−lplx

(np)(s−1)−l

((s− 1)− l)!

= e−npp

v−1∑
l=0

(
v − 1

l

)
(−xj)(v−1)−l 1

nl
(np)s−1

((s− 1)− l)!

= e−npp

v−1∑
l=0

(
v − 1

l

)
(−xj)(v−1)−l

∏l−1
l′=0((s− 1)− l′)

nl
(np)s−1

(s− 1)!

= e−npp
(np)s−1

(s− 1)!

v−1∑
l=0

(
v − 1

l

)
(−xj)(v−1)−l

l−1∏
l′=0

(
s− 1

n
− l′

n

)
= pe−np

(np)s−1

(s− 1)!
hv−1,xj (s− 1).

Substituting the last quantity into the previous recursive relation yields

Hv,n(s, p, j) = (p− xj)Hv−1,n(s, p, j) + pe−np
(np)s−1

(s− 1)!
hv−1,xj

(s− 1),

with a base case H0,n(s, p, j) = 0. Therefore, the principle of mathematical induction implies

Hv,n(s, p, j) = pe−np
(np)s−1

(s− 1)!

v−1∑
l=0

(p− xj)v−l−1hl,xj
(s− 1).

Without loss of generality, we assume that c log n is a positive integer so that nxj ∈ Z+ for all j,
since otherwise we can modify the value of c by at most 1 to fulfill this assumption. As an implication
of Lemma 10, for integer s such that s/n or (s − 1)/n is the end point of I∗jp (right end point if
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jp ≤ 2), and sufficiently large constant c satisfying c log n > d,

|Hv,n(s, p, jp)| =

∣∣∣∣∣pe−np (np)s−1

(s− 1)!

v−1∑
l=0

(p− xjp)v−l−1hl,xjp
(s− 1)

∣∣∣∣∣
= Pr(N1 = s− 1) · p

∣∣∣∣∣
v−1∑
l=0

(p− xjp)v−l−1hl,xjp
(s− 1)

∣∣∣∣∣
≤ p

n5

∣∣∣∣∣
v−1∑
l=0

(p− xjp)v−l−1hl,xjp
(s− 1)

∣∣∣∣∣
≤ p

n5
v
(

2|I∗∗jp |
)v−1

,

where the second last step follows from the Chernoff bound and the last step follows from Lemma 8
by setting δ = |I∗∗jp |. Under the same set of conditions, we can show that

|Hv,n(s, p, jp − 1)| ≤ p

n5
v
(

2|I∗∗jp |
)v−1

and

|Hv,n(s, p, jp + 1)| ≤ p

n5
v
(

2|I∗∗jp |
)v−1

.

Bounding the bias of ĝ∗ Now we are ready to analyze the quantity of interest:∣∣∣∣E [(Eg̃jp (N1)− g̃jp(p)
)
1N1

n ∈I
∗
jp

]∣∣∣∣ =

∣∣∣∣∣
dn∑
v=0

ajpv|I∗∗jp |
−vE

[(
hv,xjp

(N1)− (p− xjp)v
)
1N1

n ∈I
∗
jp

]∣∣∣∣∣
=

∣∣∣∣∣
dn∑
v=0

ajpv|I∗∗jp |
−vINv,n(nxjp+1, nxjp+4, p, jp)

∣∣∣∣∣
=

∣∣∣∣∣
dn∑
v=0

ajpv|I∗∗jp |
−v(Hv,n(nxjp+1, p, j)1jp>2 −Hv,n(nxjp+4 + 1, p, j))

∣∣∣∣∣
≤

dn∑
v=1

ajpv|I∗∗jp |
−v 2p

n5
v
(

2|I∗∗jp |
)v−1

≤
dn∑
v=1

2T · 23.5dn

(
1

4cn

)
2p

n5
v (2)

v−1

≤ Tdn · 24.5dn

cnn5
· p.

The same reasoning also shows that∣∣∣∣E [(Eg̃jp−1
(N1)− g̃jp−1(p)

)
1N1

n ∈I
∗
jp

]∣∣∣∣ ≤ Tdn · 24.5dn

cnn5
· p

and ∣∣∣∣E [(Eg̃jp+1(N1)− g̃jp+1(p)
)
1N1

n ∈I
∗
jp

]∣∣∣∣ ≤ Tdn · 24.5dn

cnn5
· p.

Consolidating all the previous results yields the desired bias bound:

|E[ĝ∗(N1, N
′
1)]− g(p)| ≤ T

n5
· p+

3Tdn · 24.5dn

cnn5
· p+

5

n
D∗g(2n, p)

≤ p

n5−λ +
5

n
D∗g(2n, p).
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1.4 Bounding the variance of ĝ∗

In this section, we establish the following bound on the variance of our estimator.
Lemma 11. For sufficiently large c,

Var(ĝ∗(N1, N
′
1)) ≤ 72c(log n)

n1−3λ

(
L∗g(2n, p)

)2 · p+
8T 2

n5
· p.

Proof. Since Var(X) ≤ E[X2] and 1X · 1X = 0 for any random variable X , we have

Var(ĝ∗(N1, N
′
1)) ≤ E

(
ĝ∗(N1, N

′
1)1N1

n ∈I
∗
jp

1N′1
n ∈I

∗
jp

)2

+ E
(
ĝ∗(N1, N

′
1)

(
1− 1N1

n ∈I
∗
jp

1N′1
n ∈I

∗
jp

))2

≤
∑

j′∈[jp−1,jp+1]

E
(
ĝ∗(N1, N

′
1)1N1

n ∈I
∗
jp

1N′1
n ∈Ij′

)2

+ 4T 2 · Pr

(
N1

n
6∈ I∗jp or

N ′1
n
6∈ I∗jp

)
.

≤
∑

j′∈[jp−1,jp+1]

E[E2
g̃j′

(N1)] + 8T 2 · Pr

(
N1

n
6∈ I∗jp

)
.

For sufficiently large c, the second term is at most 8T 2p/n5 by the Chernoff bound. It remains to
analyze E[E2

g̃j
(N1)] for j ∈ [jp − 1, jp + 1]. By the Cauchy-Schwarz inequality,

E[E2
g̃j (N1)] = E

(
dn∑
v=0

ajv|I∗∗j |−vhv,xj (N1)

)2

≤

(
dn∑
v=0

|ajv||I∗∗j |−v
(
E[h2

v,xj
(N1)]

) 1
2

)2

.

Consider the inner expectation. If jpi ≤ 2 and j ∈ [jpi − 1, jpi + 1], then xj = 0. By Lemma 6,

E[h2
v,xj

(N1)] ≤ 2(32c log n)2v−1p

n2v−1
.

This together with Lemma 4 and the definition of L∗g(n, p) implies that

E[E2
g̃j (N1)] ≤

(
dn∑
v=0

|ajv||I∗∗j |−v
(
E[h2

v,xj
(N1)]

) 1
2

)2

≤

(
dn∑
v=0

(
23.5dn+1L∗g(2n, p)|I∗∗j |

)
|I∗∗j |−v

(
32c log n

n

)v−1
√

64c(log n)p

n

)2

≤
(
dn25.5dn+1L∗g(2n, p)

)2 64c(log n)p

n
.

If jp > 2 and j ∈ [jp − 1, jp + 1], then by Lemma 7,

E[h2
v,xj

(N1)] ≤
(

72c(log n)p

n

)v
≤

(
72c2(log n)2j2

p

n2

)v−1(
72c(log n)p

n

)
.

Analogously,

E[E2
g̃j (N1)] ≤

(
dn∑
v=0

|ajv||I∗∗j |−v
(
E[h2

v,xj
(N1)]

) 1
2

)2

≤

(
dn∑
v=0

(
23.5dn+1L∗g(2n, p)|I∗∗j |

)
|I∗∗j |−v

(
3 · 21.5c(log n)jp

n

)v−1
√

72c(log n)p

n

)2

≤
(
dn24.5dn+1L∗g(2n, p)

)2 72c(log n)p

n
.

Consolidating the above results yields the desired bound.
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1.5 Sensitivity bound

Incorporate our sampling scheme, we define the sensitivity of an estimator ĝ as the maximum possible
change in its value when an input sequence is replaced by another that differs in exactly one location,

S(ĝ) := max
{∣∣∣ĝ(xm)− ĝ(ym

′
)
∣∣∣ : m,m′ ∈ Z, xm and ym

′
differ in one location

}
.

By construction, sensitivity upperly bounds n-sensitivity, i.e., S(ĝ) ≥ S(ĝ, n) for all n. Due to
sample splitting, replacing the given sample sequence XN by a sequence that differs in at most one
location could change N1, N ′1, or both, by at most one. In other words, to bound the sensitivity of ĝ∗,
we need to bound the change in the estimator’s value when we modify N1 or N ′1 by one. We proceed
as follows. If the value of N1 increases or decreases by one, we need to consider the following two
types of differences:

D(1)
g (n, j, s) := Eg̃j (s)− Eg̃j (s− 1),

for s satisfying s− 1, s, or s+ 1 ∈ nI∗∗j , and

D(2)
g (n, j, s) := Eg̃j (s)− Eg̃j−1

(s− 1),

for s satisfying s ∈ nI∗∗j−1 ∩ nI∗∗j . If the value of N ′1 increases or decreases by one, we need to
consider the difference:

D(3)
g (n, j, s) := Eg̃j (s)− Eg̃j−1

(s),

for s satisfying s ∈ nI∗∗j−1 ∩ nI∗∗j . The triangle inequality relates this quantity to the previous two
and yields ∣∣∣D(3)

g (n, j, s)
∣∣∣ =

∣∣Eg̃j (s)− Eg̃j−1(s− 1)
∣∣

≤
∣∣Eg̃j (s)− Eg̃j (s− 1)

∣∣+
∣∣Eg̃j (s− 1)− Eg̃j−1

(s− 1)
∣∣

=
∣∣∣D(1)
g (n, j, s)

∣∣∣+
∣∣∣D(2)
g (n, j, s− 1)

∣∣∣ .
Hence to bound S(ĝ), we only need to derive upper bounds for |D(1)

g | and |D(2)
g |, which we refer

to as the type-1 and type-2 differences, respectively. In Section 1.5.2 and 1.5.3, we show that both
quantities are at most S∗g (2n)/n1−λ. Given this, and a Poisson-sampling McDiarmid’s inequality
derived in the next section, we establish the third inequality in Theorem 4.

1.5.1 From bounded difference to concentration

In this section, we establish a McDiarmid’s inequality for Poisson sampling, showing that small
sensitivity still implies strong concentration under formulation. We believe that this result is of
independent interest. Specifically, we show that for any p ∈ ∆k, N ∼ Poi(n), XN ∼ p,

Lemma 12. For any error parameter ε ∈ (0, 1) and estimator f̂ satisfying S(f̂) ≥ 1/n,

Pr
(∣∣∣f̂(XN )− E

[
f̂(XN )

]∣∣∣ > ε
)
≤ 4 exp

(
− ε2

2n(4S(f̂))2

)
.

Proof. By the linearity of expectation and triangle inequality,

|E[f̂(Xm)]− E[f̂(Xm+1)]| ≤ S(f̂),∀m.

Therefore for any m,

|E[f̂(Xm)]− E[f̂(XN )]| =

∣∣∣∣∣
∞∑
t=0

E[f̂(Xt)] · Pr(N = t)− E[f̂(Xm)]

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
t=0

(E[f̂(Xt)]− E[f̂(Xm)]) · Pr(N = t)

∣∣∣∣∣
≤ S(f̂)

∞∑
t=0

|t−m| · Pr(N = t).
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We consider the last summation and simplify it as follows:
∞∑
t=0

|t−m| · Pr(N = t)

=

m∑
t=0

(m− t) Pr(N = t) +

∞∑
t=m

(t−m) Pr(N = t)

= mPr(N ≤ m)−
m∑
t=0

t exp(−n)
nt

t!
+

∞∑
t=m

t exp(−n)
nt

t!
−mPr(N ≥ m)

= mPr(N ≤ m)− nPr(N ≤ m− 1) + nPr(N ≥ m− 1)−mPr(N ≥ m)

= (m− n)(Pr(N ≤ m)− Pr(N ≥ m)) + n(Pr(N = m) + Pr(N = m− 1)).

Note that the second quantity on the right-hand side satisfies

Pr(N = m) + Pr(N = m− 1) ≤ Pr(N = n) + Pr(N = n− 1)

≤ 2 exp(−n)
nn

n!

≤ 1√
n
.

Consequently we have

|E[f̂(Xm)]− E[f̂(XN )]| ≤ S(f̂)

∞∑
t=0

|t−m| · Pr(N = t)

≤ S(f̂)
(
(m− n)(Pr(N ≤ m)− Pr(N ≥ m)) +

√
n
)

≤ S(f̂) · (|m− n|+
√
n).

Next, let ε′ ∈ (0, 1) be a constant to be determined later. The probability of interest satisfies

Pr
(∣∣∣f̂(XN )− E

[
f̂(XN )

]∣∣∣ > ε
)

=

∞∑
m=0

Pr
(∣∣∣f̂(Xm)− E[f̂(XN )]

∣∣∣ > ε
)

Pr(N = m)

≤ Pr(N 6∈ n[1− ε′, 1 + ε′]) +
∑

m∈n[1−ε′,1+ε′]

Pr
(∣∣∣f̂(Xm)− E[f̂(XN )]

∣∣∣ > ε
)

Pr(N = m).

We can easily bound the first term through the Chernoff bound. For the second term,∑
m∈n[1−ε′,1+ε′]

Pr
(∣∣∣f̂(Xm)− E[f̂(Xm)]

∣∣∣ > ε−
∣∣∣E[f̂(Xm)]− E[f̂(XN )]

∣∣∣)Pr(N = m)

≤
∑

m∈n[1−ε′,1+ε′]

Pr
(∣∣∣f̂∗(Xm)− E[f̂∗(Xm)]

∣∣∣ > ε− S(f̂)(nε′ +
√
n)
)

Pr(N = m)

≤ 2 exp

(
− (ε− S(f̂)(nε′ +

√
n))2

n(1 + ε′)(S(f̂))2

)
,

where the last step follows from the McDiarmid’s inequality. Next, setting

ε′ =
ε

2nS(f̂)
∈
(

0,
1

2

)
,

we can rewrite last term, with the multiplicative factor of 2 removed, as

exp

(
− (ε− S(f̂)(nε′ +

√
n))2

n(1 + ε′)(S(f̂))2

)
= exp

(
−

( ε2 −
√
nS(f̂))2

n(1 + ε′)(S(f̂))2

)
.

11



Hence, it suffices to obtain tight upper bounds on the right-hand side quantity, for which we consider
the following two cases. If the parameter ε is relatively large such that

ε ≥ 4
√
nS(f̂),

the quantity of interest is at most

exp

(
−

( ε2 −
√
nS(f̂))2

n(1 + ε′)(S(f̂))2

)
≤ exp

(
− ε2

32n(S(f̂))2

)
.

Otherwise, we have ε2/(32(S(f̂))2) ≤ 1/2, implying

2 exp

(
− ε2

32n(S(f̂))2

)
≥ 2 exp

(
−1

2

)
> 1.

Consolidating previous results, we get

Pr
(∣∣∣f̂∗(XN ′′)− E

[
f̂∗(XN ′′)

]∣∣∣ > ε
)

≤ 2 exp

(
− ε2

32n(S(f̂))2

)
+ Pr(N ′′ 6∈ n[1− ε′, 1 + ε′])

≤ 2 exp

(
− ε2

32n(S(f̂))2

)
+ 2 exp

(
−1

3
nε′2

)

≤ 2 exp

(
− ε2

32n(S(f̂))2

)
+ 2 exp

(
− ε2

12n(S(f̂))2

)

≤ 4 exp

(
− ε2

32n(S(f̂))2

)
.

1.5.2 Bounding the type-1 difference

The following lemma provides tight upper bound on the type-1 difference.
Lemma 13. For s satisfying s− 1, s, or s+ 1 ∈ nI∗∗j ,∣∣Eg̃j (s)− Eg̃j (s− 1)

∣∣ ≤ dn · 24.5dn+1

n
L∗g(2n).

Proof. Recall that

hv,xj
(s) =

v∑
l=0

(
v

l

)
(−xj)v−l

l−1∏
l′=0

(
s

n
− l′

n

)
.

The difference between hv,xj (s) and hv,xj (s− 1) is

hv,xj (s)− hv,xj (s− 1) =

v∑
l=0

(
v

l

)
(−xj)v−l

(
l−1∏
l′=0

(
s

n
− l′

n

)
−

l−1∏
l′=0

(
s− 1

n
− l′

n

))

=

v∑
l=0

(
v

l

)
(−xj)v−l

(
l−1∏
l′=0

(
s

n
− l′

n

)
−

l∏
l′=1

(
s

n
− l′

n

))

=

v∑
l=0

(
v

l

)
(−xj)v−l

(
s

n

l−1∏
l′=1

(
s

n
− l′

n

)
− s− l

n

l−1∏
l′=1

(
s

n
− l′

n

))

=

v∑
l=0

l

n

(
v

l

)
(−xj)v−l

l−1∏
l′=1

(
s

n
− l′

n

)

=
v

n

v−1∑
l=0

(
v − 1

l

)
(−xj)(v−1)−l

l−1∏
l′=0

(
s− 1

n
− l′

n

)
=
v

n
hv−1,xj

(s− 1).

12



By Lemma 4 and the definition of L∗g(2n),

|ajv| ≤ 23.5dn · 2 · sup
z1,z2∈I∗∗j

|g(z1)− g(z2)| ≤ 23.5dn+1L∗g(2n)|I∗∗j |.

Therefore, the quantity of interest satisfies∣∣Eg̃j (s)− Eg̃j (s− 1)
∣∣ =

∣∣∣∣∣
dn∑
v=0

ajv|I∗∗j |−v
(
hv,xj

(s)− hv,xj
(s− 1)

)∣∣∣∣∣
=

∣∣∣∣∣
dn∑
v=0

ajv|I∗∗j |−v
v

n
hv−1,xj (s− 1)

∣∣∣∣∣
≤ 23.5dn+1

n
L∗g(2n)|I∗∗j |

dn∑
v=1

v|I∗∗j |−v
(
2|I∗∗j |

)v−1

≤ 23.5dn+1

n
L∗g(2n)

dn∑
v=1

v2v−1

≤ dn · 24.5dn+1

n
L∗g(2n),

where the third last inequality follows from Lemma 8 by setting δ = |I∗∗j |, and the last inequality
follows from

∑dn
v=1 v2v−1 ≤ dn · 2dn .

1.5.3 Bounding the type-2 difference

In this section, we show the following upper bound on the type-2 difference.
Lemma 14. For s satisfying s ∈ nI∗∗j−1 ∩ nI∗∗j ,∣∣Eg̃j−1

(s)− Eg̃j (s)
∣∣ ≤ 4 · 24.5dn

n
D∗g(2n).

Proof. Note that Eg̃j−1
(Ni)− Eg̃j (Ni) is an unbiased estimator of (g̃j−1 − g̃j) (x). For simplicity,

denote q̃j(x) := (g̃j−1 − g̃j)(x) and IΛ
j := I∗∗j−1 ∩ I∗∗j = cn

[
(j − 3)21j≥3, (j + 1)2

]
. Then we

have |q̃j(x)| ≤ 2D∗g(2n)/n for x ∈ IΛ
j . Let

x′j := cn(j − 3)21j≥3

be the left end point of IΛ
j , and

|IΛ
j | := cn(j + 1)2 − cn(j − 3)21j≥3

be the length of IΛ
j . For any x ∈ IΛ

j , there exists yx ∈ [0, 1] such that

x = x′j + |IΛ
j |yx.

Since x→ yx is a linear transformation, there exist coefficients bjv, v = 0, . . . , dn, independent of x,
such that

q̃j(x) =

dn∑
v=0

bjvy
v
x.

By the definition of q̃j(x) and the triangle inequality, we can deduce that |q̃j(x)| ≤ 2D∗g(2n)/n for
all x ∈ IΛ

j . Furthermore, according to Lemma 4,

|bjv| ≤
24.5dn

n
D∗g(2n).

Substituting yx by |IΛ
j |
−1

(x− x′j), we can re-write q̃j(x) as

q̃j(x) =

dn∑
v=0

bjv|IΛ
j |
−v (

x− x′j
)v
.
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Consequently, we have the following equality:(
Eg̃j−1

− Eg̃j
)

(s) =

dn∑
v=0

bjv|IΛ
j |
−v
hv,x′j (s).

Therefore, for all s ∈ nIΛ
j ,∣∣(Eg̃j−1
− Eg̃j

)
(s)
∣∣ =

∣∣∣∣∣
dn∑
v=0

bjv|IΛ
j |−vhv,x′j (s)

∣∣∣∣∣
≤

dn∑
v=0

2 · 23.5dnD∗g(2n)

n
|IΛ
j |−v

(
2|IΛ

j |
)v

≤
23.5dnD∗g(2n)

n

dn∑
v=0

2v+1

≤ 4 · 24.5dn

n
D∗g(2n).

2 Proofs of other theorems

2.1 Proof of Theorem 5

Let ~p ∈ ∆k be an arbitrary distribution andXN be an i.i.d. sample sequence from ~p of an independent
N ∼ Poi(2n) size. Applying sample splitting to XN , we denote by Ni and N ′i the number of times
symbol i ∈ [k] appearing in the first and second sub-sample sequences, respectively. Applying the
technique presented in Section 1.2, we can estimate the additive property

f(~p) =
∑
i∈[k]

fi(pi)

by the estimator
f̂∗(XN ) :=

∑
i∈[k]

f̂∗i (Ni, N
′
i).

We start by bounding the bias of f̂∗. Fix λ ∈ (0, 1/4) and let T be a sufficiently large constant
satisfying T1 � maxi∈[k] maxx∈[0,1] |fi(x)|. The results in Section 1.3 and triangle inequality imply∣∣∣E[f̂∗(XN )]− f(~p)

∣∣∣ =

∣∣∣∣∣∣E
∑
i∈[k]

f̂∗i (Ni, N
′
i)

−∑
i∈[k]

fi(pi)

∣∣∣∣∣∣ ≤
∑
i∈[k]

∣∣∣E[f̂∗i (Ni, N
′
i)]− fi(pi)

∣∣∣
≤
∑
i∈[k]

(
T

n5
· pi +

3Tdn · 24.5dn

cnn5
· pi +

5

n
D∗fi(2n, pi)

)

=
T

n5
+

3Tdn · 24.5dn

cnn5
+

5

n

∑
i∈[k]

D∗fi(2n, pi)

≤ T

n5
+

Tnλ

cn4 log n
+

5

n

∑
i∈[k]

D∗fi(2n, pi).

Next we analyze the variance of f̂∗. Due to Poisson sampling and sample splitting, all the counts Ni
and N ′i , i ∈ [k] are mutually independent. Therefore, by Lemma 11 in Section 1.4,

Var(f̂∗(XN )) = Var

∑
i∈[k]

f̂∗i (Ni, N
′
i)

 =
∑
i∈[k]

Var
(
f̂∗i (Ni, N

′
i)
)

≤
∑
i∈[k]

(
72c(log n)

n1−3λ

(
L∗fi(2n, pi)

)2 · pi +
8T 2

n5
· pi
)

=
8T 2

n5
+

72c(log n)

n1−3λ

∑
i∈[k]

(
L∗fi(2n, pi)

)2 · pi.
14



To characterize higher-order central moments of f̂∗, note that changing one sample point in XN

would change the counts Ni, N ′i , or both for at most two symbols. Hence, according to Section 1.5,
for a given n the sensitivity of f̂∗, also defined in the same section, satisfies

S(f̂∗) ≤
4 maxi∈[k] S

∗
fi

(2n)

n1−λ .

This bound together with Lemma 12 yields

Pr
(∣∣∣f̂∗(XN )− E

[
f̂∗(XN )

]∣∣∣ > ε
)
≤ 4 exp

(
− n1−2λε2

(32 maxi∈[k] S
∗
fi

(2n))2

)
.

2.2 Proof of Theorem 1

Recall that an additive property f is a Lipschitz property if all the fi’s have uniformly bounded
Lipschitz constants. Our proof of Theorem 1 relies on the following lemma, which corresponds
to Theorem 7.2 in [3] whose proof is completely constructive. In other words, there is an explicit
procedure to compute the polynomial described in the following lemma.
Lemma 15. There exists a universal constant C such that for any degree parameter d ∈ Z and
1-Lipschitz function g over an arbitrary bounded interval I := [x1, x2], one can find a polynomial g̃
of degree at most d satisfying

|g̃(x)− g(x)| ≤
C
√
|I|(x− x1)

d
,∀x ∈ I.

We restate Theorem 1 below under Poisson sampling. By the results in [9], this suffices to imply the
corresponding result under fixed sampling, where the sample size is fixed to be n.
Theorem 1. If f is an L-Lipschitz property, then for any ~p ∈ ∆k, N ∼ Poi(n), and XN ∼ ~p,∣∣∣E [f̂∗(XN )

]
− f(~p)

∣∣∣ . ∑
i∈[k]

L

√
pi

n log n
≤ L

√
k

n log n
,

and

Var(f̂∗(XN )) ≤ L2

n1−4λ
.

Proof. Without loss of generality, we assume that all the fi’s have Lipschitz constants uniformly
bounded by 1. The derivations in Section 1.3 and 2.1 imply∣∣∣E[f̂∗(XN )]− f(~p)

∣∣∣ . 1

n3
+
∑
i∈[k]

max
j′∈[jpi−1,jpi+1]

|f̃i,j′(pi)− f(pi)|,

Here, for j′ > 3, we choose f̃i,j′(x) to be the min-max polynomial defined in Section 1.2; for j′ ≤ 3,
we employ the polynomials used in Lemma 15 instead. Note that the latter polynomials may not be
the min-max polynomials. However, this would not affect our analysis as our proof in Section 1 also
holds for these polynomials (simply change the definition of D∗g(2n, p)).

For any symbol i satisfying jpi ≤ 3,

max
j′∈[jpi−1,jpi+1]

|f̃i,j′(pi)− fi(pi)| . max
j′∈[jpi−1,jpi+1]

√
|Ij′ |(pi − 0)

dn
�

√
logn
n pi

log n
=

√
pi

n log n
.

On the other hand, applying Lemma 15 and the definition of min-max polynomials to our case implies
that for any symbol i satisfying jpi > 3,

max
j′∈[jpi−1,jpi+1]

|f̃i,j′(pi)− fi(pi)| . max
j′∈[jpi−1,jpi+1]

|Ij′ |
dn
� jpi

n

and
pi ∈ I∗∗pi = c

log n

n
[(jpi − 3)2, (jpi + 2)2],
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or equivalently,

jpi ∈
[√

npi
c log n

− 2,

√
npi
c log n

+ 3

]
⊆
[√

npi
c log n

− 2, 4

√
npi
c log n

]
.

Therefore,

max
j′∈[jpi−1,jpi+1]

|f̃i,j′(pi)− fi(pi)| .
jpi
n
≤ 1

n
· 4
√

npi
c log n

.
√

pi
n log n

.

The above result together with the Cauchy-Schwarz inequality implies∣∣∣E[f̂∗(XN )]− f(~p)
∣∣∣ . 1

n3
+
∑
i∈[k]

√
pi

n log n
≤ 2

∑
i∈[k]

√
pi

n log n
≤ 2

√
k

n log n
,

where the second inequality follows by observing
√
a+ b ≤

√
a+
√
b. Analogously, by previous

results, we can bound the variance of f̂∗ as follows,

Var(f̂∗(XN )) .
1

n5
+

log n

n1−3λ

∑
i∈[k]

(
L∗fi(2n, pi)

)2 · pi.
By the definition of L∗fi and the assumption that fi is 1-Lispchitz,

L∗fi(2n, pi) = max
j′∈[jpi−1,jpi+1]

{
sup

x,y∈I∗∗
j′ ,|y−x|≥1/n

|fi (y)− fi (x)|
|y − x|

}
≤ 1.

Hence,

Var(f̂∗(XN )) .
1

n5
+

log n

n1−3λ

∑
i∈[k]

pi ≤
1

n5
+

log n

n1−3λ
≤ 1

n1−4λ
.

2.3 Private property estimation

According to [1], we can construct a differentially private property estimator f̂∗DP by first applying f̂∗
to the sample sequence, and then privatizing its estimate through adding Laplace noise. The following
lemma characterizes the sample complexity of f̂∗DP, and enables us to upper bound the private sample
complexity of estimating general additive properties.
Lemma 2. There exists a universal constant c∗ such that

Cf (f̂∗DP, 2ε, 1/3, 2α) ≤ c∗

4

{
Cf (f̂∗, ε, 1/3) + min

{
n : S(f̂∗, n) ≤ εα

}}
.

The right-hand side also upperly bounds Cf (2ε, 1/3, 2α).

By Theorem 5 in the main paper, for f̂∗(Xn) to achieve an accuracy of ε with probability at least
2/3, for all ~p ∈ ∆k, it suffices for the sampling parameter n to satisfy the following three conditions:

n ≥
(

4T

ε

) 1
3

,
n

D∗fi(n)
≥ 20k

ε
, and

n
1
2−λ

S∗fi(n)
≥ 16

√
log 12

ε
,∀i.

where T is a uniform upper bound on |fi(x)|,∀i ∈ [k], x ∈ [0, 1]. To further make the estimator’s
n-sensitivity smaller than αε, the sampling parameter n should also satisfy the condition:

n1−λ

S∗fi(n)
≥ 1

αε
,∀i.

Define nf (2ε, 2α) as the smallest n satisfying all the four inequalities above. Then,
Theorem 6. The (ε, 1/3, α)-private sample complexity for any additive property f satisfies

Cf (ε, 1/3, α) ≤ nf (ε, α).
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2.4 High-probability property estimation

In this section, we present tight upper and lower bounds on the (ε, δ)-sample complexity of estimating
various properties. The error parameter ε can take any value in (0, 1). All the upper bounds follow
from Theorem 5 in the main paper. Below we focus on deriving the lower bounds.

Shannon entropy

For any absolute constant β ∈ (0, 1),

k

ε log k
+ log

1

δ
· log2 k

ε2
. Cf (ε, δ).

The first part of the lower bound follows directly from [9]. To show the second part of the lower
bound, let ε′ ∈ (0, 1) be a parameter to be determined later, and consider the following [9] two
distributions in ∆k,

~p1 :=

(
1− ε′

3(k − 1)
, . . . ,

1− ε′

3(k − 1)
,

2 + ε′

3

)
and

~p2 :=

(
1

3(k − 1)
, . . . ,

1

3(k − 1)
,

2

3

)
.

The entropy difference between these two distributions is

H(~p2)−H(~p1) =
1− ε′

3
log

1− ε′

3(k − 1)
+

2 + ε′

3
log

2 + ε′

3
− 1

3
log

1

3(k − 1)
− 2

3
log

2

3

=
ε′

3
log(2(k − 1)) +

1− ε′

3
log (1− ε′) +

2 + ε′

3
log

2 + ε′

2

≥ ε′

3
log(2e−1(k − 1)).

For sufficiently large k, choose ε′ = 9ε/log(2e−1(k − 1)). The difference between H(~p1) and
H(~p2) is at least 3ε.

On one hand, since ~p1 and ~p2 differ by 2ε′/3 in `1 distance, any algorithm that distinguishes the
two distributions with confidence 1 − δ requires at least Ω( 1

ε′2 log 1
δ ) samples. On the other hand,

any entropy estimator f̂ that utilizes Cf (f̂ , ε, δ) samples can be used to distinguish ~p1 and ~p2 with
confidence 1− δ. This yields the desired lower bound.

Normalized support size

The lower bound follows from [8].

Power sum

For any absolute constants β ∈ (0, 1) and a ∈ (1/2, 1),

k
1
a

ε
1
a log k

+ log
1

δ
· k

2−2a

ε2
. Cf (ε, δ)

and

Cf (ε, δ) .
k

1
a

ε
1
a log k

+

[(
log

1

δ
· 1

ε2

) 1
2a−1

]1+β

.

The first part of the lower bound follows from [5]. Analogously, to show the second part of the
lower bound, let ε′′ ∈ (0, 1) be a parameter to be determined later, and consider the following two
distributions in ∆k,

~p3 :=

(
1− ε′′

3(k − 1)
, . . . ,

1− ε′′

3(k − 1)
,

2 + ε′′

3

)
and

~p2 :=

(
1

3(k − 1)
, . . . ,

1

3(k − 1)
,

2

3

)
.
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The difference between the power sums of these two distributions satisfies

Pa(~p2)− Pa(~p3) = (k − 1)

(
1

3(k − 1)

)a
+

(
2

3

)a
− (k − 1)

(
1− ε′′

3(k − 1)

)a
−
(

2 + ε′′

3

)a
=

(k − 1)1−a

3a
(1− (1− ε′′)a) +

(
2

3

)a
−
(

2 + ε′′

3

)a
≥ (k − 1)1−a

3a
a

(
ε′′ − ε′′2

2

)
+

(
2

3

)a(
1− a

(
1 +

ε′′

2

))
≥ aε′′

2 · 3a
(
(k − 1)1−a − 2a

)
.

For k that is sufficiently large, choose parameter ε′′ = 6ε · 3a/
(
a(k − 1)1−a − a · 2a

)
. The differ-

ence between Pa(~p2) and Pa(~p3) is at least 3ε.

The desired lower bound follows from the same reasoning as in the Shannon-entropy case.
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