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1 True Class Probability (TCP) criterion

1.1 Proof of TCP theoretical guarantees

Let K be the number of labels and x ∈ RD a sample with its associated label y∗ ∈ Y such that
TCP(x, y∗) > 1

2 . Starting from the definition of TCP we have:

TCP(x, y∗) = P (Y = y∗|w,x) >
1

2
(1)

⇐⇒ 1−
∑

k∈Y,k 6=y∗

P (Y = k|w,x) >
1

2
(2)

⇐⇒
∑

k∈Y,k 6=y∗

P (Y = k|w,x) <
1

2
. (3)

Since probabilities are positive, we obtain that ∀k 6= y∗, P (Y = k|w,x) < 1
2 < P (Y = y∗|w,x).

Denoting ŷ the class predicted by the network, we have ŷ = argmaxk P (Y = k|w,x). Hence
ŷ = y∗.

In the same way, for x ∈ RD and y∗ ∈ Y , such that TCP(x, y∗) < 1
K , we have:

P (Y = y∗|w,x) <
1

K
(4)

⇐⇒ 1−
∑

k∈Y,k 6=y∗

P (Y = k|w,x) <
1

K
(5)

⇐⇒
∑

k∈Y,k 6=y∗

P (Y = k|w,x) >
K − 1

K
. (6)

If the model correctly classifies this sample, i.e. ŷ = y∗, then ∀k 6= y∗, P (Y = y∗|w,x) ≥ P (Y =
k|w,x). We have then:∑

k∈Y,k 6=y∗

P (Y = k|w,x) ≤ (K − 1)P (Y = y∗|w,x) ≤ K − 1

K
, (7)

which contradicts Equation (6). Hence, there exists at least one k such that P (Y = k|w,x) >
P (Y = y∗|w,x), which results in ŷ 6= y∗.
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1.2 Empirical error and success distributions

Figure 1: Distribution plot for MNIST MLP

Model # Errors # Successes AUPR-Error AUPR-Success AUC

> 1/K [ 1K , 1
2 ] >1/2 < 1/K [ 1K , 1

2 ] > 1/2

MCP 0 25 170 0 28 9777 37.70% 99.94% 97.13%
TCP 81 114 0 0 28 9777 98.77% 100.00% 99.98%

Figure 2: Distribution plot for MNIST Small ConvNet

Model # Errors # Successes AUPR-Error AUPR-Success AUC

> 1/K [ 1K , 1
2 ] >1/2 < 1/K [ 1K , 1

2 ] > 1/2

MCP 0 8 82 0 11 9899 35.05% 99.99% 98.63%
TCP 32 58 0 0 11 9899 99.41% 100.00% 99.41%

Figure 3: Distribution plot for SVHN Small ConvNet

Model # Errors # Successes AUPR-Error AUPR-Success AUC

> 1/K [ 1K , 1
2 ] >1/2 < 1/K [ 1K , 1

2 ] > 1/2

MCP 0 329 857 0 206 24640 48.18% 99.54% 93.20%
TCP 500 686 0 0 206 24640 98.93% 100.00% 99.95%
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Figure 4: Distribution plot for CIFAR-10 VGG16

Model # Errors # Successes AUPR-Error AUPR-Success AUC

> 1/K [ 1K , 1
2 ] >1/2 < 1/K [ 1K , 1

2 ] > 1/2

MCP 0 52 729 0 33 9186 45.36% 99.19% 91.56%
TCP 469 312 0 0 33 9186 99.77% 100.00% 99.98%

Figure 5: Distribution plot for CIFAR-100 VGG16

Model # Errors # Successes AUPR-Error AUPR-Success AUC

> 1/K [ 1K , 1
2 ] >1/2 < 1/K [ 1K , 1

2 ] > 1/2

MCP 0 603 2801 0 118 6478 71.99% 92.49% 85.67%
TCP 2724 680 0 0 118 6478 99.91% 99.98% 99.91%

Figure 6: Distribution plot for CamVid SegNet

Model # Errors # Successes AUPR-Error AUPR-Success AUC

> 1/K [ 1K , 1
2 ] >1/2 < 1/K [ 1K , 1

2 ] > 1/2

MCP 0 401,573 55,506,172 0 188,128 34,166,526 48.53% 96.37% 84.42%
TCP 41,84,875 1,722,871 0 0 188,128 34,166,526 99.92% 100.00% 99.99%
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2 Experiments

2.1 Implementation details

Datasets. We run experiments on image datasets of varying scale and complexity: MNIST [7] and
SVHN [8] datasets provide relatively simple and small (28× 28) images of digits (10 classes). They
are splited in 60,000 training samples and 10,000 testing samples. CIFAR-10 and CIFAR-100 [6]
bring more complexity to classify low resolution images. In each dataset, we further keep 10% of
training samples as a validation dataset. We also report experiments for semantic segmentation on
CamVid [1], a standard road scene dataset. Images are resized to 360× 480 pixels and are segmented
according to 11 classes such as ‘road’, ‘building’, ‘car’ or ‘pedestrian’.

Classification network. For each dataset, we use standard neural network architectures as classi-
fiers. We re-implemented in PyTorch [9] network architectures proposed in [4] for fair comparison.
They range from small convolutional networks for MNIST1 and SVHN2 to VGG-16 architectures3

for CIFAR datasets. We also added a multi-layer perceptron (MLP) with 1 hidden layer of size 100
for MNIST dataset in order to investigate performances on small models. Finally, we implemented a
SegNet following [5]. All models are trained in a standard way with a cross-entropy loss and a SGD
optimizer with a learning rate of 10−3, a momentum of 0.9 and a weight decay of 10−4. Number
of training epochs depends on the dataset considered, varying from 100 epochs on MNIST to 250
epochs on CIFAR-100. As we’re looking to compute Monte Carlo samples following [2], we also
include dropout layers. Best model is selected on validation set accuracy.

ConfidNet training. We train ConfidNet for 500 epochs with Adam optimizer with learning rate
10−4, dropout and same data augmentation used in classification training. We select best model based
on AUPR-Error on validation dataset. To specifically fine-tune the encoder used for ConfidNet, we
decoupled the encoder from original ConvNet and allow back-propagation through it. Training is
completed on very few epochs based on previous best model, using Adam optimizer with learning
rate 10−7 or 10−8 and no dropout to mitigate stochastic effects that may lead the new encoder to
deviate too much from the original one used for classification. Once again, best model is selected on
val set AUPR-Error metrics.

Evaluation metrics.

1. FPR at 95% TPR measures the False Positive Rate (FPR) when the True Positive Rate (TPR)
is equal to 95%. True Positive Rate can be computed by TPR = TP/(TP+FN), where TP and
FN denote numbers of true positives and false negatives respectively. The False Positive Rate
can be computed by FPR = FP/(FP + TN), where FP and TN denote the number of false
positives and true negatives respectively. This metric can be interpreted as the probability that an
error is misclassified as a correct prediction when the True Positive Rate (TPR) is as high as 95%.

2. AUROC measures the Area Under the Receiver Operating Characteristic curve (AUROC). The
ROC curve is a graph showing True Positive Rate versus False Positive Rate. This metric is
a threshold-independent performance evaluation, such as AUPR. It can be interpreted as the
probability that a positive example has a greater prediction score than a negative example.

3. AUPR measures the Area Under the Precision-Recall (PR) curve. The PR curve is a graph
showing precision = TP/(TP + FP) versus recall = TP/(TP + FN). In our tests, AUPR-
Success indicates that correct predictions are used as the positive class, while AUPR-Error
indicates that errors are used as the positive class. As we specifically want to detect failures,
AUPR-Error constitutes the primary metrics to assess performances.

Other baseline details For TrustScore [4], we add parallel processing when computing distances
for each class to speed up inference. This parallelization does not alter the algorithm nor its
performances. Specifically for semantic segmentation with CamVid, each image contains 172,800

1https://github.com/EN10/KerasMNIST
2https://github.com/tohinz/SVHN-Classifier
3https://github.com/geifmany/cifar-vgg
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pixels. Even though CamVid remains a small dataset (367 training images, 101 validation images, 233
test images) compared to other semantic segmentation datasets, computation complexity forced us to
drastically reduce the number of training neighbors and the number of test samples. We randomly
sample in each train and test image a small percentage of pixels to compute a proxy.

For MC-Dropout [2], we use the same model than baseline (which already includes dropout layers)
and we sample 100 times from the classification model at test time keeping dropout layers activated.
We then compute the average softmax probability over all samples to conduct Monte Carlo integration.
Model uncertainty is estimated following [2] by calculating the entropy of the averaged probability
vector across the class dimension.

2.2 Classification accuracies

Most neural networks used in our experiments tend to overfit. On small datasets such as MNIST and
SVHN, convolutional neural networks already achieve nearly perfect accuracy on test set, above 96%,
which leaves very few errors available. We provide on Table 1 accuracies on training, validation and
test set.

Table 1: Train, val and test accuracies for each model.
MNIST MNIST SVHN CIFAR-10 CIFAR-100 CamVid

MLP SmallConvNet Small ConvNet VGG-16 VGG-16 SegNet

Train accuracy 98.32% 98.94% 95.06% 98.69% 95.55% 96.69%
Val accuracy 97.95% 99.03% 96.56% 99.80% 66.96% 91.72%
Test accuracy 98.05% 99.10% 95.44% 92.19% 65.96% 85.33%

2.3 Effect of ConfidNet architecture

We experiment different ConfidNet architectures on the SVHN dataset, varying the number of layers.
Except for first and last layers, whose dimensions respectively depend on input and output size, each
layer presents the same number of units (400). On Fig 7, we observe that starting from 3 layers,
ConfidNet already improves baseline performance.

Figure 7: Influence of the number of layers used in ConfidNet on SVHN test set.

2.4 Effect of learning variants

Table 2: Effect of learning scheme on AUPR-Error
MNIST MNIST SVHN CIFAR-10 CIFAR-100 CamVid

MLP SmallConvNet Small ConvNet VGG-16 VGG-16 SegNet

Confidence training 57.34% 43.94% 50.43% 46.44% 72.68% 50.12%
+ Fine-tuning ConvNet 57.37% 45.89% 50.72% 49.94% 73.68% 50.51%
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Table 3: Effect of loss and criterion on SVHN and CamVid
Dataset Loss FPR (95% TPR) AUPR-Error AUPR-Success AUC

SVHN
Small ConvNet

TCP 28.58% 50.72% 99.55% 93.44%
BCE 29.34% 50.00% 99.52% 92.76%
Focal 28.67% 49.96% 99.53% 93.01%
Ranking 31.04% 48.11% 99.55% 92.90%
TCPr 30.19% 47.04% 99.53% 93.12%

CIFAR-10
VGG-16

TCP 44.94% 49.94% 99.24% 92.12%
BCE 45.20% 47.95% 99.19% 91.94%
Focal 45.20% 47.76% 99.22% 91.93%
Ranking 46.99% 44.04% 99.19% 91.49%
TCPr 44.43% 48.78% 99.25% 92.19%

CamVid
SegNet

TCP 61.52% 50.51% 96.58% 85.02%
BCE 61.68% 48.96% 96.05% 83.41%
Focal 61.64% 49.05% 96.49% 84.09%
TCPr 60.41% 51.35% 96.58% 85.18%

2.5 Effect on calibration

We empirically observed that ConfidNet tend to lower over-confident predictions which happen to
be errors. As a side experiment, we thus study whether using ConfidNet as confidence estimation
improve calibration of deep neural networks. We report the Expected Calibration Error (ECE) which
is an approximate measure of miscalibration between confidence and accuracy [3]. Table 4 sums up
our results.

Table 4: Calibration results for ConfidNet
ECE (%) MNIST MNIST SVHN CIFAR-10 CIFAR-100 CamVid

MLP SmallConvNet SmallConvNet VGG-16 VGG-16 SegNet

Baseline 0.37% 0.20% 0.50% 4.48% 22.37% 9.65%
ConfidNet 0.66% 0.30% 1.11% 3.45% 15.61% 7.57%
Baseline + T. Scaling 0.20% 0.69% 1.30% 2.88% 5.16% 4.77%

We observe that ConfidNet presents equivalent or better ECE results than baseline, mostly pronounced
on complex datasets such as CIFAR-10, CIFAR-100 and CamVid. On MNIST and SVHN, baseline
already presented small ECE results. These results confirm our intuition about the capacity of Confid-
Net to address over confident predictions, even though it has not been designed for. Nevertheless,
dedicated methods such as temperature scaling used in [3] remain preferred for calibrate deep neural
networks.

2.6 Risk-coverage curves

Added to plot provided in the paper for VGG-16 on CIFAR-10 dataset, we include here plots for the
remaining datasets: MLP on MNIST (Fig 8a), Small ConvNet on MNIST (Fig 8b), Small ConvNet
on SVHN (Fig 8c) and VGG-16 on CIFAR-100 (Fig 8e).

For further details, we also provide quantitative table for risk-coverage curves for SVHN (Fig 5) and
CIFAR-10 (Fig 6) datasets.
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(a) MLP (b) MNIST

(c) SVHN (d) CIFAR-10

(e) CIFAR-100

Figure 8: Risk-coverage curves. Selective risk represents the percentage of errors in the remaining
test set for a given coverage percentage.

Table 5: Selective risk for various coverage rates on SVHN
Coverage ConfidNet risk MCP risk % improvement MCDropout risk % improvement TrustScore risk % improvement

1.00 4.55 4.55 0.00 4.55 0.00 4.55 0.00
0.98 2.46 2.63 6.37 2.80 12.09 2.87 14.12
0.96 1.70 1.79 4.98 1.94 12.31 2.03 16.33
0.94 1.21 1.32 7.92 1.39 12.61 1.48 18.25
0.92 0.96 1.02 5.88 1.06 9.30 1.19 19.09
0.90 0.80 0.85 5.71 0.86 7.64 0.99 19.49
0.88 0.69 0.73 5.53 0.75 8.36 0.87 21.09
0.86 0.61 0.64 3.63 0.63 2.21 0.74 16.90
0.84 0.52 0.54 3.49 0.56 6.74 0.68 22.96
0.82 0.46 0.48 4.03 0.48 4.00 0.60 23.27
0.80 0.42 0.42 -1.16 0.42 -1.19 0.56 24.92
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Table 6: Selective risk for various coverage rates on CIFAR-10
Coverage ConfidNet risk MCP risk % improvement MCDropout risk % improvement TrustScore risk % improvement

1.00 7.80 7.80 0.00 7.80 0.00 7.80 0.00
0.95 3.85 4.06 5.18 3.94 2.14 4.54 15.22
0.90 2.38 2.58 8.00 2.63 9.59 2.96 19.68
0.85 1.52 1.68 9.58 1.67 8.90 2.06 26.26
0.80 1.02 1.17 12.49 1.17 12.44 1.63 37.27
0.75 0.20 0.37 45.40 0.12 -62.54 1.38 85.45
0.70 0.20 0.37 45.40 0.12 -62.54 1.33 84.87
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