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1 Brain areas included in prior

1a Inferior Frontal Gyrus
1b Middle/Superior Temporal
2a Lateral Middle/Superior Frontal
2b Supramarginal Gyrus / Posterior Superior Temporal / Angular Gyrus
2c Precuneus
2d Medial Superior Frontal
2e Medial Orbito-Frontal

Table 1: Name of regions of interest in fig. 1 of main manuscript. Regions were approximated from
the results of (Lerner et al., 2011).

2 Data Preprocessing

We use fMRI data of 8 subjects reading chapter 9 of Harry Potter and the Sorcerer’s Stone (Rowling,
2012), collected and made available online by Wehbe et al. (2014b)1. Words were presented one at
a time at a rate of 0.5s each. fMRI data was acquired at a rate of 2s per image, i.e. the repetition
time (TR) is 2s. The images were comprised of 3 × 3 × 3mm voxels. The data for each subject
was slice-time and motion corrected using SPM8 (Kay et al., 2008), then detrended and smoothed
with a 3mm full-width-half-max kernel. The brain surface of each subject was reconstructed using
Freesurfer (Fischl, 2012), and a grey matter mask was obtained. The Pycortex software (Gao et al.,
2015) was used to handle and plot the data. For each subject, 25000-31000 cortical voxels were kept.

The same paradigm was recorded for 3 subjects using MEG by the authors of Wehbe et al. (2014a)
and shared upon our request. This data was recorded at 306 sensors organized in 102 locations around
the head. MEG records the change in magnetic field due to neuronal activity and the data we used
was sampled at 1kHz, then preprocessed using the Signal Space Separation method (SSS) (Taulu
et al., 2004) and its temporal extension (tSSS) (Taulu and Simola, 2006). The signal in every sensor
was downsampled into 25ms non-overlapping time bins. For each of the 5176 word in the chapter,
we therefore obtained a recording for 306 sensors at 20 time points after word onset (since each word
was presented for 500ms).

1http://www.cs.cmu.edu/afs/cs/project/theo-73/www/plosone/
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3 Encoding Models

3.1 fMRI

Ridge regularization is used to estimate the parameters of a linear model that predicts the brain
activity yi in every fMRI voxel i as a linear combination of a particular layer representation x`. For
each output dimension (voxel), the Ridge regularization parameter is chosen independently by nested
cross-validation. We use Ridge regression because of its computational efficiency and because of the
results of Wehbe et al. (2015) showing that for fMRI data, as long as proper regularization is used
and the regularization parameter is chosen by cross-validation for each voxel independently, different
regularization techniques lead to similar results. Indeed, Ridge regression is indeed a common
regularization technique used for building predictive fMRI (Mitchell et al., 2008; Nishimoto et al.,
2011; Wehbe et al., 2014b; Huth et al., 2016).

For every voxel i, a model is fit to predict the signals yi = [yi1, y
i
2, . . . , y

i
n], where n is the number

of time points, as a function of the representation derived from layer ` of a network. The words
presented to the participants are first grouped by the TR interval in which they were presented. Then,
the features of layer ` of the words in every group are averaged to form a sequence of features
x` = [x`1, x

`
2, . . . , x

`
n] which are aligned with the brain signals. The models are trained to predict

the signal at time t, yt, using the concatenated vector z`t formed of [x`t−1, x
`
t−2, x

`
t−3, x

`
t−4]. The

features of the words presented in the previous volumes are included in order to account for the
lag in the hemodynamic response that fMRI records. Indeed, the response measured by fMRI is
an indirect consequence of brain activity that peaks about 6 seconds after stimulus onset, and the
solution of expressing brain activity as a function of the features of the preceding time points is a
common solution for building predictive models (Nishimoto et al., 2011; Wehbe et al., 2014b; Huth
et al., 2016).

For each given subject and each layer `, we perform a cross-validation procedure to estimate how
predictive that layer is of brain activity in each voxel i. For each fold:

• The fMRI data Y and feature matrix Z` = z`1, z
`
2, . . . z

`
n are split into corresponding train

and validation matrices and these matrices are individually normalized (to get a mean of 0
and standard deviation of 1 for each voxel across time), ending with train matrices Y R and
ZR,` and validation matrices Y V and ZV,`.

• Using the train fold, a model wi,` is estimated as:

argmin
wi,`
||yR,i − ZR,`wi,`|22 + λi||wi,`||22

A ten-fold nested cross-validation procedure is first used to identify the best λi for every
voxel i that minimizes nested cross-validation error. wi,` is then estimated using λi on the
entire training fold.

• The predictions for each voxel on the validation fold are obtained as p` = ZV,`wi,`.
• A classification task is then performed to assess the prediction performance of the learned

model. This classification task is based on searchlight classification (Kriegeskorte et al.,
2006), in which a sliding window groups each voxel with its immediate neighbors in the
3D grid of voxels. We perform a more accurate searchlight analysis we refer to as cortical-
searchlight. We are interested only in the grey matter voxels (which contain neurons) and
these comprise the most external part of the brain: the cortical sheet. The cortical sheet
of each subject is highly folded, and voxels that lie in a neighborhood on the sheet are not
necessarily neighbors in the 3D grid of voxels. Using the reconstructed cortical sheet of each
subject, we estimate for each cortical voxel a surrounding neighborhood by including the
voxels adjacent to it on the cortical sheet, and the voxels adjacent to those voxels. See figure
1. We use for each voxel i this neighborhood of voxels N i with |N i| = ki in a classification
task.

• For each voxel i, we use the signals predicted for layer ` to classify a contiguous chunk of
real data of length 20TRs. Since fMRI data is noisy, performance using a single TR will be
close to chance accuracy and will therefore have low power and will not be informative for
our purpose. Indeed, for this reason most experiments using predictive fMRI models test
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Figure 1: Example neighborhood estimated using the cortical sheet and not the 3D grid of voxels.

them on a part of the experiment that is repeated multiple times (Kay et al., 2008; Nishimoto
et al., 2011; Huth et al., 2016). These repetitions are then averaged into one test set which is
predicted, and this less noisy average leads to better prediction accuracy. The experiment we
are using however doesn’t have any repetitions and not specific test set, and therefore by raise
the number of TRs and classify 20TRs at a time, we are able to improve the classification
accuracy. Wehbe et al. (2014b) have shown that classification accuracy reaches a plateau
after around 15 TRs and we pick 20TRs for good measure. The classification task takes
an unlabeled chunk of real data of size 20× k and two possible predicted data chunks of
the same size, one being the predicted data corresponding to the same time, and another
randomly chosen chunk. Euclidean distance is computed between the real chunk and the
two predicted chunks, and the closest chunk is chosen. This is repeated a large number of
times and average accuracy is computed at each voxel.

The above steps are repeated for each of the four cross-validation folds and average accuracy is
obtained for each voxel i for layer `, for each subject.

We use a new empirical based method to compute statistical significance that relies on the distribution
of average accuracies over a subject’s brain to estimate the False Discovery Proportion (FDP). The
voxel accuracies belong to two distributions: either the voxel has chance accuracy or the voxel is
truly predicted by the corresponding layer `. Average chance accuracy for our binary balanced task
is 0.5, however the accuracies due to chance performance might have a varying distribution around
0.5. The accuracies above 0.5 are a mixture of predicted voxels and voxels with chance performance.
We assume that chance performance is symmetrically distributed around 0.5, and we use the set of
accuracies that are less than 0.5–which we consider to be in the chance distribution–to estimate the
distribution of chance accuracies above 0.5. We want to find a set of voxels where to reject the null
hypothesis such that the FDP is ≤ 0.05. For that purpose we find the smallest margin δ, 0 < δ < 0.5
such that:

F̂DP =
1 +#{voxel s.t. accuracy ≤ 0.5− δ}
1 ∨#{voxel s.t. accuracy ≥ 0.5 + δ}

≤ q

where q = 0.05, by starting at δ = 0.001 and increasing it in increments of 0.001, stopping when
F̂DP ≤ 0.05 or the limit is reached. This approach is adapted from the Barber-Candès approach
which has been proposed and analyzed by Barber et al. (2015); Arias-Castro et al. (2017); Rabinovich
et al. (2017), and shown to control the False Discovery Rate (FDR) at level q when δfinal is chosen as
a threshold. We reject the null hypothesis for all voxels where the accuracy is ≥ 0.5 + δfinal.

To combine results across different subjects, we use pycortex (Gao et al., 2015) to transform each
subject to the Montreal Neurological Institute (MNI) space, the most commonly used template space
in fMRI. We can then average the results of different participants.

3.2 MEG

MEG data is sampled faster than the rate of word presentation, so for each word, we have 20 times
points recorded at 306 sensors. Ridge regularization is similarly used to estimate the parameters of a
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linear model that predicts the brain activity yi,τ in every MEG sensor i at time τ after word onset.
For each output dimension (sensor/time tuple i, τ ), the Ridge regularization parameter is chosen
independently by nested cross-validation.

For every sensor/time tuple i, τ , a model is fit to predict the signals yi,τ = [yi,τ1 , yi,τ2 , . . . , yi,τn ],
where n is the number of words in the story, as a function of the representation derived from layer `
of a network. We use as input the word vector x` without the delays we used in fMRI because the
MEG recordings capture instantaneous consequences of brain activity (change in the magnetic field).
The models are trained to predict the signal at word t, yi,τt , using the vector x`t .

For each each given subject and each layer `, we perform a cross-validation procedure to estimate
how predictive that layer is of brain activity in each voxel i. For each fold:

• The MEG data Y and feature matrix X` = x`1, x
`
2, . . . x

`
n are split into corresponding train

and validation matrices and these matrices are individually normalized (to get a mean of 0
and standard deviation of 1 for each voxel across time), ending with train matrices Y R and
XR,` and validation matrices Y V and ZV,`.

• Using the train fold, a model w(i,τ)` is estimated as:

arg min
w(i,τ)`

||y(i,τ),R −XR,`w(i,τ)`|22 + λ(i,τ)||w(i,τ)`||22

A ten-fold nested cross-validation procedure is first used to identify the best λ(i,τ) for every
sensor, time-point tuple (i, τ) that minimizes nested cross-validation error. w(i,τ)` is then
estimated using λ(i,τ) on the entire training fold.

• The predictions for each sensor, time-point tuple (i, τ) on the validation fold are obtained as
p` = XV,`w(i,τ)`.

• A classification task is then performed to assess the prediction performance of the learned
model. This classification task also pools spatially: we use the 3 sensors at each location,
pooling across all the subjects, ending up with 102 classifications at 20 time-points. By
pooling the data in each sensor location across subjects, we increase the signal-to-noise
ratio.

• For each sensor location s and time-point τ , we use the signals predicted from layer ` for
the three sensors at time-point τ after word onset to classify a set of 20 words. Since MEG
data is noisy, performance using a single word will be close to chance accuracy and will
therefore have low power and will not be informative for our purpose. Indeed, for this reason
most experiments using predictive MEG models test them on a part of the experiment that is
repeated multiple times (Sudre et al., 2012). These repetitions are then averaged into one
test set which is predicted, and this less noisy average leads to better prediction accuracy.
The experiment we are using however doesn’t have any repetitions and not specific test set,
and therefore by raising the number of words and classify 20 words at a time, we are able
to improve the classification accuracy. We use the value of 20 words from Wehbe et al.
(2014a).

The above steps are repeated for each of the four cross-validation folds and average accuracy is
obtained for each sensor location, time-point tuple (s, τ) for layer `, for each subject.

In our proof of concept experiment, we run an analysis in which we try to find, using the classification
task outlined here, classification accuracy that is common both to a word embedding ` and to other
features of a word such as a one-hot vector encoding its part of speech. This analysis is a proxy
for finding the shared explained variance between the vectors, which we can call A and B. We
concatenate A and B into a vector (representing A ∪B). We run the classification analysis using A,
B and (A ∪B). We then estimate the shared accuracy as: A+B −A ∪B.

4 MEG results as proof of concept

We use MEG to provide a proof of concept of our approach. We know that single word non-
contextualized embeddings likely have information about the part-of-speech and the length of a
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Figure 2: Performance of ELMo current word embedding at predicting MEG activity at each sensor
location and time point, compared with the performance shared with word length and Part-Of-Speech
(POS) tags. Around 200-250ms, the word embedding predicts a part of the activity at the top of
the helmet, and this is shared mostly with the POS tags and not with word length (see bottom-right
comparison). Indeed, we know from electrophysiology studies studies that POS violations incur a
response around 200ms after word onset in the front of the brain Frank et al. (2015), which aligns
with our analysis. We hypothesize from these results that the word-embedding contains both word
length and POS information.

word. We will show here how our approach can recover this information from brain activity as a
proof-of-concept. We use MEG to study word embeddings because unlike fMRI we can access the
brain activity to reading a single word. We know from the Neuroscience literature that MEG activity
can be related to the length of the current word Sudre et al. (2012) and its part of speech Frank et al.
(2015) at different times. We investigate whether word length and part-of-speech (POS) information
is also present in the non-contextualized embedding by computing the shared performance (A ∩B)
between the pairs of features (A and B) as A+B −A ∪B as explained in the previous section.

We present the results in Figure 2. The current word embedding is able to predict activity as the
current word is being perceived starting at the back of the sensor helmet (generally on top of the
visual cortex) around 100ms. This is when we expect the visual signal to start reaching the visual
cortex. Indeed, we see that the word-embedding and the word length have overlap in the activity
they predict in the visual cortex at that time. Gradually, the areas predicted by the word embedding
move forward in the brain towards areas known to be involved in more high level aspects of reading.
Around 200-250ms, we see the word embedding predicts a part of the activity at the top of the helmet,
and this is shared mostly with the POS tags and not with word length (see bottom-right comparison).
Indeed, we know from electrophysiology studies studies that POS violations incur a response around
200ms after word onset in the front of the brain Frank et al. (2015), which aligns with our analysis.
From these results we can hypothesize that the word-embedding contains both word length and POS
information, as was expected.
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5 Complete Attention Results

condition uni L1 uni L2 uni L3 uni L4 uni L5 uni L6 base count
simple 1.00 1.00 0.96 1.00 0.99 1.00 1.00 120
in a sentential complement 0.83 0.83 0.83 0.83 0.84 0.83 0.83 1440
short VP coordination 0.88 0.90 0.91 0.88 0.88 0.91 0.89 720
long VP coordination 0.96 0.97 0.95 0.95 0.96 1.00 0.98 400
across a prepositional phrase 0.86 0.93 0.88 0.86 0.80 0.88 0.85 19440
across a subject relative clause 0.83 0.83 0.84 0.84 0.83 0.85 0.84 9600
across an object relative clause 0.87 0.91 0.90 0.86 0.83 0.92 0.89 19680
across an object relative clause (no that) 0.87 0.80 0.75 0.72 0.75 0.87 0.86 19680
in an object relative clause 0.97 0.95 0.96 0.92 0.91 0.91 0.95 15960
in an object relative clause (no that) 0.83 0.72 0.70 0.69 0.74 0.74 0.79 15960
reflexive anaphora: simple 0.91 0.94 0.99 0.98 1.00 0.99 0.94 280
reflexive anaphora: in a sent. complem. 0.88 0.85 0.88 0.87 0.86 0.86 0.89 3360
reflexive anaphora: across a rel. clause 0.79 0.84 0.82 0.68 0.66 0.79 0.80 22400

Table 2: Performance of models with uniformly-altered attention in layers 1-6 in BERT on a range of
syntactic tasks by Marvin and Linzen (2018). ‘Base’ refers to pretrained BERT.
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