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1 Supplements for Section 1

See https://github.com/xy-zheng/Segmented-Linear-Regression-Tree
for the code of the algorithm.

2 Supplements for Section 2

2.1 Lemma 2.1

Lemma 2.1. Suppose Assumptions 2.1 through 2.4 hold. Let ( ĵ, â) = argmaxC( j, a)
and C̄( j, a) be the probability limit of C( j, a). Then, for any ( j ′, a′) < S, C̄( j ′, a′) <
C̄( jq, aq) for any ( jq, aq) ∈ S.
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Assumption 2.1. Var(X |X ∈ Dl) is diagonal for l ∈ {1, · · · , L0}, i.e. explicit regres-
sors are uncorrelated conditional on each true segment.

Assumption 2.2. E(ε |X) = 0 and Median(ε |X) = 0.

Assumption 2.3. Median
(
Xj − E(Xj)|Xk

)
= 0 for 1 ≤ j, k ≤ p and k , j.

Assumption 2.4. For ( jk, ak) ∈S, if ( j ′, a′), ( jk, ak), 0<P(Xjk ≤ ak |Xj′ ≤ a′)<1.

Assumption 2.1 assumes the conditionally uncorrelated regressors. As-
sumption 2.2 is satisfied when the conditional distribution of the residuals is
symmetric and zero-mean, for instance, an independent Gaussian distributed
noise. Assumptions 2.1 and 2.3 are satisfied under the stronger condition that
{Xj}

p
j=1 are mutually independent and symmetrically distributed. Assumption

2.4 is for the identification of the true split. If P(Xjk ≤ ak |Xj′ ≤ a′) = 1 for
( j ′, a′) , ( jk, ak), then the condition Xjk ≤ ak is equivalent to Xj′ ≤ a′ with
probability 1. When P(Xjk ≤ ak |Xj′ ≤ a′) = 0, then the condition Xjk ≤ ak is
equivalent to Xj′ > a′. In either situation, we can not distinguish the split level
Xj′ = a′ from Xjk = ak , creating ambiguity in the identification of splits.

Proof. The segmented linear regression model is equivalent to

Y =
Q0∑
q=1

{
(α
(q)
L + X ′β(q)L )I(Xjq ≤ aq) + (α

(q)
R + X ′β(q)R )I(Xjq > aq)

}
+ ε, (2.1)

Firstly, consider the simplest case when Q0 = 1 (In model (1), L0 = 2),

Y = (αL + XT βL)I(Xj∗ ≤ a∗) + (αR + XT βR)I(Xj∗ > a∗) + ε, (2.2)

where both j∗ and a∗ are unknown. Note that the OLS estimation of slope
parameters β between Y and X with intercept is equivalent to the one between
Y − E(Y ) and X − E(X), and they also lead to the same residuals. Besides, the
constant shift will not alter the threshold ( j∗, a∗). Therefore, without loss of
generality, we assume E(Y ) = E(X) = 0 and eliminate the intercept term.

Let X = (X(1), · · · , X(n))T ,Y = (Y (1), · · · ,Y (n))T , which are a matrix and a
vector respectively. In addition, let XL and XR be defined as

XL = diag{IXj∗ (1)≤a
∗, · · · , IXj∗ (n)≤a

∗ }X,XR = diag{IXj∗ (1)>a
∗, · · · , IXj∗ (n)>a

∗ }X . (2.3)

Then we have X =XL +XR,X
T
LXR =XT

RXL = 0. The OLS estimation is

β̂ = (XTX)−1XTY

= (XTX)−1XT
LXL · βL + (X

TX)−1XT
RXR · βR + (X

TX)−1Xε (2.4)

=
nL

n
(
XTX

n
)−1

XT
LXL

nL
· βL +

nR

n
(
XTX

n
)−1

XT
RXR

nR
· βR + (

XTX

n
)−1

XT ε

n
.
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Let Σ = Var(X), ΣL = Var(X |Xj∗ ≤ a∗), ΣR = Var(X |Xj∗ > a∗) and µL = E(X |Xj∗ ≤

a∗), µR = E(X |Xj∗ > a∗). According to Assumption 2.1, Σ, ΣL, ΣR are all diago-
nal. For E(X) = 0, only the j∗th element of µL and µR are nonzero. Since
X(1) · · · X(n) i.i.d∼ X and E(ε |X) = 0 by Assumption 2.2, further we have

β̂ =
nL

n

(
Σ + op(1)

)−1 (
µLµ

T
L + ΣL + op(1)

)
· βL +

nR

n

(
Σ + op(1)

)−1 (
µRµ

T
R + ΣR + op(1)

)
· βR + op(1)

=
(
W · βL + (Ip −W) · βR + op(1)

)
, (2.5)

as n, nL, nR go to infinity. The weighting matrix W = diag{w1, · · · ,wp} is diago-

nal with positive elements ranges in (0, 1), where wj = P(Xj∗ ≤ a∗)
E(X2

j |Xj∗<a
∗)

Var(x j )
.

Thus, (β̂ − βL)(β̂ − βR) < 0 when n is sufficient large.

ê = Y − X β̂ = (αL + X β̃L)I(Xj∗ ≤ a∗) + (αR + X β̃R)I(Xj∗ > a∗) + ε + op(1),

where β̃L = (Ip −W)(βL − βR) and β̃R = (−W)(βL − βR). Since 0 < wj < 1, we
have β̃L( j)β̃R( j) < 0. Consider the marginal relation between ê and Xk , ê can
be formulated as

ê =
(
αL + bkLXj + ηkL

)
I(Xj∗ ≤ a∗) +

(
αR + bkRXj + ηkR

)
I(Xj∗ > a∗) + op(1)

, e + op(1),

where ηkL =
∑
i,k

β̃L(i)Xi I(Xj∗ ≤ a∗) + εj , ηkR =
∑
i,k

β̃R(i)Xi I(Xj∗ > a∗) + εj , bkL =

β̃L(k), bkR = β̃R(k), and e denote the probability limit of ê.
Now we examine the population version of Kendall’s τ coefficient be-

tween e and Xk , conditioning on a possible threshold ( j, a). For brevity, we
omit the subscripts k of bkL, bkR, ηkL, ηkL in the following. When ( j, a) = ( j∗, a∗),

τ
(
e, Xk

���Xj∗ ≤ a∗
)
= 2P

(
(e − e′)(Xk − X ′k) > 0

���Xj∗ ≤ a∗
)
− 1

= 2P
(
bL(Xk − X ′k)

2 + (ηL − η
′
L)(Xk − X ′k) > 0

)
− 1

= 2P
(
ηL − η

′
L > −bL |Xk − X ′k |

)
− 1

, 2P
(
η̃L < bL |Xk − X ′k |

)
− 1, (2.6)

where e′ and X ′
k

are independently and identically distributed as e and X , η̃L B
η′L − ηL . Similarly, we have

τ
(
e, Xk

���Xj∗ > a∗
)
= 2P

(
η̃R < bR |Xk − X ′k |

)
− 1 (2.7)

Let τk,L B τ
(
e, Xk

���Xj∗ ≤ a∗
)

and τk,R B τ
(
e, Xk

���Xj∗ > a∗
)
. Due to Assumption

2.2 and 2.3, we have Median(η̃L |Xj) = Median(η̃R |Xj) = 0. Note that bL · bR < 0,
we have τk,L · τk,R < 0 from (2.6) and (2.7).
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For general j and a, we have

τ
(
e, Xk

���Xj ≤ a
)
= P(Xj∗ ≤ a∗ |Xj ≤ a) · τk,L + P(Xj∗ > a∗ |Xj ≤ a) · τk,R

, pj,a · τk,L + (1 − pj,a) · τk,R,

where pj,a = P(Xj∗ ≤ a∗ |Xj ≤ a). Since τk,L · τk,R < 0 and 0 ≤ pj,a ≤ 1,

|pj,a ·τk,L+(1−pj,a)·τk,R | ≤ min
{
|pj,a · τk,L |, |(1 − pj,a)τk,R |

}
≤ min

{
|τk,L |, |τk,R |

}
.

The arguments for τ(e, Xk

���Xd > a) are similar. Let qj,a = P(Xj∗ ≤ a∗ |Xj > a),
then

|τ(e, Xk

���Xd > a)| = |qj,a · τk,L + (1 − qj,a) · τk,R | ≤ min
{
|τk,L |, |τk,R |

}
.

Finally, we conclude that ∀( j, a) ,��τ (
e, Xk

��Xj∗ ≤ a∗
) �� − ��τ (

e, Xk

��Xj ≤ a
) �� = |τk,L | − |pj,a · τk,L + (1 − pj,a) · τk,R | ≥ 0, (2.8)��τ (

e, Xk

���Xj∗ > a∗
) �� − ��τ (

e, Xk

���Xj > a
) �� = |τk,R | − |qj,a · τk,L + (1 − qj,a) · τk,R | ≥ 0. (2.9)

Then the conclusion follows directly from the definition in (??).
As for the general case of Q0 > 1 (Q0 in (2.1)), we firstly focus on one of

the split thresholds, say ( j1, a1), and rewrite Y as

Y =
2(Q0−1)∑
l=1

[
(α
(l)
L + Xβ(l)L )I(Xj1 ≤ a1) + (α

(l)
R + Xβ(l)R )I(Xj1 > a1)

]
I(X ∈ D(−1)

l
).

Here D(−1)
l

is a intersection generated from S(−1) =
{
(dq, aq)

}Q0

q=2
, which maybe

empty. As Kendall’s τ coefficient is actually an expectation, we can apply the
same procedures as discussed conditional on each D(−1)

l
, and use the law of

iterated expectation to obtain the final result. Besides, note that being restricted
in D(−1)

l
means leaving out the other (Q0 − 1) split thresholds, we conclude that

∀( j ′, a′) , ( jq, aq)q=1, · · · ,Q0
, C̄( j1, a1) > C̄( j ′, a′), (2.10)

Then applying the above deduction to any pair in S = {( jq, a1)}, we conclude
that ∀( j ′, a′) < S,

C̄( j ′, a′) < C̄( jq, aq) for any( jq, aq) ∈ S. (2.11)

�

2.2 Supplements for Theorem 2.1
Proof. Recall the definition in equation (2),

C( j, a) =
p∑

k=1

��τ̂ (
ê, Xk |Xj ≤ a

) �� + ��τ̂ (
ê, Xk |Xj > a

) �� .
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Since {X(i),Y (i)}ni=1 are independent, the sample version of Kendall’s τ coeffi-
cient converges to its population version,

C( j, a)
P
→ C̄( j, a),where C̄( j, a) B

p∑
k=1

��τ (
e, Xk |Xj ≤ a

) �� + ��τ (
e, Xk |Xj > a

) �� ,
whose existence is assured by the law of large numbers. The population ver-
sion of Kendall’s τ coefficient is τ(Xk, ε |Xj ≤ a) = 2 P((Xk − Xk

′)(ε − ε′)> 0|Xj ≤

a, Xj
′≤ a) − 1, with (Xk

′, ε′) being an independent copy of (Xk, ε).
Combing with (2.11), if ( j∗, a∗) is the unique solution to the population

minimization problem min
j,a

C̄( j, a). Let ( ĵ, â) be the estimated split threshold,

( ĵ, â) = argmaxj,a C( j, a).

Therefore ( ĵ, â) belongs to a class of M-estimators, of which the consistency is
guaranteed by Theorem 5.14 in Van der Vaart (2000).

For the general case where the maximum may not be unique, let Θ0 B
argmax j,aC̄( j, a). By Theorem 5.14 in Van der Vaart (2000), for every ε > 0,

P
(
d

(
Θ0, ( ĵ, â)

)
> ε

)
→ 0 as sample size n goes infinity.

Furthermore, note (2.10) implies Θ0 ⊆ S, thus we have P
(
d

(
S, ( ĵ, â)

)
> ε

)
→ 0 as n goes to infinity. Especially, when there is a unique solution for

max C̄( j, a), denoted by ( j∗, a∗), then ( ĵ, â)
P
→ ( j∗, a∗). �

2.3 Supplements for the transformation matrix P( j,a)

The calculation of P j,a relies on the following proposition.

Proposition 2.1. Let M and A be two symmetric square matrices of the same dimen-
sion, and M be positive definite. Then there exists a non-singular matrix P such that

PT MP = I and PT AP = Λ

where I is the identity matrix and Λ is a diagonal matrix.

Proof. Since M is positive definite, we have the following decomposition

M = RT R

for some non-singular matrix R. Then the matrix(
R−1

)T AR−1

is symmetric, so there exists an orthogonal matrix B such that

B−1
(
R−1

)T AR−1B = Λ
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Set
P = R−1B

Then PT = BT
(
R−1

)T
= B−1

(
R−1

)T
, where we used that B is orthogonal. So

PT AP = Λ. For the second equation, we use BT = B−1 and
(
R−1

)T
=

(
RT

)−1 and
obtain PT MP = B−1

(
RT

)−1 RT RR−1B = I. �

Recall that XL =Xdiag{I(Xj (1) ≤ a), · · · , I(Xj (n) ≤ a)}. Applying Proposition
2.1 with M = X′X and A = X′LXL , then P is the transformation matrix P(j,a).

2.4 Supplements for Lemma 2.2 and Theorem 2.2
The difference between lemma 2.2 and lemma 2.1 is that lemma 2.2 does

not require the covariates X being uncorrelated. In the following, we provide
the ideas of additional transformation. The detailed proof based on the trans-
formed regressors would be similar to that of lemma 2.1. And the linkage be-
tween lemma 2.2 and theorem 2.2 is also Theorem 5.14 in Van der Vaart (2000).

Without loss of generality, consider the simplest case when Q0 = 1,1

Y = (αL + XβL)I(Xj∗ ≤ a∗) + (αR + XβR)I(Xj∗ > a∗) + ε, (2.12)

Same as the equation (2.5) in Section 2.1, the OLS estimation is

β̂ = (XTX)−1XTY

= (XTX)−1XT
LXL · βL + (X

TX)−1XT
RXR · βR + op(1).

When X is correlated on each partition, the probability limit of (XTX)−1XT
LXL

and (XTX)−1XT
RXR are not diagonal. Hence we can not conclude that β̂( j) is

between βL( j) and βR( j), which is the key in deriving the maximality of |τ | on
the right split.

Note that XT X and XT
L XL are both positive definite, they can be simulta-

neously diagonalized by congruence. There exist a nonsingular matrix P, such
that both PT XT XP and PT XT

L XLP are diagonal, which implies that PT XT
R XRP

is also diagonal since XT X = XT
L XL + XT

R XR.
Let Z = XP, ZL = XLP, ZR = XRP. Then we have ZT Z, ZT

RZ, ZT
L ZL are all

diagonal. Substituting X = ZP−1, XL = ZLP−1, XR = ZRP−1 with into (2.12),

Y = (αL + ZP−1βL)I(Xj∗ ≤ a∗) + (αR + ZP−1βR)I(Xj∗ > a∗) + ε,

, (αL + ZθL)I(Xj∗ ≤ a∗) + (αR + ZθR)I(Xj∗ > a∗) + ε,

where θL = P−1βL, θR = P−1βR. Applying the same procedure by calculating
the Kendall’s τ coefficients between Y and {Z j}

p
j=1, we can detect the optimal

threshold of Xj∗ = a∗.

1Discussion for general case is the same with Section 2.1.
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3 Supplements for Section 3

3.1 Supplements for Proposition 3.1
Proposition 3.1. Let Tmax be the initial tree, then

(i) given an α, there exists one optimally pruned subtree T(α) of Tmax;

(ii) if α2 > α1, then T(α2) is a subtree of or equal to T(α1).

Proof. Consider a most simple binary tree with 3 nodes, T0 = {t0, tL, tR}. It has
a trivial subtree is T1 = {t0}. From the definition of I(t) and I(T), we have

Iα(T0) = I(tL) + I(tR) + 2α

and
Iα(T1) = I(t0) + α

It is straightforward to verify I(t0) ≥ I(tL) + I(tR) from the definition of I(t),
since I(t0) is the sum of squared errors (SSE) of the restricted linear regression
(βL = βR) while I(tL) + I(tR) is for the unrestricted equations.

Therefore, when α < I(t0) − (I(tL) + I(tR)), T(α) = T0. And when α ≥
I(t0) − (I(tL) + I(tR)), T(α) = T1. Thus (i) and (ii) hold when |T0 | = 3.

Now suppose that (i) and (ii) are true when |T0 | ≤ k, we only need to check
they still hold when |T0 | = k + 1.

Let TL be the left branch of T0 and TR the right one. It is easy to see,

T̃ = T̃L ∪ T̃R,

and
|T̃ | = |T̃L | + |T̃R |.

Therefore, Iα(T0) = Iα(TL) + Iα(TR).
Then, Iα(T(α)) = min{Iα(t0), Iα(TL(α)) + Iα(TR(α))}. If Iα(t0) < Iα(TL(α)) +

Iα(TR(α)), T(α) = {t0}. Otherwise, T(α) = t0 ∪ TL(α) ∪ TR(α). By induction, since
|TL | ≤ k and |TL | ≤ k, (i) and (ii) hold for |T0 | = k + 1 and further for all T0.

�

3.2 Supplements for the convergence of L̂

The number of terminal nodes in the tree is equal to the number of seg-
ments of its derived segmented linear regression function. Starting with the
overly grown tree Tmax satisfying |T̃max | > L0, for L0 being the number of the
underlying partitions in Model (1), let L̂ be the number of leaf nodes in the
optimally pruned subtree T(α∗). We consider the asymptotic property of L̂.

Let φ(u|x) be the conditional moment generating function of ε given the
explicit regressors X . To ensure the consistency of L̂, the conditional distribu-
tion of ε is required to be locally exponentially bounded (LEB). Specifically, for
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every compact set B in the domain of X , there exist positive constants u0 and
c0 such that

φ(u|x) ≤ ec0u
2

for any |u| ≤ u0 and x ∈ B.

The conditional LEB condition can be satisfied by E(ε |X) = 0 and φ(u|x) having
bounded second derivative near zero for x ∈ B.

Theorem 3.1. Suppose data is generated from model (1) with independent errors
{ε(i)}ni=1 satisfying conditional LEB condition. The overly grown tree structure Tmax

has L̂ leaves and contains splits {( ĵq, âq)}
Q̂
q=1. Assume that

(i) |T̃max | > L0, where |T̃max | is the number of leaf nodes in Tmax;

(ii) For ( jq, aq) ∈ S, the set of underlying genuine splits, there exists a correspond-

ing consistent estimate in {( ĵq, âq)}
Q̂
q=1.

(iii) Let Ttrue be the tree structure that determines the underlying partitions {Dl}
L0

l=1
.

Suppose 0 < α∗ < minT ⊆Ttrue,T,Ttrue

{
lim
n→∞

I(T) − I(Ttrue)
}
.

Let T(α∗) be the optimal subtree of Tmax by the minimal cost complexity pruning and

L̂ = |T̃(α∗)|. Then, L̂
P
→ L0 as n→∞.

With sufficient large sample size, the first assumption can be satisfied by
using smaller Nmin and larger Depmax. The second assumption is a natural
result of Theorem (2.1), which holds when Assumption 2.1 through 2.4 are sat-
isfied. For the last assumption, since (αl1, βl1 ) , (αl2, βl2 ) for l1 , l2 in Model (1),
we have lim

n→∞
I(T)− I(Ttrue) > 0 for T ⊆ Ttrue,T , Ttrue. Therefore, the upper limit

of α∗ is a positive constant, which guarantees the existence of a proper α∗.

Proof. With out loss of generality, let us consider the leftmost branch. Suppose
the leftmost branch in Ttrue contains splits {Xjq ≤ aq}

Q1

q=1. Let Q̂1,max and Q̂1,max

denote the splits contained in the leftmost branch of Tmax and T(α∗). Then it

suffices to prove Q̂1
P
→ Q1. In this proof, let D0 denote the training set in root

node and DQ1
denote the data partition in Ttrue, that is, the subset determined

by {Xjq ≤ aq}
Q1

q=1.
Let ξq B ( jq, aq), 1 ≤ q ≤ Q1 and ξ̂q B ( ĵq, âq), 1 ≤ q ≤ Q̂1,max. By assump-

tion, we have Q1,max > Q1 and ξ̂q
P
→ ξq for q = 1, · · · ,Q1.

Let D(ξ1, · · · , ξQ) denote the set of data partitions determined by the Q
binary splits and Sn(D) denotes the fitted sum of squares over domain D by
fitting {X(i),Y (i)}X(i)∈D in a linear regression function. Then let Sn(ξ1, · · · , ξQ)
B

∑
D∈DQ1∩D(ξ1, · · · ,ξQ )

Sn(D). The specific formulation of Sn(D) is giver in 3.1
later.

Let Xn B (X(1), · · · , X(n))T , Yn B (Y (1), · · · ,Y (n))T , εn B (ε(1), · · · , ε(n))T

and the matrix-formed indicator function In(D) B diag(IX(1)∈D, · · · , IX(n)∈D),
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followed by Xn(D) B In(D)X and Yn(D) B In(D)Y . Then when D ∈ DQ1
∩

D(ξ1, · · · , ξQ) and Q > Q1,

Sn(D) = Y T
n [In(D) − Hn(D)]Yn = εTn [In(D) − Hn(D)]εn, (3.1)

where Hn(D) B Xn(D)[Xn(D)TXn(D)]−1Xn(D)T , a positive definite matrix.

SinceD(ξ1, · · · , ξQ0
) has limited elements less than 2Q0 and ξ̂q

P
→ ξq for 1 ≤ q ≤

Q0, we have
Sn(ξ̂1, · · · , ξ̂Q0

)/n = Sn(ξ1, · · · , ξQ0
)/n + op(1). (3.2)

Combining (3.1) and (3.2) and by the definition of Sn(ξ̂1, · · · , ξ̂Q1
),

Sn(ξ̂1, · · · , ξ̂Q1
)/n ≤ εTnεn/n + op(1). (3.3)

As the finer partition will give no increase in the sum of squared fitting errors,

Sn(ξ1, · · · , ξQ1
, ξ̂1, · · · , ξ̂Q1,max

) ≤ Sn(ξ̂1, · · · , ξ̂Q1,max
) ≤ Sn(ξ̂1, · · · , ξ̂Q1

). (3.4)

By the formulation of (3.1) and the conditional LEB property of ε, we can con-
cluded that Sn(ξ1, · · · , ξQ0

, ξ̂1, · · · , ξ̂Qmax
) = εTnεn − Op(log(n)2), which can be

proved following exactly the same procedures in Lemma 5.1 and 5.2 of Liu
et al. (1997). Then (3.4) leads to the following inequality,

Sn(ξ̂1, · · · , ξ̂Q1,max
)/n ≥ εTnεn/n − op(1). (3.5)

Combining the inequalities (3.2), (3.4) and (3.5), we obtain the key result,

Sn(ξ̂1, · · · , ξ̂Q1
)/n − Sn(ξ̂1, · · · , ξ̂Q1,max

)/n = op(1). (3.6)

Now we are prepared to investigate the property of Q̂, the number of split
thresholds contain in T(α∗). According to Section 3.2, T(α∗) = argminT ⊂Tmax

{I(T)/n+
α∗ |T̃ |}. Note that given Tmax,

Q̂1 = argmin
1≤Q≤Q1,max

Sn(ξ̂1, · · · , ξ̂Q)/n + α∗(Q −Q1).

Since α∗ is a positive constant, we have P(Q̂ ≤ Q0) → 1 from (3.6).
Now it suffices to prove P(Q̂ ≥ Q1) → 1. As a matter of fact, ∀Q < Q1, we

have Sn(ξ̂1, · · · , ξ̂Q)/n = Sn(ξ1, · · · , ξQ1
)/n+c+op(1) for some c > 0. The detailed

proof can be found in Lemma 5.3 and 5.4 of Liu et al. (1997). Combining with
(3.2), we have P(Q̂ ≥ Q0) → 1 when α∗ < c. �

4 Supplements for Section 5

4.1 Supplements for the case of dependent regressors

For the case of dependent regressors, let X1 = U1, X2 =
1
2 X1+U2, X3 =

1
4 X2+

U3, where {Uj}
3
j=1 are independently distributed as U(0, 20), U(0, 15) and U(0, 5).
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All Data

x2<15.02 x2>15.02

x2<9.99 x2>9.99 x4 in { a, b } x4 in { c }

x4 in { a, b } x4 in { c } x1<9.91 x1>9.91 x1<9.86 x1>9.86 x1<9.61 x1>9.61

x1<10.19 x1>10.19 x1<9.92 x1>9.92 x4 in { a, b } x4 in { c } x4 in { a, b } x4 in { c }

(a) the tree constructed by the testing-based stopping rules.

All Data

x2<15.02 x2>15.02

x2<9.99 x2>9.99 x4 in { a, b } x4 in { c }

x4 in { a, b } x4 in { c } x1<9.91 x1>9.91 x1<9.86 x1>9.86 x1<9.61 x1>9.61

x1<10.19 x1>10.19 x1<9.92 x1>9.92 x4 in { a, b } x4 in { c } x4 in { a, b } x4 in { c }

x1<17.27 x1>17.27

(b) the tree constructed by simple stopping rule and tree pruning

Figure 1: Tree Structures in the Case of Dependent Regressors.
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The discrete variable X4 is still independent with {Xj}
3
j=1, which was not an

explicit regressor. The training data of 1500 observations was also generated
from Y = m(X)+ε, where ε ∼ N(0, 1). Figure 1a shows the tree generated by the
testing based stopping rule with significance level 0.05, which has 12 terminal
nodes, equal to the number of underlying segments. All the splits in Figure
1a are also very close to the underlying ones. Figure 1b shows the optimally
pruned tree T(α∗) with α∗ = 0.0593, which is the subtree of Tmax grown by
Algorithm 2 with Nmin = 40 and Depmax = 10. There are 13 terminal nodes in
the pruned tree, including one redundant split of X1 = 17.27, which may result
from the insufficient sample size of its parent node.

Table 1: Frequencies of selected split variables fell within certain ranges (spec-
ified in the table) using two stopping rules: simple stopping plus tree pruning
and the stopping rule based on hypothesis testing (Dependent Regressors).

Simple stopping +
Tree pruning

Testing based stopping

the frequency of splits on X1

that fell within (9, 11)
91.6% 81.1%

the frequency of splits on X2

within (9, 11) ∪ (14, 16)
86.2% 87.5%

the frequency of splits on X4

that were {{a, b}, {c}}
99.6% 100%

Furthermore, we also replicated the above procedures for 100 times. Table
1 summarized the frequencies of selected splits around the genuine ones. The
averaged number of terminal nodes are 11.17, 11.48, 24.31 for testing-based
stopping, pruning, and simple stopping respectively. Figure 2 shows that in the
case of dependent regressors, both pruning and the testing-based stopping rule
also worked well in obtaining the right-sized trees while the simple stopping
rule tend to generate an overly grown tree.

4.2 Supplements for the detailed information of the datasets
Boston Housing The data concerns the median housing values (medv) on 506

census tracts around Boston, where 13 covariates are collected. We take
the logarithm of medv as the response, to be consistent with Loh (2002).

Computer Hardware The target variable is the published relative CPU perfor-
mance. There are 6 numeric predictive attributes about the cycle time,
memory and number of channels.

Auto-mpg The target variable mpg refers to city-cycle fuel consumption in
miles per gallon. We discards the ‘car name’ attribute and use the other 7
attributes for the prediction of mpg.

Auto-mobile This dataset has 159 complete records of 26 attributes. We use
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Figure 2: Density plot of the number of terminal nodes in the 100 replications of three
types of trees: the tree by simple stopping, the tree by simple stopping plus pruning,
the tree by the stopping rule based on hypothesis testing (Dependent Regressors).

Table 2: Datasets, the sample sizes, and the dimensions of predictive attributes.

Datasets Sample Size
Number of Predictive Attributes

(Numeric+ Categorical)
Boston Housing 506 13 (12+1)

Computer Hardware 209 6 (6+0)
Auto-MPG 392 7 (4+3)

Auto-mobile 159 25 (15+10)
Pyrimidine 74 26 (26+0)
Kinematics 8192 8 (8+0)
Parkinson 5875 16 (16+0)

Abalone 4176 8 (7+1)
News Popularity 39644 47 (44+3)
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the other 25 attributes to predict the logarithm of price, where the ‘make’
attribute is transformed into a binary variable.

Pyrimidine The goal is to explore the inhibition of dihydrofolate reductase
(DHFR) by pyrimidines using the information of 74 pyrimidines. The
predictive attributes include 26 numeric variables about the physiochem-
ical and structural properties of pyrimidines.

Kinematics This dataset contains 8192 cases with 9 attributes. The goal is to
predict the distance of the end-effector from the target, using θ1, · · · , θ8,
the 8 angular positions of the joints as predictive attributes.

Abalone The relevant task is to predict the age of abalone from the nominal
variable sex and 7 the other numeric variables of physical measurements.

Parkinson The dataset is composed of a range of biomedical voice measure-
ments from people with early-stage Parkinson disease (Little et al., 2009).
We use the 16 voice measures to predict the total UPDRS.

News Popularity The dataset collects 58 features of articles published by Mash-
able in two years (Fernandes et al., 2015), including 39644 complete cases.
Aggregating the 13 variables about ‘weekday’ and ‘channel’ into two cat-
egorical variables, we use the 47 covariants to predict the log(shares).
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