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Abstract

We study quadrature rules for functions from an RKHS, using nodes sampled from
a determinantal point process (DPP). DPPs are parametrized by a kernel, and we
use a truncated and saturated version of the RKHS kernel. This link between the
two kernels, along with DPP machinery, leads to relatively tight bounds on the
quadrature error, that depends on the spectrum of the RKHS kernel. Finally, we
experimentally compare DPPs to existing kernel-based quadratures such as herding,
Bayesian quadrature, or leverage score sampling. Numerical results confirm the
interest of DPPs, and even suggest faster rates than our bounds in particular cases.

1 Introduction

Numerical integration [11] is an important tool for Bayesian methods [38] and model-based machine
learning [32]. Formally, numerical integration consists in approximating

/X f@)g@)dw@) ~ 3 w; (), 0
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where X is a topological space, dw is a Borel probability measure on &, g is a square integrable
function, and f is a function belonging to a space to be precised. In the quadrature formula (1), the N
points x1,...,xny € X are called the quadrature nodes, and ws, . . . , wy the corresponding weights.

The accuracy of a quadrature rule is assessed by the quadrature error, i.e., the absolute difference
between the left-hand side and the right-hand side of (1). Classical Monte Carlo algorithms, like
importance sampling or Markov chain Monte Carlo [39], pick up the nodes as either independent
samples or a sample from a Markov chain on &, and all achieve a root mean square quadrature error in
o(1/ VN ). Quasi-Monte Carlo quadrature [12] is based on deterministic, low-discrepancy sequences

of nodes, and typical error rates for X = R are (’)(logd N/N). Recently, kernels have been used to
derive quadrature rules such as herding [2, 9], Bayesian quadrature [19, 35], sophisticated control
variates [28, 33], and leverage-score quadrature [1] under the assumption that f lies in a RKHS. The
main theoretical advantage is that the resulting error rates are faster than classical Monte Carlo and
adapt to the smoothness of f.

In this paper, we propose a new quadrature rule for functions in a given RKHS. Our nearest scientific
neighbour is [1], but instead of sampling nodes independently, we leverage dependence and use a
repulsive distribution called a projection determinantal point process (DPP), while the weights are
obtained through a simple quadratic optimization problem. DPPs were originally introduced by
[29] as probabilistic models for beams of fermions in quantum optics. Since then, DPPs have been
thoroughly studied in random matrix theory [21], and have more recently been adopted in machine
learning [26] and Monte Carlo methods [3].

In practice, a projection DPP is defined through a reference measure dw and a repulsion kernel K. In
our approach, the repulsion kernel is a modification of the underlying RKHS kernel. This ensures
that sampling is tractable, and, as we shall see, that the expected value of the quadrature error is
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controlled by the decay of the eigenvalues of the integration operator associated to the measure dw.
Note that quadratures based on projection DPPs have already been studied in the literature: implicitly
in [22, Corollary 2.3] in the simple case where X = [0, 1] and dw is the uniform measure, and in [3]
for [0, 1]¢ and more general measures. In the latter case, the quadrature error is asymptotically of
order N—1/2-1/24 [3] with f essentially C'. In the current paper, we leverage the smoothness of the
integrand to improve the convergence rate of the quadrature in general spaces X.

This article is organized as follows. Section 2 reviews kernel-based quadrature. In Section 3, we recall
some basic properties of projection DPPs. Section 4 is devoted to the exposition of our main result,
along with a sketch of proof. We give precise pointers to the supplementary material for missing
details. Finally, in Section 5 we illustrate our result and compare to related work using numerical
simulations, for the uniform measure in d = 1 and 2, and the Gaussian measure on R.

Notation. Let X be a topological space equipped with a Borel measure dw and assume that the
support of dw is X. Let Lo(dw) be the Hilbert space of square integrable, real-valued functions
defined on X, with the usual inner product denoted by (-, -) 4., and the associated norm by ||. ||qe-
Letk: X x X — R, be a symmetric and continuous function such that, for any finite set of points
in X, the matrix of pairwise kernel evaluations is positive semi-definite. Denote by F the associated
reproducing kernel Hilbert space (RKHS) of real-valued functions [5]. We assume that  — k(z, x)
is integrable with respect to the measure dw so that F C Lo (dw). Define the integral operator

EM=L%MMwa%MW @

By construction, 3 is self-adjoint, positive semi-definite, and trace-class [40]. For m € N, denote
by e, the m-th eigenfunction of X, normalized so that ||e,,||q,, = 1 and o, the corresponding
eigenvalue. The integrability of the diagonal z +— k(z,x) implies that F is compactly embedded
in Ly (dw), that is, the identity map I : F — Lo(dw) is compact; moreover, since dw is of full
support in X, Ir is injective [44]. This implies a Mercer-type decomposition of k,

Kz, y) = Y omem(@)en(y), 3)

meN*

where N* = N \ {0} and the convergence is point-wise [45]. Moreover, for m € N*, we write
efr:l = \/Omem. Since Iz is injective [45], (ei)meN* is an orthonormal basis of F. Unless explicitly
stated, we assume that F is dense in Lo (dw), so that (e, )men+ is an orthonormal basis of Lz (dw).
For more intuition, under these assumptions, f € F if and only if ), o' (f, em>i2((1w) converges.

2 Related work on kernel-based quadrature

When the integrand f belongs to the RKHS F of kernel k [10], the quadrature error reads [41]
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where 1y = [, g(x)k(x,.)dw(x) is the so-called mean element [13, 31]. A tight approximation of
the mean element by a linear combination of functions k(x;, .) thus guarantees low quadrature error.
The approaches described in this section differ by their choice of nodes and weights.

2.1 Bayesian quadrature and the design of nodes

Bayesian Quadrature initially [27] considered a fixed set of nodes and put a Gaussian process prior
on the integrand f. Then, the weights were chosen to minimize the posterior variance of the integral
of f. If the kernel of the Gaussian process is chosen to be k, this amounts to minimizing the RHS of
(4). The case of the Gaussian reference measure was later investigated in detail [35], while parametric
integrands were considered in [30]. Rates of convergence were provided in [8] for specific kernels on
compact spaces, under a fill-in condition [47] that encapsulates that the nodes must progressively fill
up the (compact) space.



Finding the weights that optimize the RHS of (4) for a fixed set of nodes is a relatively simple task,
see later Section 4.1, the cost of which can even be reduced using symmetries of the set of nodes
[20, 24]. Jointly optimizing on the nodes and weights, however, is only possible in specific cases
[6, 23]. In general, this corresponds to a non-convex problem with many local minima [16, 34].
While [36] proposed to sample i.i.d. nodes from the reference measure dw, greedy minimization
approaches have also been proposed [19, 34]. In particular, kernel herding [9] corresponds to uniform
weights and greedily minimizing the RHS in (4). This leads to a fast rate in O(1/N), but only
when the integrand is in a finite-dimensional RKHS. Kernel herding and similar forms of sequential
Bayesian quadrature are actually linked to the Frank-Wolfe algorithm [2, 7, 19]. Beside the difficulty
of proving fast convergence rates, these greedy approaches still require heuristics in practice.

2.2 Leverage-score quadrature

In [1], the author proposed to sample the nodes (z;) i.i.d. from some proposal distribution ¢, and
then pick weights w in (1) that solve the optimization problem
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for some regularization parameter A > 0. Proposition 1 gives a bound on the resulting approximation
error of the mean element for a specific choice of proposal pdf, namely the leverage scores
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Proposition 1 (Proposition 2 in [1]). Let § € [0,1], and dy = Tr X(X + X )~'. Assume that
N > 5dylog(16dy/6), then

P ( sup inf

lgllaw <1 llwl2<#
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In other words, Proposition 1 gives a uniform control on the approximation error /i, by the subspace
spanned by the k(z;, .) for g belonging to the unit ball of Lo (dw), where the (z;) are sampled i.i.d.
from ¢3. The required number of nodes is equal to O(d log dy) for a given approximation error \.
However, for fixed ), the approximation error in Proposition 1 does not go to zero when NN increases.
One theoretical workaround is to make A = A(NV) decrease with N. However, the coupling of N and
A through d makes it very intricate to derive a convergence rate from Proposition 1. Moreover, the
optimal density g3 is in general only available as the limit (6), which makes sampling and evaluation
difficult. Finally, we note that Proposition 1 highlights the fundamental role played by the spectral
decomposition of the operator 3 in designing and analyzing kernel quadrature rules.

3 Projection determinantal point processes

Let N € N* and (¢n)ne[n] an orthonormal family of Ly(dw), and assume for simplicity that
X C R? and that dw has density w with respect to the Lebesgue measure. Define the repulsion kernel

R@y) = D Ya(@)n(y), ®)
n€e[N]
not to be mistaken for the RKHS kernel k. One can show [18, Lemma 21] that
1
1 Det(R(i, z)ijeny) [ wlai) ©)
1€[N]
is a probability density over X N When z1, ..., xy have distribution (9), the set = {z1,...2Nn}

is said to be a projection DPP! with reference measure dw and kernel &. Note that the kernel &
is a positive definite kernel so that the determinant in (9) is non-negative. Equation (9) is key to

'In the finite case, more common in ML, projection DPPs are also called elementary DPPs [26].



understanding DPPs. First, loosely speaking, the probability of seeing a point of & in an infinitesimal
volume around z; is RK(z1, z1)w(x1)dz,. Note that when d = 1 and (¢,,) are the family of
orthonormal polynomials with respect to dw, this marginal probability is related to the optimal
proposal gy in Section 2.2; see Appendix E.2. Second, the probability of simultaneously seeing a
point of & in an infinitesimal volume around x; and one around x» is

[ﬁ(ml, x1) R(x2, x2)— R(z1, $2)2j| w(z1)w(xe) dzrdas
< [R(z1, 21)w(x1)dzq] [R(z2, z2)w(ze)dxs] .

The probability of co-occurrence is thus always smaller than that of a Poisson process with the same
intensity. In this sense, a projection DPP with symmetric kernel is a repulsive distribution, and &
encodes its repulsiveness.

One advantage of DPPs is that they can be sampled exactly. Because of the orthonormality of (v,,),
one can write the chain rule for (9); see [18]. Sampling each conditional in turn, using e.g. rejection
sampling [39], then yields an exact sampling algorithm. Rejection sampling aside, the cost of this
algorithm is cubic in NV without further assumptions on the kernel. Simplifying assumptions can
take many forms. In particular, when d = 1, and w is a Gaussian, gamma [14], or beta [25] pdf, and
(1,) are the orthonormal polynomials with respect to w, the corresponding DPP can be sampled by
tridiagonalizing a matrix with independent entries, which takes the cost to O(N?) and bypasses the
need for rejection sampling. For further information on DPPs see [21, 43].

4 Kernel quadrature with projection DPPs

We follow in the footsteps of [1], see Section 2.2, but using a projection DPP rather than independent
sampling to obtain the nodes. In a nutshell, we consider nodes (z;),c[n) that are drawn from the
projection DPP with reference measure dw and repulsion kernel

Rlz,y) = > en(@)en(y), (10)
née[N]

where we recall that (e,,) are the normalized eigenfunctions of the integral operator 3. The weights
w are obtained by solving the optimization problem

min g — SwlfZ, (11)
where
P : (wj)je[N] — Z wik(xj,.) (12)
JE[N]

is the reconstruction operator. In Section 4.1 we prove that (11) almost surely has a unique solution
w and state our main result, an upper bound on the expected approximation error ||y, — ®w|%
under the proposed Projection DPP. Section 4.2 gives a sketch of the proof of this bound.

4.1 Main result

Assuming that nodes (z;) je[n] are known, we first need to solve the optimization problem (11) that
relates to problem (5) without regularization (A = 0). Let x = (21,...,25) € X N then

g — Pwl|% = |lpgllF — 2w pg(x;) je(n) + WK (z)w, (13)

where K (x) = (k(vi,2;)); jen)- The right-hand side of (13) is quadratic in w, so that the
optimization problem (11) admits a unique solution b if and only if K () is invertible. In this case,
the solution is given by w = K (x) ' u4(2;);jen. A sufficient condition for the invertibility of
K () is given in the following proposition.

Proposition 2. Assume that the matrix E(x) = (e;(x})); je[n) is invertible, then K (x) is invertible.

The proof of Proposition 2 is given in Appendix D.1. Since the pdf (9) of the projection DPP with
kernel (10) is proportional to Det? E (x), the following corollary immediately follows.

>The reconstruction operator & depends on the nodes x, although our notation doesn’t reflect it for simplicity.



Corollary 1. Let x = {x1,...,2 N} be a projection DPP with reference measure dw and kernel
(10). Then K () is a.s. invertible, so that (11) has unique solution w = K () j14(x;) je[n] a.s.

We now give our main result that uses nodes () jc[n] drawn from a well-chosen projection DPP.

Theorem 1. Let = {x1, ...,z N} be a projection DPP with reference measure dw and kernel (10).

Let W be the unique solution to (11) and define || g 4w, = Z [{(€n, @) aw|- Assume that ||g|law < 1
n€e[N]

and definery = Y, o, then
m>N+1

N 14
. o1 ( Nr
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In particular, if Ny = o(1), then the right-hand side of (14) is Nry + o(Nry). For example,
take X = [0, 1], dw the uniform measure on X, and F the s-Sobolev space, then o, = m~2% [5].
Now, if s > 1, the expected worst case quadrature error is bounded by N7y = O(N?72%) = o(1).
Another example is the case of the Gaussian measure on X = R, with the Gaussian kernel. In this

case o,, = Ba™ with0 < o < 1 and 3 > 0 [37] so that Nry = N%QN“ =o(1).

We have assumed that F is dense in Lo (dw) but Theorem 1 is valid also when F is finite-dimensional.
In this case, denote Ny = dim F. Then, for n > Ny, 0, = 0 and rn, = 0, so that (14) implies

l12g — w[|%F =0 as. (15)

This compares favourably with herding, for instance, which comes with a rate in (’)(%) for the
quadrature based on herding with uniform weights [2, 9].

The constant ||g||d.,1 in (14) is the £; norm of the coefficients of projection of g onto Span (e, )ne[n
in Ly (dw). For example, for g = ey, ||gllaw,1 = 1if n € [N] and ||g|law,1 = 0if n > N + 1. In the

worst case, ||g]ldw.1 < VN||g|law < V/N. Thus, we can obtain a uniform bound for ||g|lq, < 1in
the spirit of Proposition 1, but with a supplementary factor IV in the upper bound in (14).

4.2 Bounding the approximation error under the DPP

In this section, we give the skeleton of the proof of Theorem 1, referring to the appendices for
technical details. The proof is in two steps. First, we give an upper bound for the approximation error
|| 11y — ®w||% that involves the maximal principal angle between the functional subspaces of F

&G = Span(ef)ne[N] and 7 (x) = Span(k(z;,.));je[n]-
DPPs allow closed form expressions for the expectation of trigonometric functions of such angles;
see [4] and Appendix E.| for the geometric intuition behind the proof. The second step thus consists
in developing the expectation of the bound under the DPP.
4.2.1 Bounding the approximation error using principal angles

Letx = (z1,...,zy5) € XY be such that Det E(x) # 0. By Proposition 2, K (z) is non singular
and dim 7 («) = N. The optimal approximation error writes

g — @w|% = ll1tg — T (a1 % (16)
where I, = ®(®*®) ' ®* is the orthogonal projection onto 7 () with ®* the dual® of .

In other words, (16) equates the approximation error to || TI7 ()« fig||5, where IL7 (4. is the orthog-
onal projection onto 7 (z)*. Now we have the following lemma.

Lemma 1. Assume that ||g||a. < 1 then |72, ||7 < 1 and

Ty oyl < 2o + ol s ol Ty 5 a7

*For p € F.®* 1 = (u(;))je(n). 2" is an operator from RY to R™ that can be identified with K (z).



Now, to upper bound the right-hand side of (17), we note that oy, ||TI7 () €;, [|% is the product
of two terms: o, is a decreasing function of n while ||[IIr (e} ||% is the interpolation error of

the eigenfunction e, measured in the ||.|| 7 norm. We can bound the latter interpolation error
uniformly in n_€ [N] using the geometric notion of maximal principal angle between 7 (x) and

&% = Span(e] )ne(n]- This maximal principal angle is defined through its cosine

cos? On (T (x),EX) = inf (u,v) F. (18)
ueT (x),vEEL
lull7=1,llv[| 7=1
Similarly, we can define the N principal angles 0,,(7 (z),£%) € [0, Z] for n € [N] between the
subspaces £%; and 7 (z). These angles quantify the relative position of the two subspaces. See
Appendix C.3 for more details about principal angles. Now, we have the following lemma.

Lemma 2. Letx = (x1,...,7x) € XN such that Det E(x) # 0. Then

1 1
o F12. < 1< —1. 19
max Myl < o T e L= ng[N] cos? 0, (T (@), €L) (19)

To sum up, we have so far bounded the approximation error by the geometric quantity in the right-hand
side of (19). Where projection DPPs shine is in taking expectations of such geometric quantities.

4.2.2 Taking the expectation under the DPP

The analysis in Section 4.2.1 is valid whenever Det E(x) # 0. As seen in Corollary 1, this condition
is satisfied almost surely when @ is drawn from the projection DPP of Theorem 1. Furthermore, the
expectation of the right-hand side of (19) can be written in terms of the eigenvalues of the kernel k.

Proposition 3. Let x be a projection DPP with reference measure dw and kernel (10). Then,

1 Lo
E = _ter 20
DPP H ) B Z 0 o (20)
nelN] cos? 0, | T (x), EX DN nein

The bound of Proposition 3, once reported in Lemma 2 and Lemma 1, already yields Theorem 1 in
the special case where 01 = - - - = o . This seems a very restrictive condition, but next Proposition 4

shows that we can always reduce the analysis to that case. In fact, let the kernel & be defined by

l;(x,y) = Z Ul@n(fc)@n(y)+ Z Gn@n(x)en(y) = Z &nen(x)en(y), 21

ne[N] n>N+1 neN*
and let F be the corresponding RKHS. Then one has the following inequality.
Proposition 4. Let T(z) = Span (l;(xj, .))je
T(z)* in (F,{.,.) 7). Then,

] and H7-(w) 1 the orthogonal projection onto

Vi€ IN], oul Ty e % < 01Ty gy el 12 (22)

Simply put, capping the first eigenvalues of k yields a new kernel k that captures the interaction
between the terms o, and ||TL7(,)+ €7, || such that we only have to deal with the term [TL7 g - el ||2ﬁ

Combining Proposition 3 with Proposition 4 applied to the kernel k yields Theorem 1.

4.3 Discussion

We have arbitrarily introduced a product in the right-hand side of (19), which is a rather loose
majorization. Our motivation is that the expected value of this symmetric quantity is tractable under
the DPP. Getting rid of the product could make the bound much tighter. Intuitively, taking the upper
bound in (20) to the power 1/N results in a term in O(ry ) for the RKHS F. Improving the bound in
(20) would require a de-symmetrization by comparing the maximum of the 1/ cos? 0,(T (x), £%;) to



their geometric mean. An easier route than de-symmetrization could be to replace the product in (19)
by a sum, but this is beyond the scope of this article.

In comparison with [1], we emphasize that the dependence of our bound on the eigenvalues of the
kernel k, via rp, is explicit. This is in contrast with Proposition 1 that depends on the eigenvalues
of 3 through the degree of freedom d), so that the necessary number of samples N diverges when
A — 0. On the contrary, our quadrature requires a finite number of points for A = 0. It would be
interesting to extend the analysis of our quadrature in the regime A > 0.

5 Numerical simulations

5.1 The periodic Sobolev space and the Korobov space

Let dw be the uniform measure on X = [0, 1], and let the RKHS kernel be [5]

ks(z,y) =1+ Z # cos(2mm(z — y)),

meN*

so that F = F; is the Sobolev space of order s on [0, 1]. Note that &, can be expressed in closed
form using Bernoulli polynomials [46]. We take g = 1 in (1), so that the mean element p1, = 1. We
compare the following algorithms: (¢) the quadrature rule DPPKQ we propose in Theorem 1, (i)
the quadrature rule DPPUQ based on the same projection DPP but with uniform weights, implicitly
studied in [22], (#i¢) the kernel quadrature rule (5) of [1], which we denote LVSQ for leverage
score quadrature, with regularization parameter A € {0,0.1,0.2} (note that the optimal proposal is
¢x = 1), (tv) herding with uniform weights [2, 9], (v) sequential Bayesian quadrature (SBQ) [19]
with regularization to avoid numerical instability, and (vi) Bayesian quadrature on the uniform grid
(UGBQ). We take N € [5,50]. Figures la and 1b show log-log plots of the worst case quadrature
error w.r.t. IV, averaged over 50 samples for each point, for s € {1, 3}.

We observe that the approximation errors of all first four quadratures converge to 0 with different
rates. Both UGBQ and DPPKQ converge to 0 with a rate of O(N ~2%), which indicates that our
O(N?72%) bound in Theorem 1 is not tight in the Sobolev case. Meanwhile, the rate of DPPUQ
is O(N~2) across the three values of s: it does not adapt to the regularity of the integrands. This
corresponds to the CLT proven in [22]. LVSQ without regularization converges to O slightly slower
than O(IN~2%). Augmenting \ further slows down convergence. Herding converges at an empirical
rate of O(N~2), which is faster than the rate O(NN 1) predicted by the theoretical analysis in [2, 9].
SBQ is the only one that seems to plateau for s = 3, although it consistently has the best performance
for low N. Overall, in the Sobolev case, DPPKQ and UGBQ have the best convergence rate. UGBQ
— known to be optimal in this case [6] — has a better constant.

Now, for a multidimensional example, consider the “Korobov" kernel k, defined on [0, 1]¢ by

vmay S [07 1]d7 ks,d(m7y) = H k?(x77y1) (23)
1€[d)

We still take g = 1 in (1) so that 4, = 1. We compare (i) our DPPKQ, (i4) LVSQ without
regularization (A = 0), (i4¢) the kernel quadrature based on the uniform grid UGBQ, (iv) the kernel
quadrature SGBQ based on the sparse grid from [42], (v) the kernel quadrature based on the Halton
sequence HaltonBQ [15]. We take N € [5,1000] and s = 1. The results are shown in Figure 1c.
This time, UGBQ suffers from the dimension with a rate in O(N —2s/ d), while DPPKQ, HaltonBQ
and LVSQ (A = 0) all perform similarly well. They scale as O((log N)?*(?=1) N=2%) which is a
tight upper bound on o4 1, see [1] and Appendix B. SGBQ seems to lag slightly behind with a rate
O((log N)2(s+1(d=1) N =25 [17,42].

5.2 The Gaussian kernel

We now consider dw to be the Gaussian measure on X = R along with the RKHS kernel k- (z,y) =
exp[—(x — y)?/2+?], and again g = 1. Figure 1d compares the empirical performance of DPPKQ
to the theoretical bound of Theorem 1, herding, crude Monte Carlo with i.i.d. sampling from dw,
and sequential Bayesian Quadrature, where we again average over 50 samples. We take N € [5, 50]
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Figure 1: Squared error vs. number of nodes N for various kernels.

and v = % Note that, this time, only the y-axis is on the log scale for better display, and that LVSQ
is not plotted since we don’t know how to sample from ¢, in (6) in this case. We observe that the
approximation error of DPPKQ converges to 0 as O ("), while the discussion below Theorem 1 let
us expect a slightly slower O(Na'). Herding improves slightly upon Monte Carlo that converges as
O(N~1). Similarly to Sobolev spaces, the convergence of sequential Bayesian quadrature plateaus
even if it has the smallest error for small N. We also conclude that DPPKQ is a close runner-up to
SBQ and definitely takes the lead for large enough V.

6 Conclusion

In this article, we proposed a quadrature rule for functions living in a RKHS. The nodes are drawn
from a DPP tailored to the RKHS kernel, while the weights are the solution to a tractable, non-
regularized optimization problem. We proved that the expected value of the squared worst case
error is bounded by a quantity that depends on the eigenvalues of the integral operator associated
to the RKHS kernel, thus preserving the natural feel and the generality of the bounds for kernel
quadrature [1]. Key intermediate quantities further have clear geometric interpretations in the ambient
RKHS. Experimental comparisons suggest that DPP quadrature favourably compares with existing
kernel-based quadratures. In specific cases where an optimal quadrature is known, such as the
uniform grid for 1D periodic Sobolev spaces, DPPKQ seems to have the optimal convergence rate.
However, our generic error bound does not reflect this optimality in the Sobolev case, and must thus
be sharpened.

We have discussed room for improvement in our proofs. Further work should also address exact
sampling algorithms, which do not exist yet when the spectral decomposition of the integral operator
is not known. Approximate algorithms would also suffice, as long as the error bound is preserved.
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