
A Stationary points of pPCA

Here we briefly summarize the analysis of [39] with some simple additional observations. We
recommend that interested readers study Appendix A of Tipping and Bishop [39] for the full details.
We begin by formulating the conditions for stationary points of

∑
xi

log p(xi):

SC−1W = W (11)

Where S denotes the sample covariance matrix (assuming we set µ = µMLE , which we do through-
out), and C = WWT +σ2I (note that the dimensionality is different to M). There are three possible
solutions to this equation, (1) W = 0, (2) C = S, or (3) the more general solutions. (1) and (2) are
not particularly interesting to us, so we focus herein on (3).

We can write W = ULVT using its singular value decomposition. Substituting back into the
stationary points equation, we recover the following:

SUL = U(σ2I + L2)L (12)

Noting that L is diagonal, if the jth singular value (lj) is non-zero, this gives Suj = (σ2 + l2j )uj ,
where uj is the jth column of U. Thus, uj is an eigenvector of S with eigenvalue λj = σ2 + l2j . For
lj = 0, uj is arbitrary.

Thus, all potential solutions can be written as, W = Uq(Kq−σ2I)1/2R, with singular values written
as kj = σ2 or σ2 + l2j and with R representing an arbitrary orthogonal matrix.

From this formulation, one can show that the global optimum is attained with σ2 = σ2
MLE and Uq

and Kq chosen to match the leading singular vectors and values of S.

A.1 Stability of stationary point solutions

Consider stationary points of the form, W = Uq(Kq − σ2I)1/2 where Uq contains arbitrary
eigenvectors of S. In the original pPCA paper they show that all solutions except the leading principal
components correspond to saddle points in the optimization landscape. However, this analysis
depends critically on σ2 being set to the true maximum likelihood estimate. Here we repeat their
analysis, considering other (fixed) values of σ2.

We consider a small perturbation to a column of W, of the form εuj . To analyze the stability of
the perturbed solution, we check the sign of the dot-product of the perturbation with the likelihood
gradient at wi + εuj . Ignoring terms in ε2 we can write the dot-product as,

εN(λj/ki − 1)uTj C−1uj (13)

Now, C−1 is positive definite and so the sign depends only on λj/ki − 1. The stationary point is
stable (local maxima) only if the sign is negative. If ki = λi then the maxima is stable only when
λi > λj , in words, the top q principal components are stable. However, we must also consider the
case k = σ2. Tipping and Bishop [39] show that if σ2 = σ2

MLE , then this also corresponds to a
saddle point as σ2 is the average of the smallest eigenvalues meaning some perturbation will be
unstable (except in a special case which is handled separately).

However, what happens if σ2 is not set to be the maximum likelihood estimate? In this case, it is
possible that there are no unstable perturbation directions (that is, λj < σ2 for too many j). In this
case when σ2 is fixed, there are local optima where W has zero-columns — the same solutions that
we observe in non-linear VAEs corresponding to posterior collapse. Note that when σ2 is learned
in non-degenerate cases the local maxima presented above become saddle points where σ2 is made
smaller by its gradient. In practice, we find that even when σ2 is learned in the non-linear case local
maxima exist.
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B Identifiability of the linear VAE

Linear autoencoders suffer from a lack of identifiability which causes the decoder columns to span
the principal component subspace instead of recovering it. Kunin et al. [26] showed that adding
regularization to the linear autoencoder improves the identifiability — forcing the columns to be
identified up to an arbitrary orthogonal transformation, as in pPCA. Here we show that linear VAEs
are able to fully identify the principal components.

We once again consider the linear VAE from Eq. (9):

p(x | z) = N (Wz + µ, σ2I),

q(z | x) = N (V(x− µ),D),

The output of the VAE, x̃ is distributed as,

x̃|x ∼ N (WV(x− µ) + µ,WDWT ).

Therefore, the output of the linear VAE is invariant to the following transformation:

W←WA,

V← A−1V,

D← A−1DA−1,

(14)

where A is a diagonal matrix with non-zero entries so that D is well-defined. However, this
transformation changes the variational distribution which affects the loss through the KL term. As
argued in Corollary 1, this means that the global optimum is unique for ELBO up to ordering of the
eigenvalues/eigenvectors.

At the global optimum, the ordering can be recovered by computing the squared Euclidean norm
of the columns of W (which correspond to the singular values) and ordering according to these
quantities.

C Stationary points of ELBO

Here we present details on the analysis of the stationary points of the ELBO objective. To begin, we
first derive closed-form solutions to the components of the log marginal likelihood (including the
ELBO). The VAE we focus on is the one presented in Eq. (9), with a linear encoder, linear decoder,
Gaussian prior, and Gaussian observation model.

C.1 Analytic ELBO of the Linear VAE

Remember that one can express the log marginal likelihood as:

log p(x) =
(A)

KL(q(z|x)||p(z|x))−
(B)

KL(q(z|x)||p(z)) +
(C)

Eq(z|x) [log p(x|z)]. (15)
Each of the terms (A-C) can be expressed in closed form for the linear VAE. Note that the KL term
(A) is minimized when the variational distribution is exactly the true posterior distribution. This is
possible when the columns of the decoder are orthogonal.

The term (B) can be expressed as,

KL(q(z|x)||p(z)) = 0.5(− log det D + (x− µ)TVTV(x− µ) + tr(D)− q). (16)

The term (C) can be expressed as,

Eq(z|x) [log p(x|z)] = Eq(z|x)
[
−(Wz− (x− µ))T (Wz− (x− µ))/2σ2 − d

2
log 2πσ2

]
(17)

= Eq(z|x)
[
−(Wz)T (Wz) + 2(x− µ)TWz− (x− µ)T (x− µ)

2σ2
− d

2
log 2πσ2

]
.

(18)
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Noting that Wz ∼ N
(
WV(x− µ),WDWT

)
, we can compute the expectation analytically and

obtain,

Eq(z|x) [log p(x|z)] =
1

2σ2
[−tr(WDWT )− (x− µ)TVTWTWV(x− µ) (19)

+ 2(x− µ)TWV(x− µ)− (x− µ)T (x− µ)]− d

2
log 2πσ2. (20)

C.2 Finding stationary points

To compute the stationary points we must take derivatives with respect to µ,D,W,V, σ2. As before,
we have µ = µMLE at the global maximum and for simplicity we fix µ here for the remainder of
the analysis.

Taking the marginal likelihood over the whole dataset, at the stationary points we have,

∂

∂D
(−(B) + (C)) =

N

2
(D−1 − I− 1

σ2
diag(WTW)) = 0 (21)

∂

∂V
(−(B) + (C)) =

N

σ2
(WT − (WTW + σ2I)V)S = 0 (22)

∂

∂W
(−(B) + (C)) =

N

σ2
(SVT −DW −WVSVT ) = 0 (23)

The above are computed using standard matrix derivative identities [32]. These equations yield
the expected solution for the variational distribution directly. From Eq. (21) we compute D∗ =
σ2(diag(WTW) + σ2I)−1 and V∗ = M−1WT , recovering the true posterior mean in all cases
and getting the correct posterior covariance when the columns of W are orthogonal. We will now
proceed with the proof of Theorem 1.
Theorem 1. The ELBO objective for a linear VAE does not introduce any additional local maxima
to the pPCA model.

Proof. If the columns of W are orthogonal then the log marginal likelihood is recovered exactly
at all stationary points. This is a direct consequence of the posterior mean and covariance being
recovered exactly at all stationary points so that (1) is zero.

We must give separate treatment to the case where there is a stationary point without orthogonal
columns of W. Suppose we have such a stationary point, using the singular value decomposition we
can write W = ULRT , where U and R are orthogonal matrices. Note that log p(x) is invariant to
the choice of R [39]. However, the choice of R does affect the first term (1) of Eq. (15): this term is
minimized when R = I, and thus the ELBO must increase.

To formalize this argument, we compute (1) at a stationary point. From above, at every stationary point
the mean of the variational distribution exactly matches the true posterior. Thus the KL simplifies to:

KL(q(z|x)||p(z|x)) =
1

2

(
tr(

1

σ2
MD)− q + q log σ2 − log(det M det D)

)
, (24)

=
1

2

(
tr(MM̃−1)− q − log

det M

det M̃

)
, (25)

=
1

2

(
q∑
i=1

Mii

Mii
− q − log det M + log det M̃

)
, (26)

=
1

2

(
log det M̃− log det M

)
, (27)

(28)

where M̃ = diag(WTW) + σ2I. Now consider applying a small rotation to W: W 7→WRε. As
the optimal D and V are continuous functions of W, this corresponds to a small perturbation of
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these parameters too for a sufficiently small rotation. Importantly, log det M remains fixed for any
orthogonal choice of Rε but log det M̃ does not. Thus, we choose Rε to minimize this term. In
this manner, (1) shrinks meaning that the ELBO (-2)+(3) must increase. Thus if the stationary point
existed, it must have been a saddle point.

We now describe how to construct such a small rotation matrix. First note that without loss of
generality we can assume that det(R) = 1. (Otherwise, we can flip the sign of a column of R and
the corresponding column of U.) And additionally, we have WR = UL, which is orthogonal.

The Special Orthogonal group of determinant 1 orthogonal matrices is a compact, connected Lie
group and therefore the exponential map from its Lie algebra is surjective. This means that we can find
an upper-triangular matrix B, such that R = exp{B−BT }. Consider Rε = exp{ 1

n(ε) (B−BT )},
where n(ε) is an integer chosen to ensure that the elements of B are within ε > 0 of zero. This matrix
is a rotation in the direction of R which we can make arbitrarily close to the identity by a suitable
choice of ε. This is verified through the Taylor series expansion of Rε = I + 1

n(ε) (B−BT ) +O(ε2).
Thus, we have identified a small perturbation to W (and D and V) which decreases the posterior
KL (A) but keeps the log marginal likelihood constant. Thus, the ELBO increases and the stationary
point must be a saddle point.

C.3 Bernoulli Probabilistic PCA

We would like to extend our linear analysis to the case where we have a Bernoulli observation model,
as this setting also suffers severely from posterior collapse. The analysis may also shed light on more
general categorical observation models which have also been used. Typically, in these settings a
continuous latent space is still used (for example, Bowman et al. [7]).

We will consider the following model,

p(z) = N (0, I),

p(x|z) = Bernoulli(y),

y = σ(Wz + µ)

(29)

where σ denotes the sigmoid function, σ(y) = 1/(1 + exp(−y)) and we assume an independent
Bernoulli observation model over x.

Unfortunately, under this model it is difficult to reason about the stationary points. There is no
closed form solution for the marginal likelihood p(x) or the posterior distribution p(z|x). Numerical
integration methods exist which may make it easy to evaluate this quantity in practice but they will
not immediately provide us a good gradient signal.

We can compute the density function for y using the change of variables formula. Noting that
Wz + µ ∼ N (µ,WWT ), we recover the following logit-Normal distribution:

f(y) =
1√

2π|WWT |
1

Πiyi(1− yi)
exp{−1

2

(
log(

y

1− y
)− µ

)T
(WWT )−1

(
log(

y

1− y
)− µ

)
}

(30)

We can write the marginal likelihood as,

p(x) =

∫
p(x|z)p(z)dz, (31)

= Ez

[
y(z)x(1− y(z))1−x

]
, (32)

where (·)x is taken to be elementwise. Unfortunately, the expectation of a logit-normal distribution
has no closed form [3] and so we cannot tractably compute the marginal likelihood.
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Similarly, under ELBO we need to compute the expected reconstruction error. This can be written as,

Eq(z|x)[log p(x|z)] =

∫
y(z)x(1− y(z))1−xN (z; V(x− µ),D)dz, (33)

another intractable integral.

D Related Work (Extended)

Due to the large volume of work studying posterior collapse in variational autoencoders, we have
included here an extended discussion of related work. We utilize this additional space to provide a
more in-depth discussion of the related work presented in the main paper and to highlight additional
work.

Tomczak and Welling [40] introduce the VampPrior, a hierarchical learned prior for VAEs. Tomczak
and Welling [40] show empirically that such a learned prior can mitigate posterior collapse (which
they refer to as inactive stochastic units). While the authors provide limited theoretical support for
the efficacy of their method in reducing posterior collapse, they claim intuitively that by enabling
multi-modal prior distributions the KL term is less likely to force inactive units — possibly by
reducing the impact of local optima corresponding to posterior collapse.

In the main paper we discuss the work of Dai et al. [14], which connect robust PCA methods and
VAEs. In particular, Section 2 of their manuscript studies the case of a linear decoder and shows that,
when the encoder takes the form of the optimal variational distribution, the ELBO of the resulting
VAE collapses into the pPCA objective. We study the ELBO without optimality assumptions on the
linear encoder and characterize the optimization landscape with no additional assumptions. They
claim further that all minima of the (encoder-optimal) ELBO objective are globally optimal — we
show in fact that for a linear encoder there is a fully identifiable global optimum.

Dai and Wipf [13] discuss the important of the observation noise, and in fact show that under some
assumptions the optimal observation noise should shrink to zero (Theorem 4 in their work). These
assumptions amount to the number of latent dimensions exceeding the dimensionality of the true
data manifold. However, in the linear model (whose latent dimensions do not exceed the input space
dimensionality) the optimal variance does not shrink towards zero and is instead given by the sum of
the variance lost in the linear projection. Note that this does not violate the results of Dai and Wipf
[13], but highlights the need to consider model capacity against data complexity, as in Alemi et al.
[2].

E Experiment details

We used Tensorflow [1] for our experiments with linear and deep VAEs. In each case, the models
were trained using a single GPU.

Visualizing stationary points of pPCA For this experiment we computed the pPCA MLE using
a subset of 1000 random training images from the MNIST dataset. We evaluate and plot the log
marginal likelihood in closed form on this same subset. In this case, we did not dequantize or apply
any nonlinear processing to the data.

Stochastic vs. Analytic VAE We trained linear VAEs with 200 hidden dimensions. We used
full-batch training with 1000 MNIST digits samples randomly from the training set (the same data as
used to produce Figure 2). We trained each model with the Adam optimizer and a fixed learning rate,
grid searching to find the learning rate which gave the best ELBO after 12000 training steps in the
range {0.0001, 0.0003, 0.001, 0.003}. For both models, 0.001 provided the best final ELBO.

MNIST VAE The VAEs we trained on MNIST all had the same architecture: 784-1024-512-k-512-
1024-784. The Gaussian likelihood is fairly uncommon for this dataset, which is nearly binary, but
it provides a good setting for us to investigate our theoretical findings. To dequantize the data, we
added uniform random noise and rescaled the pixel values to be in the range [0, 1]. We then applied a
nonlinear logistic transform as in [31]. The VAE parameters were optimized jointly using the Adam
optimizer [23]. We trained the VAE for 1000 epochs total, keeping the learning rate fixed throughout.
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Figure 7: Proportion of inactive units thresholded by KL divergence when using 0-1 KL-annealing and a fixed
value of σ2. The solid line represents the final model while the dashed line is the model after only 80 epochs
of training. KL annealing reduces posterior collapse during the early stages of training but ultimately fails to
escape these sub-optimal solutions as the KL weight is increased.

Figure 8: Comparing learned solutions using KL-Annealing versus standard ELBO training when σ2 is learned.

We performed a grid search over learning rates in the range {0.0001, 0.0003, 0.001, 0.003} and
reported results for the model which achieved the best training ELBO.

CelebA VAE We used the convolutional architecture proposed by Higgins et al. [18] trained on
64x64 images from the CelebA dataset [28]. Otherwise, the experimental procedure followed that of
the MNIST VAEs with the nonlinear preprocessing hyperparameters set as in [31].

E.1 Additional results

E.1.1 Evaluating KL Annealing

We found that KL-annealing may provide temporary relief from posterior collapse but that if σ2 is not
learned simultaneously then the collapsed solution is recovered. In Figure 7 we show the proportion
of units collapsed by threshold for several fixed choices of σ2 when β is annealed from 0 to 1 over
the first 100 epochs. The solid lines correspond to the final model while the dashed line corresponds
to the model at 80 epochs of training. KL-annealing was able to reduce posterior collapse initially
but eventually fell back to the collapsed solution.

After finding that KL-annealing alone was insufficient to prevent posterior collapse we explored KL
annealing while learning σ2. Based on our analysis in the linear case we expect that this should work
well: while β is small the model should be able to learn to reduce σ2. We trained using the same
KL schedule and also with standard ELBO while learning σ2. The results are presented in Figure 8
and Figure 9. Under the ELBO objective, σ2 is reduced somewhat but ultimately a large degree of
posterior collapse is present. Using KL-annealing, the VAE is able to learn a much smaller σ2 value
and ultimately reduces posterior collapse. This suggests that the non-linear VAE dynamics may be
similar to the linear case when suitably conditioned.
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Figure 9: Learning σ2 for CelebA VAEs with standard ELBO training and KL-Annealing. KL-Annealing
enables a smaller σ2 to be learned and reduces posterior collapse.

Model ELBO σ2-tuned ELBO Tuned σ2 Posterior KL
Init σ2 Final σ2 collapse (%) Divergence

M
N

IS
T

30.0 −1850.4± 29.0 −1374.9± 199.0 4.451 95.0 10.9± 6.7
10.0 −1450.3± 4.2 −1098.2± 28.3 1.797 89.88 28.8± 1.4
3.0 −1114.9± 1.1 −1018.8± 1.0 1.361 76.75 58.5± 1.4
1.0 −1022.1± 5.4 −1018.3± 5.3 1.145 27.38 125.4± 4.2
0.3 −1816.7± 270.6 −1104.6± 6.2 1.275 2.0 179.3± 85.9
0.1 −3697.3± 493.3 −1190.8± 37.4 0.968 3.25 368.7± 94.6

0.03 −18549.3± 4892.0 −1283.2± 63.3 1.47 0.0 305.3± 75.4
0.01 −38612.5± 1189.8 −1403.1± 21.0 1.006 0.0 560.9± 32.4

0.003 −139538.8± 21148.5 −2090.8± 975.1 0.877 0.0 695.9± 118.1
0.001 −504259.1± 49149.8 −1744.7± 48.4 0.81 0.0 756.2± 12.6

30.0 1.478 −1060.9± 23.1 −1061.0± 23.0 1.476 33.75 70.9± 13.8
10.0 1.32 −1022.2± 4.5 −1022.3± 4.6 1.318 73.75 73.8± 9.8
3.0 1.178 −1004.6± 1.4 −1004.5± 1.3 1.181 58.38 99.8± 1.5
1.0 1.183 −1011.1± 2.7 −1011.1± 2.8 1.182 47.88 106.3± 2.5
0.3 1.195 −1020.0± 6.0 −1019.9± 6.1 1.191 37.75 111.6± 6.1
0.1 1.194 −1025.4± 8.6 −1025.4± 8.6 1.195 29.25 116.1± 11.4

0.03 1.197 −1030.6± 6.6 −1030.5± 6.6 1.198 22.62 120.2± 10.5
0.01 1.194 −1030.6± 3.5 −1030.5± 3.5 1.191 23.0 121.9± 7.7
0.003 1.19 −1033.7± 2.3 −1033.6± 2.3 1.187 16.62 126.4± 6.8
0.001 1.208 −1038.7± 5.6 −1038.8± 5.6 1.209 27.0 124.9± 1.6

Table 2: Full evaluation of deep Gaussian VAEs (averaged over 5 trials) on real-valued MNIST with nonlinear
preprocessing [31]. Collapse percent gives the percentage of latent dimensions which are within 0.01 KL of the
prior for at least 99% of the encoder inputs.

E.1.2 Full results tables

E.1.3 Qualitative Results

Reconstructions from the KL-Annealed CelebA model are shown in Figure 12. We also show the
output of interpolating in the latent space in Figure 13. To produce the latter plot, we compute the
variational mean of 3 input points (top left, top right, bottom left) and interpolate linearly on the
plane between them. We also extrapolate out to a fourth point (bottom right), which lies on the plane
defined by the other points.
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Posterior collapse: CelebA (fixed variance)

Figure 10: Posterior collapse percentage as a function of ε-threshold for a deep VAE trained on
CelebA with fixed σ2. We measure posterior collapse for trained networks as the proportion of latent
dimensions that are within ε KL divergence of the prior for at least a 1− δ proportion of the training
data points (δ = 0.01 in the plots).
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Posterior collapse: CelebA (learned variance)

Figure 11: Posterior collapse percentage as a function of ε-threshold for a deep VAE trained on
CelebA with learned σ2. We measure posterior collapse for trained networks as the proportion of
latent dimensions that are within ε KL divergence of the prior for at least a 1− δ proportion of the
training data points (δ = 0.01 in the plots).

Figure 12: Reconstructions from the convolutional VAE trained with KL-Annealing on CelebA.
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Model ELBO σ2-tuned ELBO Tuned σ2 Posterior KL
Init σ2 Final σ2 collapse (%) Divergence

C
E

L
E

B
A

64

30.0 −79986.2± 0.10 −57883.8± 19.3 0.423 93.68 26.0± 0.19
10.0 −73328.4± 0.49 −55186.7± 35.1 0.204 80.56 56.12± 0.42
3.0 −66145.6± 2.44 −52828.5± 58.6 0.132 20.64 120.4± 1.37
1.0 −59841.8± 30.1 −51294.8± 333.7 0.102 2.52 213.4± 6.3
0.3 −54370.4± 849.9 −52155.2± 1855.2 0.122 74.52 267.2± 51.9
0.1 −50760.3± 353.4 −50698.5± 393.9 0.0883 32.72 483.8± 36.2
0.03 −64322.8± 312.9 −58077.9± 206.2 0.0463 0.0 1521.1± 11.6
0.01 −82478.7± 1823.3 −51373.9± 213.3 0.0817 0.0 1624.2± 8.78

0.003 −192967.7± 4410.4 −51978.4± 159.3 0.0685 0.0 2108.4± 26.2
0.001 −531924.5± 17177.6 −57381.5± 512.6 0.0296 0.0 2680.2± 41.45

30.0 0.478 −57773.0± 3622.9 −56068.5± 2771.0 0.475 14.2 221.7± 99.0
10.0 0.0962 −51109.5± 408.2 −51109.5± 408.3 0.0963 53.32 364.5± 26.4
3.0 0.0891 −50813.2± 229.7 −50813.3± 229.7 0.0889 10.96 545.2± 5.5
1.0 0.0875 −50631.2± 163.4 −50631.0± 163.3 0.0875 54.76 462.2± 20.0
0.3 0.0890 −50963.4± 331.2 −50963.2± 331.3 0.0892 7.96 670.7± 79.2
0.1 0.0863 −50646.9± 269.0 −50645.9± 267.5 0.0869 28.84 520.9± 11.7

0.03 0.121 −53263.4± 71.5 −53263.3± 71.3 0.126 0.0 856.2± 19.7
0.01 0.0911 −51285.0± 708.1 −51284.8± 708.1 0.0963 5.64 557.0± 50.5

0.003 0.0952 −51056.4± 1216.9 −51055.9± 1217.4 0.094 0.8 577.4± 30.4
0.001 0.104 −51695.1± 322.4 −51694.8± 322.7 0.0974 0.0 537.5± 46.2

Table 3: Full evaluation of deep Gaussian VAEs (averaged over 5 trials) on real-valued CelebA with nonlinear
preprocessing [31]. Collapse percent gives the percentage of latent dimensions which are within 0.01 KL of the
prior for at least 99% of the encoder inputs.

Model ELBO σ2-tuned ELBO Tuned σ2 Posterior KL
Init σ2 Final σ2 collapse (%) Divergence

M
N

IS
T

30.0 −6402.0± 0.0 −6248.4± 197.2 22.323 0.0 0.0± 0.0
10.0 −5973.1± 0.0 −5821.0± 194.6 7.443 0.0 0.0± 0.0
3.0 −5507.1± 0.1 −5360.4± 185.4 2.235 1.7 0.6± 0.3
1.0 −5087.9± 3.1 −4954.7± 156.9 0.747 0.0 4.5± 2.3
0.3 −4638.4± 3.6 −4516.8± 137.9 0.225 0.0 12.5± 1.5
0.1 −4243.1± 17.6 −4154.6± 62.1 0.076 0.0 25.6± 3.0
0.03 −3820.7± 13.9 −3785.2± 26.6 0.027 0.0 55.8± 2.1
0.01 −3508.4± 12.3 −3483.5± 13.1 0.009 0.0 112.8± 6.7

0.003 −3267.3± 2.6 −3247.1± 2.8 0.003 0.0 252.2± 2.1
0.001 −3137.7± 5.2 −3136.7± 5.4 0.001 0.0 422.7± 2.6

30.0 0.067 −4398.7± 0.0 −4398.7± 0.0 0.067 0.0 0.0± 0.0
10.0 0.044 −4146.3± 309.2 −4146.3± 309.2 0.044 0.0 30.1± 36.9
3.0 0.01 −3736.3± 14.3 −3736.4± 14.3 0.01 0.0 73.7± 1.9
1.0 0.008 −3673.0± 17.7 −3672.9± 17.7 0.008 0.0 85.2± 2.5
0.3 0.006 −3569.8± 26.4 −3569.8± 26.4 0.006 0.0 100.8± 3.7
0.1 0.003 −3355.8± 7.6 −3355.8± 7.6 0.003 0.0 151.7± 2.4

0.03 0.001 −3138.9± 10.6 −3139.0± 10.6 0.001 0.0 275.4± 3.1
0.01 0.001 −3126.1± 5.0 −3126.1± 5.0 0.001 0.0 349.3± 5.4

0.003 0.001 −3161.4± 4.0 −3161.3± 4.0 0.001 0.0 373.5± 7.5
0.001 0.001 −3145.4± 6.1 −3145.4± 6.1 0.001 0.0 378.4± 7.7

Table 4: Evaluation of deep Gaussian VAEs (averaged over 5 trials) on real-valued MNIST without any
nonlinear preprocessing. Collapse percent gives the percentage of latent dimensions which are within 0.01 KL
of the prior for at least 99% of the encoder inputs.
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Model ELBO σ2-tuned ELBO Tuned σ2 Posterior KL
Init σ2 Final σ2 collapse (%) Divergence

C
E

L
E

B
A

64

30.0 −79986.2± 0.10 −57883.8± 19.3 0.423 93.68 26.0± 0.19
10.0 −73328.4± 0.49 −55186.7± 35.1 0.204 80.56 56.12± 0.42
3.0 −66145.6± 2.44 −52828.5± 58.6 0.132 20.64 120.4± 1.37
1.0 −59841.8± 30.1 −51294.8± 333.7 0.102 2.52 213.4± 6.3
0.3 −54370.4± 849.9 −52155.2± 1855.2 0.122 74.52 267.2± 51.9
0.1 −50760.3± 353.4 −50698.5± 393.9 0.0883 32.72 483.8± 36.2
0.03 −64322.8± 312.9 −58077.9± 206.2 0.0463 0.0 1521.1± 11.6
0.01 −82478.7± 1823.3 −51373.9± 213.3 0.0817 0.0 1624.2± 8.78

0.003 −192967.7± 4410.4 −51978.4± 159.3 0.0685 0.0 2108.4± 26.2
0.001 −531924.5± 17177.6 −57381.5± 512.6 0.0296 0.0 2680.2± 41.45

30.0 0.005 −53179.6± 450.2 −53179.6± 450.3 0.005 0.0 302.8± 29.8
10.0 0.004 −51748.5± 178.2 −51748.5± 178.2 0.004 0.0 482.3± 24.7
3.0 0.004 −51548.9± 154.1 −51548.9± 154.2 0.004 0.0 489.5± 21.8
1.0 0.004 −51356.9± 79.1 −51356.9± 79.1 0.004 0.0 516.3± 18.0
0.3 0.004 −51767.7± 369.2 −51767.7± 369.1 0.004 22.0 439.7± 33.3
0.1 0.004 −51637.3± 163.3 −51637.1± 163.5 0.004 0.0 577.3± 13.5

0.03 0.004 −51792.6± 163.4 −51792.6± 163.6 0.004 45.48 484.6± 22.6
0.01 0.004 −51925.1± 99.8 −51924.9± 99.8 0.004 0.0 627.8± 20.6

0.003 0.004 −52111.2± 149.0 −52111.0± 148.8 0.004 42.8 466.9± 13.9
0.001 0.004 −52060.1± 171.8 −52060.0± 171.9 0.004 0.0 645.6± 19.2

Table 5: Evaluation of deep Gaussian VAEs (averaged over 5 trials) on real-valued CelebA without any nonlinear
preprocessing. Collapse percent gives the percentage of latent dimensions which are within 0.01 KL of the prior
for at least 99% of the encoder inputs.

Figure 13: Latent space interpolations from the convolutional VAE trained with KL-Annealing on
CelebA.
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