
Appendix

A Proof of Theorem 1

In this subsection we prove Theorem 1, and therefore assume that X and A are finite and that
tinit = 0. We start by defining notation for the following analysis. Let F be the collection of all
possible reward functions (i.e. the support of our prior). Recall that DT = {(xt, at, yt)}Tt=1 is the
data sequence collected up to time T . Let DT be the collection of all such T -length sequences, and
note that the observations seen in this sequence depend on the reward function in question. We also
denote D = ∪∞t=1Dt. For f ∈ F and DT ∈ DT , we define λ(f,DT) as

λ(f,DT) := 1−RT,f (5)

where RT,f is as defined in Theorem 1. Note that λ(f,DT) ≥ 0 for all f ∈ F , DT ∈ DT and that
maxD∈D λ(f,D) = 1 for all f ∈ F . We define D∗T,f to be the optimal T -length data sequence with
respect to f ; that is,

D∗T,f ∈ argmax
DT∈DT

λ(f,DT) (6)

We will often write this sequence as D∗T when it is clear from context. Note that the optimal data
sequence is also the one which makes greedy decisions at every time step. To better understand D∗T ,
note that if T = 1, the evaluation selected will be the task and its corresponding best action that
yields the greatest reward out of any task. If this optimal strategy is continued for more evaluations,
each optimal task-action pair will be evaluated in order of descending reward, and after making |X |
such evaluations, λ(f,D∗T) = 1. After this, it does not matter which task-action pairs are evaluated.

Because the strategy of Algorithm 1 is to play myopically optimal with respect to a posterior sample,
it falls into the broad class of algorithms known as Myopic Posterior Sampling (MPS) [Kandasamy
et al., 2019a]. We first restate a known theorem and its conditions.

Condition 1 ([Kandasamy et al., 2019a]). Let H ∈ D be any arbitrary set of starting task-action
evaluations. For reward functions f, f ′ ∈ F and corresponding optimal data sequences D∗T,f , D

∗
T,f ′ ,

there exists sequences {εT }T≥1 and {τT }T≥1 such that

1. The optimal data sequences achieve asymptotically similar performance:

sup
f,f ′∈F

sup
H∈D

{
E
[
λ(f,H ∪D∗T,f)

]
− E

[
λ(f ′, H ∪D∗T,f ′)

]}
≤ εT

where the expectations are over the observed rewards.

2. The rate of convergence is better than O(1/
√
T). That is, where

√
τT = 1 +

∑T
t=1 εt, we

have that τT = o(T).

Condition 2 ([Kandasamy et al., 2019a, Golovin and Krause, 2011]). Let EYx,a
denote the expec-

tation over the likelihood Yx,a ∼ P(·|x, a, f). Where j < k, let Dj , Dk ∈ D be such that Dj is a
prefix of Dk (i.e. the first j members of Dk make up Dj). For all such Dj , Dk ∈ D, x ∈ X , a ∈ A,
and f ∈ F the following holds:

1. λ is monotone, meaning that EYx,a
[λ(f,Dj ∪ {(x, a, Yx,a)}] ≥ λ(f,Dj).

2. λ is adaptive submodular, meaning that,

EYx,a
[λ(f,Dj ∪ {(x, a, Yx,a)})]− λ(f,Dj)

≥ EYx,a [λ(f,Dk ∪ {(x, a, Yx,a)})]− λ(f,Dk)

Note that λ as defined in (5) satisfies Condition 1. As mentioned before, the optimal strategy
λ(f,D∗T,f) = 1 for T ≥ |X | and ∀f ∈ F . This is true regardless of the initial data sequence H .

Therefore, we see that εT = 0 for T ≥ |X |. Whenever T < |X |, the largest E
[
λ(f,H ∪D∗T,f)

]
−

E
[
λ(f ′, H ∪D∗T,f ′)

]
can be is 1 since λ is bounded. Therefore, we can set εT = 1 for T < |X |.

13

Putting this together,

τT =

(
1 +

T∑
t=1

εt

)2

≤

1 +

|X |−1∑
t=1

1

2

= (1 + |X | − 1)2 = |X |2

Thus Condition 1 holds with τT = |X |2.

Our definition of λ also meets the requirements of Condition 2. First of all, λ is monotonically
increasing because it relies on the maximum reward seen, and therefore λ can only increase after
seeing new data. λ is also adaptive submodular since any improvement from seeing a new evaluation
can only be more impactful when less data has been seen. For intuition, consider any evaluation
{x, a, y}. There are two cases:

1. {x, a, y} is better than any other evaluation for task x in Dk. Therefore Dj and Dk will
both have the same maximum played reward for task x; however, the previous maximum
may have been greater for Dk since it is a superset of Dj . Thus, the increase in λ must be
greater or equal for Dj .

2. {x, a, y} is not best evaluation for task x in Dk. In this case,

λ(f,Dk ∪ {(x, a, y})− λ(f,Dk) = 0

Theorem 2 ([Kandasamy et al., 2019a]). Assume that λ satisfies conditions 1 and 2, and let τT be
as defined in Condition 1. Let DT be data collected by playing myopically optimal according to
posterior samples. Then, for all 0 < ρ < 1,

E [λ(f,DT)] ≥ (1− ρ)E
[
λ(f,D∗ρT)

]
−
√
|X ||A|τT γT

2T

Using this theorem, the proof for Theorem 1 is relatively straightforward.

Proof (Theorem 1). Note that Theorem 2 can be used because Algorithm 1 optimizes λ as defined in
(5) with respect to posterior samples,

E
[
λ(f,D∗ρT)

]
− E [λ(f,DT)] ≤

√
|X ||A|τT γT

2T
+ ρE

[
λ(f,D∗ρT)

]
≤ |X |

√
|X ||A|γT

2T
+ ρ

In the case where T > |X |, we can set ρ = |X |
T . In this case,

E
[
λ(f,D∗|X|)

]
− E [λ(f,DT)] = 1− E [λ(f,DT)]

= E [RT,f]

≤ |X |
√
|A||X |γT

2T
+
|X |
T

If T ≤ |X |,

E [RT,f] ≤ 1 < |X |

(
1

T
+

√
|A||X |γT

2T

)
Therefore, the theorem holds.

14

B Synthetic Functions

B.1 Branin-Hoo Function [Branin, 1972]

The Branin-Hoo maps R2 to R, operates on the square [−5, 10]× [0, 15], and has the following form:

f(x) = a(x2 − bx21 + cx1 − r)2 + s(1− t) cos(x1) + s

where a = 1, b = 5.1
4π2 , c = 5

π , r = 6, s = 10, and t = 1
8π . It achieves a global minimum 0.397887

at three different values of x: (−π, 12.275), (π, 2.275), and (9.42478, 2.475). Because we perform
maximization in our experiments, we consider the negative Branin-Hoo function.

B.2 Hartmann 4 and 6 Functions [Picheny et al., 2013]

The four dimensional version of the Hartmann function is evaluated on the domain [0, 1]4. It has the
form

f(x) =
1

0.839

1.1−
4∑
i=1

Ci exp

− 4∑
j=1

aji(xj − pji

2

The six dimensional Hartmann function is evaluated over [0, 1]6 and has the form

f(x) =
−1

1.94

2.58 +

4∑
i=1

Ci exp

− 6∑
j=1

aji(xj − pji)2

In both cases, C, a, and p are defined as the following.

C = [1.0, 1.2, 3.0, 3.2]

a =

10.00 0.005 3.00 17.00
3.00 10.00 3.50 8.00
17.00 17.00 1.70 0.05
3.50 0.10 10.00 10.00
1.70 8.00 17.00 0.10
8.00 14.00 8.00 14.00

p =

0.1312 0.2329 0.2348 0.4047
0.1696 0.4135 0.1451 0.8828
0.5569 0.8307 0.3522 0.8732
0.0124 0.3736 0.2883 0.5743
0.8283 0.1004 0.3047 0.1091
0.5886 0.9991 0.6650 0.0381

These functions are typically used for minimization problems, so instead we use the negative versions.

B.3 Independent Random Functions

In order to run experiments in which there are many different optimization problems, we consider
drawing problems at random from a particular class of functions. These functions are over the domain
[0, 1]d and have the following form:

fm,s,c,b(x) =

m∑
k=1

d∑
i=1

si exp

[
− (xi − ck,i)2

bk,i

]
where m is the number of point masses, si are the scales, ck,i control the centers of the masses,
and bk,i are the bandwidths. These quantities are generated at random in order to construct a suite
of different functions. To ensure varying difficulty in the 30 randomly drawn functions, we drew
15 “easy” functions, 10 “average” functions, and 5 “hard” functions. These classes of difficulty
are characterized by the possible values the parameters of f can take (except for the centers of the
mass, which can be anywhere in [0, 1]d). To sample a function, each parameter is drawn uniformly at
random over the support given in Table 1.

15

Difficulty Number of Masses Scale Range Bandwidth Range
Easy {0, 1, 2} [0, 1] [0.7, 0.9]

Average {3, 4} [0.25, 1] [0.4, 0.6]
Hard {5, 6, 7} [0.5, 1] [0.25, 0.4]

Table 1: Ranges of parameters for randomly generated function by difficulty class.

B.4 Correlated Tasks of Varying Difficulty

For correlated tasks of varying difficulty we use the function g : X ×A → R, where X = [0, 1] and
A = [0, 1]. From this, we discretize the problem by choosing ten equispaced tasks from X . The
function g is defined as follows:

g(x, a) =

M∑
m=1

sm exp

[
−(a− ca,m)2

ba,m
+
−((|x− 0.5| − cx,m)2

bx,m

]
(7)

where the specific quantities are shown in the table below.

m sm ca,m ba,m cx,m bx,m
1 15 0.1 0.005 0.45 0.01
2 −15 0.2 0.005 0.45 0.01
3 16 0.3 0.005 0.45 0.01
4 −6 0.4 0.005 0.45 0.01
5 7 0.5 0.005 0.45 0.01
6 −7 0.6 0.005 0.45 0.01
7 16 0.7 0.005 0.45 0.01
8 −16 0.8 0.005 0.45 0.01
9 15 0.9 0.005 0.45 0.01
10 4 0.1 0.05 0.25 0.01
10 −4 0.3 0.075 0.25 0.01
11 8 0.6 0.05 0.25 0.01
12 −4 0.8 1 0.25 0.01
13 4 0.1 0.05 0.15 0.0025

Table 2: Parameters for (7)

C Risk Neutral Correlated Finite Task Experiments

In addition to the plots for correlated tasks shown in the second row of Figure 1, we also show
risk-neutral versions of the same plots. That is, the same evaluations were made for each method,
but instead of forming the policy estimate using best evaluations seen so far, we select the policy
using best action according to the GP mean for each task. Ahead of time, we randomly select 10,000
actions uniformly at random for each of the tasks, and at every iteration we estimate which of these
actions are best for their task based on the current GP posterior mean. We calculate regret with
respect to the optimal policy for the pre-chosen set of actions.

We show risk-neutral policy performance for correlated tasks because REVI’s goal is to increase the
posterior mean as much as possible. That being said, Figure 4 shows that REVI does not significantly
outperform MTS in most cases. Even in the Hartmann 4-2 example, where REVI performs best, the
risk-averse MTS still performs best. Again, we hypothesize that REVI does not perform as well
because the tasks for these experiments are sparse within the space. In the next appendix, we show
that REVI in fact does well when every possible task in the space is considered (i.e. continuous
tasks).

16

0 20 40 60 80 100
t

10 1

100

101

102

To
ta

l S
im

pl
e

Re
gr

et

MTS
MEI
EI
TS
RAND
REVI

(a)

0 20 40 60 80 100
t

10 1

100

101

To
ta

l S
im

pl
e

Re
gr

et

(b)

0 20 40 60 80 100
t

10 2

10 1

100

To
ta

l S
im

pl
e

Re
gr

et

(c)

0 100 200 300 400 500
t

10 2

10 1

100

To
ta

l S
im

pl
e

Re
gr

et

(d)

Figure 4: Risk-neutral correlated tasks. In order, the plots show the total simple regret for Branin
1-1 (a), Hartmann 2-2 (b), Hartmann 3-1 (c), and Hartmann 4-2 (d). The curves show the average
over 10 trials, and the shaded region shows standard error.

D Continuous Multi-Task Thompson Sampling

We now consider the case in which the set of tasks is continuous. While it is impossible to make
evaluations at every task in this case, we make the assumption that the tasks are correlated. As such,
the joint task-action space can be modeled with a single GP, which can be used to estimate a mapping
from task to action. Such a mapping can be found via a slightly modified version of MTS that we
name Continuous Multi-task Thompson Sampling (CMTS). The intuition behind CMTS remains the
same: at each iteration a finite subset of tasks is considered, a sample is drawn from the GP, and the
task which sees the most improvement with respect to the sample is chosen. The only issue is that,
for any task under consideration, there will be no previously collected data almost surely. As such,
we suppose that the best action for the task is the action which achieves the greatest posterior mean.
The final policy that we learn is simply the action that yields the greatest posterior mean for any given
task (i.e. the risk-neutral strategy).

Algorithm 2 Continuous Multi-Task Thompson Sampling (CMTS)
Input: capital T , initial capital tinit, mean function µ, kernel function σ, and task subset size s.
Make random evaluations until tinit evaluations are expended.
for t = tinit + 1 to T do

Draw X̃ ⊂ X of size s.
Draw f̃ ∼ GP (µ, σ)|Dt−1.

Set xt = argmax
x∈X̃

ω(x)

[
maxa∈A f̃(x, a)− f̃

(
x, argmax

a∈A
µt(x, a)

)]
Set at = argmax

a∈A
f̃(xt, a).

Observe yt = f(xt, at).
Update Dt = Dt−1 ∪ {(xt, at, yt)}.

end for
Output: ĥ(x) = argmax

a∈A
µT (x, a)

Via experimentation, we found that, for a given task x, gauging improvement with respect to the great-
est posterior mean value (maxa∈A µt(x, a)) rather the value on the sample, f̃(x, argmax

a∈A
µt(x, a)),

often works better in practice. Taking inspiration from Ginsbourger et al. [2014], we also cap the
greatest posterior mean value by the greatest observation seen so far. We name this modified algo-
rithm CMTS-PM (PM for “posterior mean”). Lastly instead of taking a sample over the entire space,
we found that taking individual samples for each task is more computationally efficient without
noticeably damaging performance.

For continuous tasks we compare against Profile Expected Improvement (PEI) [Ginsbourger et al.,
2014] and the continuous version of REVI [Pearce and Branke, 2018]. Like CMTS, PEI picks
whichever task is estimated to have the greatest improvement, but it estimates this using EI. In contrast
to both CMTS and PEI, REVI selects points that are expected to yield the greatest improvement in

17

20 40 60 80 100
t

10 2

10 1

100

101

Re
gr

et

REVI
RAND
PEI
CMTS-PM
CMTS

(a)

50 100 150 200 250 300
t

10 2

10 1

100

Re
gr

et

(b)

50 100 150 200 250 300
t

10 2

10 1

Re
gr

et

(c)

200 400 600
t

10 1

Re
gr

et

(d)

20 40 60 80 100
t

10 2

10 1

100

101

Re
gr

et

REVI
RAND
PEI
CMTS-PM
CMTS

(e)

50 100 150 200 250 300
t

10 2

10 1

Re
gr

et

(f)

50 100 150 200 250 300
t

10 2

10 1

Re
gr

et

(g)

100 200 300 400 500
t

10 1Re
gr

et

(h)

Figure 5: Synthetic experiments for CMTS. For each row from left to right, the plots show total
simple regret for Branin 1-1, Hartmann 2-2, Hartmann 3-1, and Hartmann 4-2. The top row shows
when the hyperparameters of the GP were estimated every iteration and the bottom shows when the
hyperparameters were estimated beforehand.

posterior mean across all task. Although REVI’s objective is better aligned with finding a policy that
works well across all tasks, it can be much more expensive to compute. This is because the value of
any candidate task-action pair must be estimated via a set of points in the task-action space. Further, it
makes sense that this set should grow exponentially with dimension in order to get accurate estimates
of a candidate’s value.

We test these methods on the same functions as the correlated finite task case, but now with continuous
tasks. Ahead of time, we select 250 tasks uniformly at random that policies will be tested against.
For CMTS, CMTS-PM, and PEI 100 tasks and 100 actions are considered for every iteration. For
specifics on REVI implementation details, see Appendix F. The GP for every experiment uses an
RBF kernel, and hyperparameters were tuned by maximizing the marginal likelihood after every
iteration. We also ran these same experiments but where hyperparameters were fixed ahead of time
by sampling points uniformly at random and tuning according to marginal likelihood. The number
of random samples for each experiment was equal to the total number of evaluations the algorithm
could make. See Figure 5 for results.

When good estimates for hyperparameters are not known ahead of time (the most realistic case), we
found that REVI performs well in low dimensions. Besides this, it seems that all of them methods
have relatively similar performance in higher dimensions, with PEI and CMTS-PM possibly having a
slight edge in some cases. It is possible that increasing the computational budget for REVI would
result in better performance; however, REVI is already considerably slower than other methods (see
Table 3). Interestingly, it seems that no method does significantly better than random for Hartmann
4-2. We believe that the main reason for this is that it is difficult to both pick point intelligently
while simultaneously learning the hyperparameters for the model. Indeed, when hyperparameters
are learned ahead of time, smarter methods again have an advantage over a random strategy for
Hartmann 4-2. From these results, it also seems that REVI particularly seems to benefit from knowing
hyperparameters ahead of time for most cases.

18

Method Time Elapsed (s)
REVI 175.14± 0.57

Random 36.80± 0.25
PEI 78.12± 0.43

CMTS 78.59± 0.86
CMTS-PM 78.74± 0.49

Table 3: Run times for a single trial in Figure 5 (a). 10 trials were used to compute the average
and standard deviation. Simulations were run on a desktop with Intel R© Xeon(R) W-2123 CPU @
3.60GHz and 16 GB of RAM.

E Algorithm Visualizations

In this subsection, we visualize the evaluations made by our MTS methods and REVI for the correlated
task settings (Figure 6). Whereas our methods pick task-action pairs that end up clustering around
where the true optimal policy is, REVI appears to pick pairs that outline the optimal policy and rarely
picks evaluations in its immediate vicinity. This is the same behavior observed in Pearce and Branke
[2018]. As a result, REVI does not perform as well in the boundary tasks for the finite case.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

REVI
Queried
Estimates

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

REVI
Optimal Policy
Estimated Policy
Evaluations

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

MTS

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

CMTS-PM

(d)

Figure 6: Visualization of Methods.. Each of the above plots show experiments on the Branin-Hoo
function, where the x-axis shows varying task and the y-axis shows varying action. The plots on the
left show when tasks are finite, and the plots on the right show the continuous case where all tasks in
the space are considered. For each plot, 50 points were queried (shown in blue) to learn the policy. In
the finite case, the optimal policy estimate is shown by stars, and in the continuous case the policy is
drawn using a blue curve.

19

F More Implementation Details

F.1 Acquisition Method Optimization

For each of the relevant acquisition methods (i.e. MTS, MEI, EI, TS, CMTS, CMTS-PM, PEI), we
used random search to pick the next point. That is, for every iteration and every task, 100 actions
are drawn uniformly at random to pick from (except for in Figure 2, in which 1,000 were used).
Additionally, for the continuous methods, we pick 50 different tasks uniformly at random at which
evaluations can be made every iteration.

F.2 REVI Implementation Details

In every iteration, REVI considers a set of candidate points, and picks which one to make an evaluation
at by gauging their impact via another set of judgement points. To form the candidate set in the finite
task case, 100 actions are drawn uniformly at random for each task. A judgement set is formed in the
exact same way for every iteration. In the continuous case, we choose 100 candidate points uniformly
at random over the entire space for every iteration. Additionally, every iteration a grid of points are
formed to judge the impact of every candidate point. We chose grid sizes of 50 tasks x 50 actions, 100
tasks x 100 actions, 100 tasks x 50 actions, and 100 tasks x 100 actions for experiments on Branin
1-1, Hartmann 2-2, Hartmann 3-1, and Hartmann 4-2, respectively. Tasks and actions are chosen
uniformly at random, and the actions are the same for each task. Pearce and Branke [2018] suggest
methods to more prudently select points for the judgement set; however, our attempts to implement
these did not result in any benefit.

F.3 Plotting Regret

The regret quantities that we use to plot are calculated in a number of different ways. If the true
maximum is known (as is the case with Figure 1 (a)), then regret can be calculated easily. If there is a
fixed grid of points over which the policy is evaluated over (i.e. in Figure 4 and Figure 5), then regret
can be calculated with respect to the optimal policy for that grid. Otherwise, we take the greatest
value found by any method, add a small amount to this value, and treat it as if it was the optimal.
Although this is no longer a true notion of regret, it allows us to display performance of the methods
in a more digestible manner.

G Nuclear Fusion Application

G.1 Nuclear Fusion Experiment Details

We use the TRANSP program [Grierson et al., 2018] to simulate fusion reactions on DIII-D, a
tokamak in San Diego that is operated by General Atomics. TRANSP is a time-dependent transport
code used for interpretive analysis and predictive simulations of tokamaks. Access to TRANSP
and running TRANSP experiments were possible thanks to our collaborators at Princeton Plasma
Physics Lab. TRANSP operates by simulating real-world experiments (referred to as “shots”) that
were conducted on DIII-D. By running the predictive module of TRANSP, we are able to observe
how changes in controls would affect the plasma. When simulating a given shot (a simulation on
TRANSP is referred to as a “run”), we can identify variables at each time step that correspond to the
state of the plasma. One such variable that we focus on is βn, which is a ratio of the pressure of the
plasma to the magnetic energy density. βn serves as a proxy for the economic output of the reaction.
Besides this quantity, we also consider the total energy eigenvalues, which represent the amount of
change in energy within and outside the plasma in response to certain perturbations. In particular,
we focus on the minimum value of the total energy eigenvalues, which we will refer to as ∆ω. ∆ω
serves as a proxy for the stability of the plasma. Thus, in the context of our experiments, we assume
that each state of the plasma can be fully characterized by a (βn,∆ω) pair.

When conducting a simulation, we apply controls that specify parameters of the neutral beams, which
include power, energy, full energy fraction and half energy fraction. The DIII-D tokamak has a total
of 8 neutral beams, 6 of which are co-current beams (inject in the same direction as the plasma
current) and 2 of which are counter-current beams (inject in the opposite direction of the plasma
current). In our experiments, we confine the action space to 2 dimensions: power coefficient of

20

co-current beams and counter-current beams, each with domain [0.001, 1.0]. These power coefficients
are applied by multiplying the maximum power of the set of beams by the coefficient. By ranging the
power coefficient from 0.001 to 1.0, we essentially scale the beam powers from the minimum to the
maximum power level possible.

We consider 7 distinct states of the plasma, which are represented by 7 shots from the DIII-D tokamak
(the shots are 145699, 149689, 153145, 155215, 162939, 170473). In all 7 shots, a common instability
called tearing occurred. Ideally, we would like to perform preventative measures once we sense a
tear is about to occur. Therefore, we start the simulation 150 ms before time of tearing and run the
simulator until 150 ms after the tearing. After the run completes, we extract the ∆ω and βn values at
5ms increments throughout the duration of the run (total 300 ms) and take the median of them to
produce ∆ω and βn. In order to balance between stability and the pressure in the tokamak, we set our
reward to be βn + 10∆ω, where we chose coefficients based on the scales of each value. In summary,
we optimize a combination of pressure and stability of the plasma, for each of the 7 different plasma
states (7 contexts) simultaneously, by changing the power level of the co-current and counter-current
beams (2D controls).

The optimization experiment results presented in Section 5 are averaged over 5 trials, each with
200 query capital. In each trial, for each task, 5 initial points are drawn uniformly at random for
evaluation. Each task is modeled by a GP with an RBF kernel, and hyperparameters are tuned for a
GP every time an observation is seen for its corresponding task by marginal likelihood.

Optimization was asynchronously parallelized with 10 workers. Kandasamy et al. [2018] proposed
parallelized versions of standard Thompson sampling, and the algorithms used for the fusion experi-
ment were the asynchronous Thompson sampling from Kandasamy et al. [2018] and the analougous
parallel version of MTS.

G.2 Alternative Experiment Settings and Results

0 20 40 60 80 100 120
t

4

22

To
ta

l R
eg

re
t

MTS
TS

(a)

0 20
t

100

6 × 10 1

2 × 100

3 × 100
4 × 100

Re
gr

et
 p

er
 T

as
k

Plasma State 0

0 10 20
t

100

Plasma State 1

0 20
t

3

13 Plasma State 2

0 25 50
t

2

8 Plasma State 3

0 10 20
t

10 1

100

Re
gr

et
 p

er
 T

as
k

Plasma State 4

0 10 20
t

1

27 Plasma State 5

0 10 20
t

100

Plasma State 6

0 10 20
t

100

Plasma State 7

(b)

Figure 7: Fusion Simulation Experiments under Different Experimental Settings. In these
experiments, the controls are constrained to be a multiplicative factor (less than 1.0) of the default
controls for each shot. Each of the above show average values and standard error from 10 trials. (a)
shows the total regret summed across all tasks and (b) regret achieved in each task. Note that curves
differ in length for (b) since different amounts of resources were allocated for each task.

In Section 5 Figure 3, standard Thompson sampling (I-TS) outperforms MTS (I-MTS) when each
state was modelled with an independent GP. Figure 3 (c) shows the allocation of queries across the
states by MTS and TS. It is evident that MTS focuses on plasma state 3, even when there is little
further improvement from the state. We believe that this is a systems issue where the simulator limits
are tested with very high values for the neutral beam power levels. We conducted another set of
optimization experiments with a different experimental settings which highly constrains the beam
power levels and hence would be less straining to the simulator. In these experiments, instead of first

21

setting each beam to its maximum power level and then scaling it by a scalar between 0.001 and 1.0,
we took the default power levels from the original shots and scaled these power levels by a scalar
between 0.001 and 1.0. This ensures that beam powers will always be less than the original power
levels. However, this limits querying the full range of power actually available from each beam.
We tested I-MTS and I-TS under this change in settings and the results are presented in Figure 7.
Note that we ran 10 trials of each algorithm with 125 timesteps per trial. We also have an additional
plasma state from the shot 149205 from the DIII-D tokamak, which correspondes to plasma state 1.
Lastly, the rewards components (βn and ∆ω) are scaled with different constants such that the reward
is 10βn + 100∆ω.

Under these settings, we can see that I-MTS outperforms I-TS. With stable outputs, I-MTS displays
the expected behavior of selecting a plasma state that is deemed to provide most improvement and
querying other states when reward has levelled off in a state (e.g. plasma state 4, 5).

22

