
We’d like to thank all the reviewers for your time and your constructive comments. They are valuable for our future1

research.2

we thank Reviewer 1 (R1) for pointing out the clarity of notation definitions. We will provide more explanations for3

the quantity definitions in the camera-ready version. As in p.98-99, C denotes a subset of input X , whose elements’4

corresponding observations are the relevance vectors (derived from ARD in Eq. (2)) with the maximum non-zero5

component of the weight vector θk.6

As R2 and R3 suggested, we implement two nonstationary covariance function methods in the two applications for7

empirical comparisons. One is a classical nonstationary Gaussian process regression: Paciorek et al. "Nonstationary8

covariance functions for Gaussian process regression", which is cited as [14] in our paper. The other is Heinonen et al.9

"NonStationary Gaussian Process Regression with Hamiltonian Monte Carlo" coupling nonstationary GP with priors10

on the hyperparameters of the squared exponential covariance functions. We implement these methods with the same11

experimental settings as ours. In particular, since Heinonen et al. can only model univariate observations, we have to12

apply it to model each observation variable independently and evaluate the means for the multivariate cases.13

Table 1: Performance evaluation of the SOZ channel detection

Methods AUROC Precision Recall (Sensitivity) F1 score
Our method 0.81± 0.05 0.45± 0.07 0.77± 0.06 0.51± 0.07

Nonstationary covariance function models
Paciorek et al. 0.63± 0.07 0.41± 0.05 0.43± 0.09 0.39± 0.04
Heinonen et al. 0.67± 0.05 0.43± 0.03 0.58± 0.03 0.42± 0.07

Table 2: Monthly average RMSE of one-week-ahead predictions of the crime rates in 2019.

RMSE ± error Jan. 2019 Feb. 2019 Mar. 2019 April 2019
Our method 0.638± 0.025 0.707± 0.023 0.815± 0.029 0.817± 0.027
Paciorek et al. 0.949± 0.034 1.122± 0.055 1.176± 0.209 1.462± 0.147
Heinonen et al. 0.704± 0.031 0.875± 0.118 0.931± 0.763 1.069± 0.014
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Figure 1: (a) Empirical mean of the 8 PIB features of a true positive iEEG observation’s heldout segment (blue), the
predictive mean of our method (red), and the predictive mean of Heinonen et al. method (green). (b) Plots of observation
mean (blue) of the crime occurrence rates of 179 CTs in 2015-2019, our method’s posterior and predictive mean (red),
and Heinonen et al. mean (green). (c) Plot of RMSE vs. 6 Gibbs sampling chains for the convergence.

As in Tables 1 and 2, both methods are inferior to ours, but Heinonen et al. method is comparable to the partition-based14

nonstationary methods. For Heinonen et al. method, we run 3 chains of 5000 samples of HMC-NUTS sampling to15

infer the three sets of hyperparameters (noise variance, signal variance, and lengthscale), and initialize the method as16

suggested in the paper. As in Figure 1 (a) and (b), one key to the success of the method is the balance between the17

signal variance and the nonstationary lengthscale, which is intrinsically related to the partition-based idea. For Paciorek18

et al. method, we use the Matern covariance function described in the paper. The Matern kernel leads to less smooth19

functions, but it still assumes a stationary process in that the covariance structure is the same throughout the entire input20

space. One major challenge to implement Paciorek et al. method is that the number of hyperparameters increases fast21

in multivariate cases. In particular, computation of the kernel matrices at each input location is slow because of the22

matrix decomposition (O(n3)). In contrast, our method is more computationally efficient by introducing the conditional23

independence given the hyper-GP as in Eq. (10). As suggested by R3, we plot the RMSE vs. Gibbs samples in Figure 124

(c) to demonstrate the convergence for DC crime case. We’ll add these results to the camera-ready version. To R2, if25

partitions are not local, the method will reduce to a stationary one. Chinese restaurant process will be our future work.26


