
Supplementary for Learning from Trajectories via
Subgoal Discovery

Sujoy Paul1
supaul@ece.ucr.edu

Jeroen van Baar2
jeroen@merl.com

Amit K. Roy-Chowdhury1
amitrc@ece.ucr.edu

1University of California-Riverside 2Mitsubishi Electric Research Laboratories (MERL)

Contents

• Variations in sub-goals and Assumptions on Trajectories
• Variations in Number of Trajectories
• Generating Sub-optimal Trajectories for BiMGame
• Supervised Pre-Training
• Network Architectures
• Effect of Number of Sub-goals and Number of Trajectories
• Analysis of Baselines Performance

1 Variations in Sub-goals and Assumptions on Trajectories

In this section, we show visualizations of the learned sub-goals for different number of sub-goals.
Fig. 1 and Fig. 2 shows the visualizations for the AntMaze task using sub-optimal and optimal
trajectories respectively. Fig. 3 and Fig. 4 shows the visualizations for BiMGame and AntTarget
respectively. It may be observed in Fig. 1, that with high ng , although our algorithm starts from the
specified number of sub-goals, at the end of the sub-goal learning process, it ends up discovering
fewer sub-goals (shown in brackets), 25→ 21 and 20→ 18. However, with optimal trajectories (Fig.
2), our algorithm is able to discover the pre-specified number of sub-goals (at least till ng = 30).
This is due to the fact that the variations in the path taken by the optimal trajectories are much less
than the sub-optimal trajectories. Thus, our algorithm is able to cluster the states more appropriately
for optimal than sub-optimal trajectories. This actually shows the claim we make in the paper, that
our assumption that certain groups of states should follow some temporal ordering in the trajectories,
are only soft and the degree by which they deviate determine the number and thus the granularity
of the discovered sub-goals. Moreover, as we see in Fig. 4c of the paper, even with sub-optimal
trajectories, a low number of pre-specified sub-goals (such as ng = 10) performs almost as good as
with pre-specified ng = 25, which actually discovers 21 sub-goals.

2 Variations with Number of Trajectories

In this section, we evaluate the performance of the proposed method with changes in the number
of trajectories. Specifically we use our method with 125 and 250 trajectories for the AntTarget
environment and plot them in Fig. 5a. As can be observed from the plot that the difference in
performance for with and without using uψ is more with fewer number of trajectories. We also show
the performance of our algorithm with variations in number of trajectories and number of sub-goals
in Fig. 5b. Fig. 5c and 5d show that our method to learn sub-goals is data-efficient as the sub-goals
learned using 125 trajectories are similar to that learned with 250 trajectories. So, the small increment

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

(a) (5, 5) (b) (10, 10) (c) (15, 15) (d) (20, 18) (e) (25, 21)

Figure 1: This figure presents the visualizations of the discovered sub-goals for AntMaze using the
sub-optimal set of expert trajectories with different number of pre-specified sub-goals (ng). The
values as caption denote (no. of pre-specified sub-goals, no. of sub-goals learned).

(a) (5, 5) (b) (10, 10) (c) (20, 20) (d) (25, 25) (e) (30, 30)

Figure 2: This figure presents the visualizations of the discovered sub-goals for AntMaze using the
optimal set of expert trajectories with different number of sub-goals (ng) as input. The values as
caption denote (no. of pre-specified sub-goals, no. of sub-goals learned).

(a) (2, 2) (b) (3, 3) (c) (4, 4) (d) (5, 5)

Figure 3: This figure presents the visualizations of the discovered sub-goals for BiMGame with
different number of sub-goals (ng) as input. The values as caption denote (no. of pre-specified
sub-goals, no. of sub-goals learned).

(a) (5, 5) (b) (10, 10) (c) (15, 15) (d) (20, 20) (e) (25, 24)

Figure 4: This figure presents the visualizations of the discovered sub-goals for AntTarget using the
expert trajectories with different number of sub-goals (ng) as input. The values as caption denote (no.
of pre-specified sub-goals, no. of sub-goals learned).

in the performance when using 250 vs. 125 trajectories is probably due to better pre-training of the
network with more variations in trajectories.

3 Generating sub-optimal trajectories for BiMGame

In this method of generating trajectories for the BiMGame environment, we leverage the internal
physics engine of the simulator to forward propagate the state in time and generate trajectories by
optimizing the cumulative reward function in an Model Predictive Control (MPC) manner. Formally,

2

0 10 20 30 40
Number of samples (in Millions)

0.00

0.05

0.10

0.15

0.20

0.25
Ep

iso
de

 C
um

ul
at

iv
e

Re
wa

rd

ng = 5 (no u), nd = 125
ng = 5(u), nd = 125
ng = 5 (no u), nd = 250
ng = 5(u), nd = 250

(a)

0 10 20 30 40
Number of samples (in Millions)

0.00

0.05

0.10

0.15

0.20

0.25

Ep
iso

de
 C

um
ul

at
iv

e
Re

wa
rd

ng = 5, nd = 125
ng = 10, nd = 125
ng = 5, nd = 250
ng = 10, nd = 250

(b)

(c) 125 trajectories, ng = 5 (d) 250 trajectories, ng = 5

Figure 5: (a) This figure shows the performance on AntTarget environment with variations in the
number of trajectories used for learning. The plot also shows the performance with and without using
out-of-set augmentation. The number of sub-goals used is ng = 5. (b) This plot shows performance
with different combination of number of sub-goals (ng) and number of trajectories used for training.
(c) and (d) vsisualizes the sub-goals learned for ng = 5 with 125 and 250 trajectories.

at time step t, we obtain the optimal action set a∗t:t+H−1 from t to t+H−1 by solving the following:

argmax
at:t+H−1

t+H−1∑
t′=t

r(st′ , at′ , st′+1), s.t., st′+1 = S(st′ , at′), (1)

where S is the simulator, r(st, at, st+1) = d(st+1)− d(st) is the reward, d(st) is the radial distance
of the ball at time t from the center of the board, H is the horizon of optimization and at:t+H−1

is a set of actions. We only take the first action a∗t , move to state st+1 and repeat Eqn. 1. As we
use a non-differentiable simulator, we employ a random shooting strategy [1] where we sample K
sets of at:t+H−1 and choose the one which maximizes the rewards. We use K,H = 10 empirically.
Note that the reward and the random shooting may not lead to the shortest path, thus making the
trajectories sub-optimal.

4 Supervised Pre-Training

As discussed previously, an initial way to utilize the trajectories is by pre-training the policy network
πθ using the trajectory set D in a supervised learning framework. We pre-train the network by
optimizing the following:

θ∗ = argmin
θ

nd∑
i=1

ni∑
t=1

l(πθ(a|sti),a∗
ti) + λ||θ||2F (2)

where l is the loss function which can be cross-entropy or regression loss depending on discrete or
continuous actions. Note that for continuous actions in AntTarget and AntMaze, the action variables
comprise of (µ, σ). The second part of Eqn. 2 is the l2 regularization loss. The policy obtained after

3

optimizing Eqn. 2 possesses the ability to take actions with low error rates at the states sampled
from the distribution induced by the trajectory set D. However, a small error at the beginning would
compound quadratically [2] with time as the agent starts visiting states which are not sampled from
the distribution of D. Algorithms like DAgger can be used to fine-tune the policy by querying expert
actions at states visited after executing the learned policy. This query to the expert is often very costly
and even may not be feasible in some applications. More importantly, as DAgger aims to mimick the
expert, it can only reach its performance and not better than that. For this reason, we fine-tune the
policy using RL with the extrinsic reward function obtained after identifying the sub-goals.

5 Network Architectures

We follow the architecture of A3C [3] and share parameters between the policy and the state value
estimation network. To model πθ in BiMGame, we use a CNN with architecture Conv-Conv-FC-RNN
followed by two heads: one for policy network and another for state value estimation. We append
the previous step action as additional input to the RNN step [4]. To model πθ for AntTarget and
AntMaze, we use the architecture FC-FC-FC-RNN, again followed by two heads for policy and state
value estimation. For the policy part, we predict the mean and standard deviation. We use similar
architectures for the respective tasks for πφ and fψ(s) with modifications in the final layer to suit
their purpose. We do not use a RNN for πφ or fψ(s).

6 Effect of Number of Sub-goals and Number of Trajectories

Fig. 4a and 4b (of paper) show that the performance remains similar for ng ≥ 2. Tasks cannot
be solved with ng = 1, i.e., all the states clustered to a single subgoal, and thus no rewards from
subgoals. However, we do see that for AntMaze Fig 4c (of paper) the performance is dependent on
the number of subgoals, due to the longer time horizon required to solve the task. We also performed
an experiment on BiMGame with fewer trajectories (250 instead of 400). With fewer trajectories,
pre-training performance is lower and we will therefore need more steps in RL, with more frequent
rewards. This can be seen in Fig. 6 which shows that for 250 trajectories, ng = 2 is not able to solve
the task, but ng = 4 is able to solve it.

0 1 2 3 4
Number of samples (in Millions)

0.0

0.1

0.2

0.3

0.4

0.5

Ep
iso

de
 C

um
ul

at
iv

e
Re

wa
rd

ng = 4, nd = 400
ng = 4, nd = 250
ng = 2, nd = 250
Expert

Figure 6: Effect of number of sub-goals and trajectories on BiMGame.

7 Analysis of Baselines Performance

In our experiments, we observe that the baselines cannot solve BiMGame & AntMaze even with
pre-training using the optimal trajectories. AggreVaTeD in particular has a strong dependency on
the quality of the value function [5]. For value reward, we observe some progress in BiMGame
and AntMaze towards the goal. For BiMGame it is able to get into the 2nd & 3rd ring, and for
AntMaze it is able to reach the first turn. Fig. 7a, 7b shows this as the distribution of visited states
(sampled regularly). Nevertheless, their cumulative terminal-only reward is 0. We see similar trends
for AggreVaTeD.

4

20 30 40 50 60

20

30

40

50

60

(a) BiMGame (b) AntMaze

Figure 7: Distribution of visited states for Value-Based Rewards (VBRS) for BiMGame and AntMaze.
Brighter color means visited more number of times.

References
[1] Anil V Rao. A survey of numerical methods for optimal control. Advances in the Astronautical

Sciences, 135(1):497–528, 2009.

[2] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, pages 627–635, 2011.

[3] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, pages 1928–1937, 2016.

[4] Piotr W. Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J. Ballard, Andrea
Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran,
and Raia Hadsell. Learning to navigate in complex environments. ICLR, 2017.

[5] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply
aggrevated: Differentiable imitation learning for sequential prediction. In ICML, pages 3309–
3318, 2017.

5

	Variations in Sub-goals and Assumptions on Trajectories
	Variations with Number of Trajectories
	Generating sub-optimal trajectories for BiMGame
	Supervised Pre-Training
	Network Architectures
	Effect of Number of Sub-goals and Number of Trajectories
	Analysis of Baselines Performance

