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Problem of interest
©000

Mixed Packing and Covering(MPC) LP

Does there exists an x € []" := {x = 0,, ||x||,, < 1} such that
Px <1,, (Packing constraints),
Cx = 1, (Covering Constraints),

where P, C = 0.
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Mixed Packing and Covering(MPC) LP

Does there exists an x € []" := {x = 0,, ||x||,, < 1} such that
Px <1,, (Packing constraints),
Cx = 1, (Covering Constraints),

where P, C = 0.

Def: We say that x is an s-approximate solution to the MPC
problem if x satisfies x € []”, Px < (1 4+ ¢)1,, Cx = (1 —¢)1..
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Problem of interest
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Application: Optimal Transport Problem

Optimal transport is a problem of computing Wasserstein distance
between two n-dimensional distributions.
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Problem of interest
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Motivation

Mixed Packing-Covering LPs

- - N Zero-sum
Pure Packing Matrix Games

‘ Optimal Transport ‘

Bipartite matching

‘ Multi-commodity flow ‘

s N ‘ Mechanism Design ‘
Pure Covering

‘ Positive Linear Systems ‘

Minimum Set Cover ‘ Scheduling ‘

L ) ‘ X-Ray Tomography ‘

J
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Problem of interest
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Previous Results

Def: Width w is maximum non-zeros in any row of P or C.
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Problem of interest
oooe

Previous Results

Def: Width w is maximum non-zeros in any row of P or C.

Table: Runtime for obtaining s-approximate solution:

\ Runtime | Comments
Nesterov ‘ width-dependent
Young 2014 5( *4) \
Mahoney et al. O(=?) ‘
Our work O(we™1) ‘ width-dependent
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Technical Overview
®00

Saddle Point Problem (SPP) Reformulation

@ Reformulate the MPC problem as a SPP:

min  max L(x,y,z)
xe[d" ye AP, ze Ac

(1,00)

(1,1,0)

(1,0,0)

7/16



Technical Overview

@00

Saddle Point Problem (SPP) Reformulation

@ Reformulate the MPC problem as a SPP:

min  max L(x,y,z)
xe[d" ye AP, ze Ac

(1,00)

@ u:=(x,y,z)and U := [J" x AP x A°.

(1,1,0)

(1,0,0)

7/16



Technical Overview
®00

Saddle Point Problem (SPP) Reformulation

@ Reformulate the MPC problem as a SPP:

min  max L(x,y,z)
xe[d" ye AP, ze Ac

(1,00)

@ u:=(x,y,z)and U := [J" x AP x A°.
o Convergence: u € U s.t. primal-dual gap
Gap(u) = SUPgey L(vaaf)_L(;(?y?Z) is D3

small ( Q(u) < e). \4
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Technical Overview
®00

Saddle Point Problem (SPP) Reformulation

@ Reformulate the MPC problem as a SPP:
i L(x,y,
B pe 002

@ u:=(x,y,z)and U := [J" x AP x A°.

o Convergence: u € U s.t. primal-dual gap
Gap(u) :=supgey L(x,¥,2) — L(X,y,z) is
small ( Q(u) < ).

@ u is e-SPP then either
1. x is an e-approx solution to MPC, or
2. We obtain a certificate of infeasibility.

A3
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(1,1,0)

(1,0,0)
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Standard Methods

@ General Problem: min,cx f(w)
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Technical Overview
oeo

Standard Methods

@ General Problem: min,cx f(w)

@ Regularized problem: min,cx f(w) + ¢(w)

@ ¢ is strongly convex on X.

@ Rate of convergence: e.g. Nesterov's accelerated methods:

% x range of ¢ on set X.
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e General Problem: mi)rg f(w) + o(w)
we

@ For the case of MPC problems:

© 1 is primal-dual gap Q.

@ w is joint primal-dual variable u.

© X is joint domain U(= []" x AP x A°).

@ ¢ is strongly convex regularizers ¢1(x) + ¢a2(y) + ¢3(z2).
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Technical Overview
ooe

Standard Methods + MPC

General Problem: mi)rg f(w) + o(w)
we

For the case of MPC problems:

© 1 is primal-dual gap Q.

@ w is joint primal-dual variable u.

© X is joint domain U(= []" x AP x A°).

@ ¢ is strongly convex regularizers ¢1(x) + ¢a2(y) + ¢3(z2).

Algorithm of choice: Nesterov's Dual Extrapolation
Range of regularizers ©(w+/n)
I — |
Tight

Range above tight for strongly convex regularizer on []” .
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Area Convexity
©0000

Area Convexity

Area convexity [Sherman 2017] :

@ Is weaker than strong convexity. One can obtain area convex
regularizer with small range over /..-ball.

@ Still good enough to obtain O(range of regularizer x %)
convergence.
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Area Convexity
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Definition

@ Strong convexity: for all t,ue K
P(54) < 3(8(t) + ¢(u)) — 31t — ull®.
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Area Convexity
©0®000

Definition

@ Strong convexity: for all t,ue K
t+ 1/ 1 2
o(54) < 5(o(t) + o(u) — 3lIt — ull*.
@ Def: A function ¢ is area convex w.r.t. matrix M on convex
set K iff for any t,u,v e K,

o) < 3(0(1) + d(u) + 6(v)) = 535 (v — u) T M(u — 1)

‘area’ of A(tuv)
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Area Convexity
0000

An Example

@ For any t,u e K , area convex ¢ requires mere
convexity: (154 ) < L(a(t) + o(u)).
e Consider v(x,y) = yxlogx + 2y log y.

0
Area convex w.r.t. 1 o|°m set 0 <x,y <1

Figure: Auxiliary view Figure: Level set v(x,y) < —0.5

12/16



Area Convexity
0000

Area Convexity + MPC

@ Use ¢ : U/ — [—p,0] as area convex regularizer w.r.t. a matrix
depending on P and C on set .
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@ Use ¢ : U/ — [—p,0] as area convex regularizer w.r.t. a matrix
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@ Area convexity: relaxed requirement, we can show ¢ for which
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Area Convexity
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Area Convexity + MPC

@ Use ¢ : U/ — [—p,0] as area convex regularizer w.r.t. a matrix
depending on P and C on set .

@ Area convexity: relaxed requirement, we can show ¢ for which
p = O(||P|ly log p + || C|| log €)

@ This p is of order width, w of MPC, gets rid of the /n
factor.
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Area Convexity
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Salient Features of Our Regularizer

e Standard regularization: ¢1(x) + ¢2(y).
@ Our regularization contains terms of the following type:

yjP,-ij |og Xj.
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Salient Features of Our Regularizer

Standard regularization: ¢1(x) + ¢2(y).

Our regularization contains terms of the following type:
yjP,-ij |og Xj.

Interaction of dual variable y and primal variable x.

Standard case: separate regularization of primal and dual
variable as ¢1(x) and ¢2(y).
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Area Convexity
ooooe

Salient Features of Our Regularizer

e Standard regularization: ¢1(x) + d2(y).

@ Our regularization contains terms of the following type:
yjPijxjlog x;.

@ Interaction of dual variable y and primal variable x.

@ Standard case: separate regularization of primal and dual
variable as ¢1(x) and ¢2(y).

@ Depends on the problem matrix P and C. Explores the
structure of the problem

@ Independent to problem matrix P and C.
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Summary

@ Strongly convex regularizer and /.. -barrier.
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Summary
°

Summary

@ Strongly convex regularizer and /.. -barrier.

@ Explicit area convex regularizer for MPC which circumvents
the /-barrier.

© Area convexity weaker than strong convexity. Range of the
regularizer can be made O(w) on /,.-ball

@ Still suffices to obtain 5(%) convergence.
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Summary
°

Summary

@ Strongly convex regularizer and /.. -barrier.
@ Explicit area convex regularizer for MPC which circumvents
the /-barrier.

© Area convexity weaker than strong convexity. Range of the
regularizer can be made O(w) on /,.-ball
@ Still suffices to obtain O(%) convergence.

@ See more details:
Poster: #232
Paper: Faster width-dependent algorithms for mixed packing
and covering LPs, arXiv 2019.
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Thanks!

Questions?
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