
A Existence of Perfect Accuracy Low-Dimensional Embedding Classifiers

Theorem A.1. Let S ⊆ X be a sample set. Under the assumption on the data specified above, there
exists a function φ : X → Rd, and a label embedding matrix V ∈ Rd×K such that:

1. d = O(min{s log(K|S|)), s2 log(K)})
2. For every label y, we have ‖vy‖2 = 1.
3. For all x ∈ S and y ∈ Ly(x), we have φ(x)>vy ≥ 2

3 .
4. For all x ∈ S and y 6∈ Ly(x), we have φ(x)>vy ≤ 1

3 .

5. For every pair of labels y, y′ with y 6= y′, we have v>y vy′ ≤
√

2 log(4K2)
d .

6. For any x ∈ S, we have ‖φ(x)‖2 = O(s( log(K)
d )

1
4 ).

Proof. We show the existence of the function φ and V using the probabilistic method. First, let V be
chosen by sampling each entry uniformly at random in {− 1√

d
, 1√

d
}, where the exact specification of

d will be revealed in the subsequent analysis. Clearly, for all labels y, we have ‖vy‖2 = 1, which
establishes item 2. For any x ∈ X , define φ(x) =

∑
y∈Ly(x)

vy . For any x ∈ X and any label y, we
have

φ(x)>vy = I[y ∈ Ly(x)] +
∑
y′∈Ly(x),y 6=y′ v

>
y vy′ .

By an application of Hoeffding’s inequality,

Pr
[∣∣∣∑y′∈Ly(x),y 6=y′v

>
y vy′

∣∣∣ > 1
3

]
≤ 2 exp(− d

18s ).

Now note that |{φ(x) : x ∈ S}| ≤ min{|S|,Ks}. Thus, by a union bound, we conclude that

Pr
[
∃x ∈ S, y :

∣∣∣∑y′∈Ly(x),y 6=y′v
>
y vy′

∣∣∣ > 1
3

]
≤ 2min{|S|,Ks} exp(− d

18s ).

By similar calculations, we also have, for any given t > 0,

Pr[∃y 6= y′ : |v>y vy′ | > t] ≤ 2K2 exp(−dt
2

2 ).

Set d = d18s log(4min{|S|,Ks})e (which establishes item 1) and t =
√

2 log(4K2)
d so that the

above two probabilities add up to less than 1. Thus, there exists a matrix V s.t. for all x ∈ S and all
y, |φ(x)>vy − I[y ∈ Ly(x)]| ≤ 1

3 (which implies items 3 and 4) and for all pairs of labels y 6= y′, we

have |v>y vy′ | ≤
√

2 log(4K2)
d (which implies items 5). Finally, for item 6, note that for any x, we have

φ(x)>φ(x) =
∑
y∈Ly(x)

v>y vy +
∑
y,y′∈Ly(x),y 6=y′ v

>
y vy′ ≤ s + s(s − 1) ·

√
2 log(4K2)

d .

B Theoretical Justification of the GLaS Regularizer

In this section we give theoretical justification for the definition of the GLaS regularizer (3). Specif-
ically, we prove a representability theorem analogous to Theorem 2.1. This theorem shows that it
is possible to construct a low-dimensional embedding-based classifier which corrrectly labels all
examples in the training set, and additionally, the inner-products of the embeddings of each pair of
labels are close to the geometric means of their conditional frequencies. The definition of the GLaS
regularizer (3) uses the arithmetic mean of the conditional frequencies instead of the geometric means
due to superior experimental performance (although the geometric-means-based regularizer has very
similar performance).

We first recall some notation from Section 3.2. Suppose S ⊆ X be a sample set of size n. Let
Y ∈ {0, 1}n×K be the training set label matrix where each row corresponds to a single training
example. Let A = Y >Y so that Ay,y′ = number of times labels y and y′ co-occur, and let Z =
diag(A) ∈ RK×K be the matrix containing only the diagonal component of A. The matrix AZ−1
gives conditional frequencies of observing one label given another: (AZ−1)y,y′ = F (y|y′).

12



Dataset Feature
Dimensionality

Label
Dimensionality

Number of
Train Points

Number of
Test Points

Avg. Points
Per Label

Avg. Labels
Per Point

AMAZONCAT-13K 203,882 13,330 1,186,239 306,782 448.57 5.04
AMAZON-670K 135,909 670,091 490,449 153,025 3.99 5.45
WIKILSHTC 1,617,899 325,056 1,778,351 587,084 17.46 3.19

DELICIOUS-200K 782,585 205,443 196,606 100,095 72.29 75.54
EURLEX-4K 5,000 3,993 12,920 3,185 25.73 5.31

WIKIPEDIA-500K 2,381,304 501,070 1,813,391 783,743 24.75 4.77

Table 5: Summary of the dataset statistics discussed in the paper.

Theorem B.1. Suppose that for the sample set S ⊆ X , we have Ay,y ≤ a for some constant a� n.
Let ε := 1

2
√
a

. Then there exists a function φ : X → Rd, and a label embedding matrix V ∈ Rd×K

such that:

1. d = O(a log(Kn))
2. For any x ∈ S, we have ‖φ(x)‖2 < 1 + ε.
3. For every label y, we have ‖vy‖2 < 1 + ε.
4. For all x ∈ S and y ∈ Ly(x), we have φ(x)>vy > ε.
5. For all x ∈ S and y 6∈ Ly(x), we have φ(x)>vy < ε.

6. For every pair of labels y, y′ we have
∣∣∣v>y vy′ −√F (y|y′)F (y′|y)∣∣∣ < ε.

Proof. Consider the following construction. For every x ∈ S, associate a unique standard basis
vector ex ∈ Rn. Then, for every label y, define v′y = 1√

Ay,y

∑
x∈S:y∈y(x) ex. It is easy to check,

by direct calculation, the following properties:

1. For all labels y, we have ‖v′y‖2 = 1.
2. For all x ∈ S and labels y, we have

e>x v
′
y =

{
1√
Ay,y

≥ 1√
a

if y ∈ Ly(x)

0 otherwise.

3. For all pairs of labels y, y′, we have v′y
>
v′y′ =

Ay,y′√
Ay,yAy′,y′

=
√
F (y|y′)F (y|y′).

Now, consider the Johnson-Lindenstrauss (JL) transform ψ : Rn → Rd with d = O( log(Kn)ε2 ) =
O(a log(Kn)) applied to the vectors ex for x ∈ S and v′y for labels y. Since these vectors are all
unit length, by choosing a large enough constant in O(·) notation for d, the JL transform preserves all
pairwise inner products of the vectors up to an additive error less than ε. We now define φ(x) = ψ(ex)
for all x ∈ S and vy = ψ(v′y) for all labels y. Now the claims of the theorem follow immediately
from the fact that the properties 1, 2 and 3 above are all preserved up to an error less than ε.

This theorem implies that there exists an embedding-based classifier which has perfect accuracy on
the training set S when a threshold of ε is used. Furthermore, the label and input embeddings are
nearly unit length, and the inner products of the label embeddings for each pair of labels are close to
the geometric means of the conditional frequencies of the pair.

C Additional Experimental Results

This section includes the summary of the dataset statistics that we have used in our experiments
(Table 5). In addition, we have included a variant of precision, namely nDCG@k 4 results of different
methods over different datasets (Table 6).

4nDCG@k = DCG@k∑min(k,‖y‖0)
l=1

1
log(l+1)

where DCG@k =
∑
l∈rankk(ŷ)

yl
log(l+1)

, ŷ is the predicted score vector

and y ∈ {0, 1}L is the ground truth labels.
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Embedding-Based Other Methods
Dataset nDCG@k Ours SLEEC [6] LEML [36] RobustXML [31] XML-CNN [19] PfastreXML [14] FastXML [24] Parabel [23] DiSMEC [3] PD-Sparse [34] PPD-Sparse [33]

nDCG@1 94.21 90.53 - - - 91.75 93.11 93.03 93.40 90.60 -
AMAZONCAT-13K nDCG@3 88.06 84.96 - - - 86.48 87.07 87.72 87.70 84.00 -

nDCG@5 86.08 82.77 - - - 84.96 85.16 86.00 85.80 82.05 -
nDCG@1 65.53 54.83 19.82 53.5 - 56.05 49.75 65.04 64.40 61.26 -

WIKILSHTC-325K nDCG@3 57.92 47.25 14.52 46.0 - 50.59 45.23 59.15 58.50 55.08 -
nDCG@5 57.09 46.16 13.73 44.0 - 50.13 44.75 58.93 58.40 54.67 -
nDCG@1 46.32 34.77 8.13 31.0 35.39 39.46 36.99 44.89 44.70 - -

AMAZON-670K nDCG@3 44.36 32.74 7.30 28.0 33.74 37.78 35.11 42.14 42.10 - -
nDCG@5 42.84 31.53 6.85 26.0 32.64 36.69 33.86 40.36 40.50 - -
nDCG@1 46.4 47.85 40.73 45.0 - 41.72 43.07 46.97 45.50 34.37 -

DELICIOUS-200K nDCG@3 41.83 43.52 38.44 40.0 - 38.76 39.70 41.72 40.90 30.60 -
nDCG@5 39.7 41.37 37.01 37.0 - 37.08 37.83 39.07 37.80 28.65 -
nDCG@1 77.69 79.26 63.4 - 76.38 75.45 71.36 81.73 82.4 76.43 -

EURLEX-4K nDCG@3 68.16 68.13 53.56 - 66.28 65.97 62.87 72.15 72.50 64.31 -
nDCG@5 62.71 61.60 48.47 - 60.32 60.78 58.06 66.40 66.70 58.78 -
nDCG@1 69.91 - - - 59.85 - - - - - -

WIKIPEDIA-500K nDCG@3 58.87 - - - 48.67 - - - - - -
nDCG@5 56.32 - - - 46.12 - - - - - -

Table 6: Performance comparison (based on normalized Discounted Cumulative Gain, i.e., nDCG@k
— a variant of precision) with several other methods on large-scale datasets. Our method attains or
improves upon the state-of-the-art results. Results of other methods are derived from the extreme
classification repository. Italic underlined numbers are the best of the entire row and bold numbers
are the best among embedding based methods.

D Python Code for PSP@K

This section includes the Tensorflow code of PSP@K computation. Our Tensorflow code is based on
the MATLAB code available in the extreme classification repository5.

1 def precision_wt_k(scores , labels , wts , k):
2 """
3 Args:
4 labels: Tensor of 0/1 labels with shape [batch_size , #classes ].
5 scores: Tensor of scores with shape [batch_size , #classes ].
6 wts: inverse propensity weights
7 K: as in p@k
8

9 Returns:
10 psp_k: PSP@K
11 """
12

13 idx = tf.where(tf.not_equal(labels , 0))
14 wts_labels = tf.sparse.to_dense(
15 tf.SparseTensor(indices=idx ,
16 values=tf.gather(wts ,
17 tf.cast(idx[:,1],tf.int64)),
18 dense_shape=labels.shape))
19 psp_num = psp_precision(labels , scores , k, wts)
20 psp_denum = psp_precision(labels , wts_labels , k, wts)
21 psp_k = tf.divide(psp_num , psp_denum)
22

23 return psp_k
24

25

26 def psp_precision(labels , scores , K, wts):
27 """
28 Args:
29 labels: Tensor of 0/1 labels with shape [batch_size , #classes ].
30 scores: Tensor of scores with shape [batch_size , #classes ].
31 K: as in p@k
32 wts: inverse propensity weights
33

34 """
35

36 _, indices = tf.math.top_k(tf.cast(scores , tf.float32), k=K)
37 first_column = tf.reshape(
38 tf.transpose(
39 tf.tile(
40 tf.expand_dims(

5http://manikvarma.org/downloads/XC/XMLRepository.html
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41 tf.range(0,tf.shape(indices)[0]) ,0) ,[K, 1])) ,[-1])
42 sparse_indices = tf.stack ([ first_column ,
43 tf.reshape(indices , [-1])], axis =1)
44

45 expanded_weights = tf.gather(wts ,
46 tf.cast(sparse_indices [:, 1],
47 tf.int64))
48 topK_mat = tf.SparseTensor(indices=tf.cast(sparse_indices ,
49 tf.int64),
50 values=tf.cast(expanded_weights ,
51 tf.float32),
52 dense_shape=tf.shape(labels ,
53 out_type=tf.int64))
54 topK_mat = tf.sparse.reorder(topK_mat)
55 prod = tf.multiply(tf.sparse.to_dense(topK_mat),
56 tf.cast(labels , tf.float32))
57

58 return tf.reduce_mean(tf.divide(tf.reduce_sum(prod ,1), K))
59

60

61 def psp_wts(labels , A=0.55, B=1.5):
62 """Computes propensity weights for the NxK full test label matrix.
63 Wiki -LSHTC: A = 0.5, B = 0.4
64 Amazon: A = 0.6, B = 2.6
65 Others (default): A = 0.55, B = 1.5
66

67 Args:
68 labels: is the binary matrix of (all) true labels
69 A: dataset -dependent constant
70 B: dataset -dependent constant
71

72 Returns:
73 wts: inverse propensity weights
74 """
75 N = labels.dense_shape [0]
76 counts = tf.cast(tf.sparse.reduce_sum(labels , 0), tf.float32)
77 C = (tf.log(tf.cast(N,tf.float32)) - 1) * math.pow(B + 1, A)
78 wts = 1 + tf.multiply(C, tf.pow(counts+B,-A))
79 return wts
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