
A Supplementary Material355

A.1 Bi-criteria approximation for k-center356

For the analysis, and subsequently the proof of Theorem 1.2, we use a slightly different potential357

function. The potential from (1) is tricky to control when � > k, as nt can become 0. Also, we will358

use |Ft| instead of |Ft ∩Xin|. The potential is thus simply359

Ψt := wt|Ft|. (4)

As before, the following lemma bounds the increase in the potential, conditioned on the chosen360

centers St.361

Lemma 3. For any t ≥ 0 and any St ⊆ X ,362

E
t+1

[Ψt+1 −Ψt | St] ≤ z.

Proof. The proof is along the lines of that of Lemma 1. As before, define E
(t)
i = |Ci ∩ Ft|, and let363

ei = |E(t)
i | and write F =

�
i ei. Once again, if the point chosen in the (t+ 1)th iteration is from364

Ci, then the quantity |Ft| reduces by at least ei. Thus we have365

E
t+1

[Ψt+1] ≤
�

i

ei
|Ft|

wt(|Ft|− ei) +

�
1− F

|Ft|

�
(wt + 1)|Ft|

= Ψt −
wt

|Ft|
�

i

e2i +

�
1− F

|Ft|

�
|Ft| (using

�

i

ei = F )

≤ Ψt +

�
1− F

|Ft|

�
|Ft| ≤ Ψt + z. (5)

The first equality is obtained by rearranging the terms appropriately. In the last step, we used366

|Ft|− F ≤ z, as before. This completes the proof of the lemma.367

We can now complete the proof of Theorem 1.2.368

Proof of Theorem 1.2. Consider running the algorithm for � = k(1 + c) steps. By a repeated369

application of Lemma 3, we have that370

E[Ψ�] ≤ k(1 + c)z.

Thus by Markov’s inequality, we have that for any δ > 0, the probability of the event Ψ� ≤ k(1+c)z
(1−δ)371

is at least δ. Next, using the definition of Ψ�, we have that with probability at least δ,372

w�|F�| ≤
k(1 + c)z

(1− δ)
.

Now, if the algorithm is run for k(1 + c) iterations, at least kc iterations are “wasted” (because once373

we pick a point from a cluster, the rest of the points get removed from Ft). Thus we have w� ≥ kc.374

Thus with probability at least δ, we have |F�| ≤ k(1+c)
c(1−δ) .375

Thus given any δ > 0, we can repeat the algorithm O(1/δ) times, and with high probability (at least376

3/4, say) one of the trials results in |F�| ≤ k(1+c)
c(1−δ) . This completes the proof of the theorem.377

A.2 Logarithmic approximation for k-means378

In this section, we focus on proving Theorem 3.1.379
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Notation. In the remainder of the proof, we denote φ(x, S) = d(x, S)2, and φ(U, S) =380 �
u∈U d(u, S)2, for any U, S ⊆ X . We will also let C1, C2, . . . , Ck denote the optimal clusters.381

Thus we have Xin = ∪iCi.382

The following is the so-called “parallel-axis theorem” (see, e.g., [4]).383

Proposition 1. Let C ⊂ Rd and let µ = 1
|C|

�
x∈C x. Let p be an arbitrary point in Rd. Then384

φ(C, {p}) = φ(C, {µ}) + |C| · �p− µ�2.

The next two lemmas are taken from [4].385

Lemma 4 (Lemma 3.2 from [4]). Let C ⊂ Rd be any set of points with mean µ. Let x be a point386

chosen uniformly at random from C. Then387

E[φ(C, {x})] = 2φ(C, {µ}) (6)

The next lemma shows that if instead of the uniform distribution over C (in Lemma 4), we choose388

each x ∈ C with probability proportional to φ(x, T ) for any set T , a similar inequality holds.389

Lemma 5 (Lemma 3.3 from [4]). Let C ⊂ Rd be a set of points with mean µ, and let T ⊆ Rd be390

another arbitrary set. Then we have391

�

x∈C

φ(x, T )

φ(C, T )
· φ(C, T ∪ {x}) ≤ 8φ(C, {µ}). (7)

The main technical ingredient of our proof is proving that a similar inequality holds if points x ∈ C392

are sampled proportional to τ(x, T ) instead of φ(x, T ).393

Lemma 6. Let C ⊂ Rd be a set of points with mean µ, and let T ⊆ Rd be another arbitrary set.394

Then we have395

�

x∈C

τ(x, T )

τ(C, T )
· φ(C, T ∪ {x}) ≤ 64φ(C, {µ}). (8)

For convenience, let us write Θ = βOPT/z. We also denote φ∗(C) := φ(C, {µ}).396

To prove the lemma, we first show the following about the values {d(x, T )2}x∈C . This lemma will397

assume that φ(C, T ) ≥ 64φ∗(C) (else Lemma 6 is trivial).398

Lemma 7. Suppose φ(C, T ) ≥ 64φ∗(C). Then we have the following:399

1. φ(C, T ) ≤ 64
31 |C|d(µ, T )2.400

2. Let S ⊆ C be defined as {x ∈ C : d(x, T )2 ∈
�
1
3d(µ, T )

2, 7
3d(µ, T )

2
�
}. Then we have401

|S| ≥ 25
31 |C|.402

Roughly speaking, the lemma says that d(x, T )2 values are fairly uniform, i.e., many of the values403

are close to d(µ, T )2.404

Proof. We start by noting that by the triangle inequality (i.e., �x− y�2 ≤ 2(�x− z�2 + �z − y�2)),405

we have for any x ∈ C,406

1

2
d(µ, T )2 − �x− µ�2 ≤ d(x, T )2 ≤ 2

�
�x− µ�2 + d(µ, T )2

�
. (9)

Summing the inequality on the right over all x ∈ C, we have407

φ(C, T ) ≤ 2|C|d(µ, T )2 + 2φ∗(C).

Using the assumption that φ∗(C) ≤ φ(C, T )/64 and simplifying, we get the first part of the lemma.408

For for the second part, define409

S� = {x ∈ C : �x− µ�2 ≤ 1

6
d(µ, T )2}.
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By (9), we have that S� ⊆ S. Thus it suffices to lower bound |S�|. To do this, note that by Markov’s410

inequality (since the sum of �x− µ�2 is φ∗), we have411

|C \ S�| ≤ 6φ∗

d(µ, T )2
.

Using the first part of the lemma (together with the lower bound on d(C, T )), we have that d(µ, T )2 ≥412

31φ∗(C)/|C|. Plugging this into the above, we have413

|C \ S�| ≤ 6|C|
31

=⇒ |S�| ≥ 25

31
|C|.

This completes the proof of the lemma.414

We are now ready to prove Lemma 6.415

Proof of Lemma 6. We consider two cases. First, suppose Θ ≥ 7
3d(µ, T )

2. In this case, for all x ∈ S416

(as defined in the statement of Lemma 7), we have τ(x, T ) = d(x, T )2 ≥ d(µ, T )/3. Thus,417

τ(C, T ) ≥ |S| · d(µ, T )
2

3
≥ 25

31
|C| · 31

64

φ(C, T )

|C| · 1
3
≥ φ(C, T )

8
.

This implies that for all x ∈ C,418

τ(x, T )

τ(C, T )
≤ 8

φ(x, T )

φ(C, T )
.

Thus, we can appeal to (7) to conclude the proof of Lemma 6 in this case.419

Next, consider the case Θ < 7
3d(µ, T )

2. In this case, for all x ∈ S, we have τ(x, T ) =420

min(Θ, d(x, T )2) ≥ Θ/7. This implies that421

τ(C, T ) ≥ |S|Θ
7

≥ 25

31
· 1
7
· |C|Θ ≥ |C|Θ

10
.

Now by definition, we have τ(x, T ) ≤ Θ, and thus for all x ∈ C, we have422

τ(x, T )

τ(C, T )
≤ 10

|C| .

Thus, we can now appeal to (6) to conclude the proof of the lemma.423

The lemma immediately implies the following.424

Corollary 1. Consider step t in the execution of Algorithm 2. Let x be the the point chosen at the425

t’th step. Let C be one of the optimal clusters, and let φ∗(C) be the contribution of the points in C to426

the optimal cost. Then we have427

E [φ(C, St−1 ∪ {x}) | x ∈ C] ≤ 64 · φ∗(C), (10)
E [τ(C, St−1 ∪ {x}) | x ∈ C] ≤ 64 · φ∗(C). (11)

Proof. The proof of (10) follows from Lemma 6, using the fact that φ∗(C) = φ(C, {µ}) in the case428

of an optimal cluster C. Eq. (11) follows from τ(C, S) ≤ φ(C, S) for any sets C, S.429

We are now ready to prove Theorem 3.1. We will define a potential function as before. Consider the430

execution of the algorithm. We say that an optimal cluster Ci is covered at time step t if Ci ∩ St �= ∅.431

The number of wasted iterations wt until time t is the number of iterations in which no new cluster432

is covered (this could be due to picking a point in an already-covered cluster, or due to picking an433

outlier). We also denote by nt the number of uncovered optimal clusters at time t. We let Ht denote434

the union of points in covered (optimal) clusters, and Ut be the union of points in uncovered (optimal)435

clusters (note that this does not include the outliers). In this notation, define the potential436

Ψt =
wt · τ(Ut, St)

nt
.

As before, we will bound the expected increase in the potential Ψt+1 −Ψt, conditioned on St.437
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Lemma 8. Let St be the set of points chosen in the first t steps of the algorithm, and consider step438

(t+ 1). We have439

E[Ψt+1 −Ψt | St] ≤
β · OPT + τ(Ht, St)

nt
≤ β · OPT + τ(Ht, St)

k − t
. (12)

Before proving the lemma, let us see why it implies our theorem. We need another observation.440

Lemma 9. For any t > 0, we have441

E[τ(Ht, St)] ≤ 64 · OPT. (13)

Proof. Note that the expectation in (13) is over St. The lemma is then a direct consequence of442

Lemma 6. A formal proof of this can be shown via an inductive argument. Let H �
t be the set of443

indices of the covered clusters (recall that Ht is the union of the points in these clusters). Then we444

claim that for any J ⊆ [k] of size ≤ t,445

E[τ(Ht, St) | H �
t = J ] ≤ 64

�

j∈J

φ∗(Cj).

This claim implies the lemma, by taking an expectation over J . The claim itself follows easily446

by induction, because we can expand the expectation on the LHS using all the choices for H �
t−1.447

Either no new cluster is covered in step t (in which case Ht = Ht−1, and we can use the fact that448

τ(Ht, St) ≤ τ(Ht, St−1)), or a new cluster j (for some j ∈ J) is covered in step t, in which case we449

can apply Lemma 6 along with the inductive hypothesis.450

We can now complete the proof of Theorem 3.1.451

Proof of Theorem 3.1. Combining Lemmas 8 and 9 and summing over 0 ≤ t ≤ k − 1, we get that452

E[Ψk] ≤ (β + 64) log k · OPT.453

Thus it only remains to show Lemma 8.454

Proof of Lemma 8. Conditioned on St, let us evaluate E[Ψt+1]. Let V denote the indices of the455

uncovered clusters (thus |V | = nt). Then,456

E[Ψt+1 | St] ≤
�

i∈V

τ(Ci, St)

τ(X,St)

wtτ(Ut \ Ci, St)

nt − 1
+

τ(X \ Ut, St)

τ(X,St)

(wt + 1)τ(Ut, St)

nt
. (14)

For convenience, write γi = τ(Ci, St), and let Γ =
�

i∈V γi. Then (14) can be simplified as,457

E[Ψt+1 | St] =
�

i∈V

wtγi(Γ− γi)

(nt − 1)τ(X,St)
+

�
1− Γ

τ(X,St)

�
(wt + 1)Γ

nt
.

As in our analysis for k-center, we now use the fact that
�

i∈V γi(Γ− γi) ≤ Γ2(1− 1
ni
). Plugging458

this in above and simplifying, we have459

E[Ψt+1 | St] ≤ Ψt +

�
1− Γ

τ(X,St)

�
Γ

nt
.

Now using the fact that X \ Ut = Ht ∪ Xout, along with the observation that τ(Xout) ≤ β · OPT460

(which follows from the definition of the threshold), the lemma follows.461

A.3 Bi-criteria guarantee for k-means with outliers462

We now define a slightly different potential. We let Ht, Ut be defined as before (Section 3.1).463

Φt := wt · τ(X,St). (15)

There are two differences here. First, we do not have a denominator of nt. Second, we include464

τ(X,St) instead of τ restricted only to the uncovered inlier clusters. This makes the computation465

simpler, while also giving slightly better bounds.466
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Lemma 10. Let St be the points chosen in the first t steps of the algorithm, and consider step (t+1).467

Then for St,468

E[Φt+1 − Φt | St] ≤ βOPT + τ(Ht, St).

Again, assuming Lemma 10, we can use Lemma 9 to conclude the proof of Theorem 3.2.469

Proof of Theorem 3.2. By using Lemma 9 and summing over t, we have that470

E[Φ(1+c)k] ≤ (β + 64)OPT(1 + c)k.

Thus by Markov’s inequality, we have a probability at least δ of having471

Φ(1+c)k ≤ (β + 64)(1 + c)k · OPT

(1− δ)
.

Now, whenever we run for (1 + c)k iterations, at least ck of them have to be wasted (by definition,472

there cannot be more than k iterations in which a new cluster is covered). This implies that with473

probability ≥ δ, the potential τ(X,S�) satisfies the desired inequality.474

We now turn to the proof of Lemma 10.475

Proof of Lemma 10. The proof is actually simpler than the one for Lemma 8. We simply use the fact476

that Φ(X,St) is monotonically decreasing with t (because we only add elements to St). Thus,477

E[Φt+1 − Φt] ≤ Pr[wt+1 = wt + 1] · τ(X,St).

I.e., the increase in potential is bounded by the probability that wt increases, times τ(X,St) (this478

is true since wt increases by at most 1 in each iteration). The probability is precisely τ(X \479

Ut, St)/τ(X,St) (i.e., the probability that we choose a point that is not in the uncovered clusters,480

in other words, an outlier or an already covered point). Thus the probability is equal to τ(Xout ∪481

Ht, St)/τ(X,St). Plugging this into the equation above, we have482

E[Φt+1 − Φt] ≤ τ(Xout, St) + τ(Ht, St) ≤ βOPT + τ(Ht, St).

This completes the proof.483
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