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Abstract

We propose a scalable Gromov-Wasserstein learning (S-GWL) method and estab-
lish a novel and theoretically-supported paradigm for large-scale graph analysis.
The proposed method is based on the fact that Gromov-Wasserstein discrepancy
is a pseudometric on graphs. Given two graphs, the optimal transport associated
with their Gromov-Wasserstein discrepancy provides the correspondence between
their nodes and achieves graph matching. When one of the graphs has isolated
but self-connected nodes (i.e., a disconnected graph), the optimal transport indi-
cates the clustering structure of the other graph and achieves graph partitioning.
Using this concept, we extend our method to multi-graph partitioning and match-
ing by learning a Gromov-Wasserstein barycenter graph for multiple observed
graphs; the barycenter graph plays the role of the disconnected graph, and since
it is learned, so is the clustering. Our method combines a recursive K-partition
mechanism with a regularized proximal gradient algorithm, whose time complexity
isO(K(E+V ) logK V ) for graphs with V nodes and E edges. To our knowledge,
our method is the first attempt to make Gromov-Wasserstein discrepancy applicable
to large-scale graph analysis and unify graph partitioning and matching into the
same framework. It outperforms state-of-the-art graph partitioning and matching
methods, achieving a trade-off between accuracy and efficiency.

1 Introduction
Gromov-Wasserstein distance [42, 29] was originally designed for metric-measure spaces, which can
measure distances between distributions in a relational way, deriving an optimal transport between
the samples in distinct spaces. Recently, the work in [11] proved that this distance can be extended to
Gromov-Wasserstein discrepancy (GW discrepancy) [37], which defines a pseudometric for graphs.
Accordingly, the optimal transport between two graphs indicates the correspondence between their
nodes. This work theoretically supports the applications of GW discrepancy to structural data analysis,
e.g., 2D/3D object matching [30, 28, 8], molecule analysis [43, 44], network alignment [49], etc.
Unfortunately, although GW discrepancy-based methods are attractive theoretically, they are often
inapplicable to large-scale graphs, because of high computational complexity. Additionally, these
methods are designed for two-graph matching, ignoring the potential of GW discrepancy to other
tasks, like graph partitioning and multi-graph matching. As a result, the partitioning and the matching
of large-scale graphs still typically rely on heuristic methods [16, 12, 45, 27], whose performance is
often sub-optimal, especially in noisy cases.

Focusing on the issues above, we design a scalable Gromov-Wasserstein learning (S-GWL) method
and establish a new and unified paradigm for large-scale graph partitioning and matching. As
illustrated in Figure 1(a), given two graphs, the optimal transport associated with their Gromov-
Wasserstein discrepancy provides the correspondence between their nodes. Similarly, graph partition-
ing corresponds to calculating the Gromov-Wasserstein discrepancy between an observed graph and
a disconnected graph, as shown in Figure 1(b). The optimal transport connects each node of the ob-
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(a) Graph matching

(b) Graph partitioning

(c) Multi-graph matching

(d) Multi-graph partitioning (e) Comparisons on accuracy and efficiency

Figure 1: (a)-(d) Illustrations of graph partitioning and matching in the GWL framework. (c, d) The barycenter
graph in black and its optimal transports to observed graphs are learned jointly. (d) When the barycenter graph
is initialized as a graph with few isolated nodes, the optimal transports indicate aligned partitions of observed
graph. (e) We test various graph matching methods in 10 trials on an Intel i7 CPU. In each trial, the source graph
has 2,000 nodes and the target graph has 100 more noisy nodes and corresponding edges. The graphs yield either
Gaussian partition model [7] or Barabási-Albert model [4]. The GWL-based methods (‘?’) obtains higher node
correctness than other baselines (‘•’), and our S-GWL (big ‘?’) achieves a trade-off on accuracy and efficiency.

served graph with an isolated node of the disconnected graph, yielding a partitioning. In Figures 1(c)
and 1(d), taking advantage of the Gromov-Wasserstein barycenter in [37], we achieve multi-graph
matching and partitioning by learning a “barycenter graph”. For arbitrary two or more graphs, the
correspondence (or the clustering structure) among their nodes can be established indirectly through
their optimal transports to the barycenter graph.

The four tasks in Figures 1(a)-1(d) are explicitly unified in our Gromov-Wasserstein learning (GWL)
framework, which corresponds to the same GW discrepancy-based optimization problem. To improve
its scalability, we introduce a recursive mechanism to the GWL framework, which recursively applies
K-way partitioning to decompose large graphs into a set of aligned sub-graph pairs, and then matches
each pair of sub-graphs. When calculating GW discrepancy, we design a regularized proximal
gradient method, that considers the prior information of nodes and performs updates by solving a
series of convex sub-problems. The sparsity of edges further helps us reduce computations. These
acceleration strategies yield our S-GWL method: for graphs with V nodes and E edges, its time
complexity is O(K(E + V ) logK V ) and memory complexity is O(E + V K). To our knowledge,
our S-GWL is the first to make GW discrepancy applicable to large-scale graph analysis. Figure 1(e)
illustrates the effectiveness of S-GWL on graph matching, with more results presented in Section 5.

2 Graph Analysis Based on Gromov-Wasserstein Learning
Denote a measure graph asG(V,C,µ), where V = {vi}|V|i=1 is the set of nodes,C = [cij ] ∈ R|V|×|V|
is the adjacency matrix, and µ = [µi] ∈ Σ|V| is a Borel probability measure defined on V . The
adjacency matrix is continuous for weighted graph while binary for unweighted graph. In practice,
µ is an empirical distribution of nodes, which can be estimated by a function of node degree. A
K-way graph partitioning aims to decompose a graph G into K sub-graphs by clustering its nodes,
i.e., {Gk = G(Vk,Ck,µk)}Kk=1, where ∪kVk = V and Vk ∩ Vk′ = ∅ for k 6= k′. Given two graphs
Gs and Gt, graph matching aims to find a correspondence between their nodes, i.e., π : Vs 7→ Vt.
Many real-world networks are modeled using graph theory, and graph partitioning and matching are
important for community detection [21, 16] and network alignment [39, 40, 54], respectively. In this
section, we propose a Gromov-Wasserstein learning framework to unify these two problems.

2.1 Gromov-Wasserstein discrepancy between graphs
Our GWL framework is based on a pseudometric on graphs called Gromov-Wasserstein discrepancy:
Definition 2.1 ([11]). Denote the collection of measure graphs as G. For each p ∈ [1,∞] and each
Gs, Gt ∈ G, the Gromov-Wasserstein discrepancy between Gs and Gt is

dgw(Gs, Gt) := minT∈Π(µs,µt)

(∑
i,j∈Vs

∑
i′,j′∈Vt

|csij − cti′j′ |pTii′Tjj′
) 1

p

, (1)

where Π(µs,µt) = {T ≥ 0|T1|Vt| = µs,T
>1|Vs| = µt}.

GW discrepancy compares graphs in a relational way, measuring how the edges in a graph compare
to those in the other graph. It is a natural extension of the Gromov-Wasserstein distance defined for
metric-measure spaces [29]. We refer the reader to [29, 11, 36] for mathematical foundations.
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Graph matching According to the definition, GW discrepancy measures the distance between two
graphs, and the optimal transport T = [Tij ] ∈ Π(µs,µt) is a joint distribution of the graphs’ nodes:
Tij indicates the probability that the node vsi ∈ Vs corresponds to the node vtj ∈ Vt. As shown in
Figure 1(a), the optimal transport achieves an assignment of the source nodes to the target ones.

Graph partitioning Besides graph matching, this paradigm is also suitable for graph partitioning.
Recall that most existing graph partitioning methods obey the modularity maximization principle [16,
12]: for each partitioned sub-graph, its internal edges should be dense, while its external edges
connecting with other sub-graphs should be sparse. This principle implies that if we treat each
sub-graph as a “super node” [21, 47, 34], an ideal partitioning should correspond to a disconnected
graph with K isolated, but self-connected super nodes. Therefore, we achieve K-way partitioning
by calculating the GW discrepancy between the observed graph G and a disconnected graph, i.e.,
dgw(G,Gdc), where Gdc = G(Vdc, diag(µdc),µdc). |Vdc| = K. µdc ∈ ΣK is a node distribution,
whose derivation is in Appendix A.1. diag(µdc) is the adjacency matrix of Gdc. As shown in
Figure 1(b), the optimal transport is a |V| × K matrix. The maximum in each row of the matrix
indicates the cluster of a node.

2.2 Gromov-Wasserstein barycenter graph for analysis of multiple graphs
Multi-graph matching Distinct from most graph matching methods [17, 13, 39, 14], which mainly
focus on two-graph matching, our GWL framework can be readily extended to multi-graph cases,
by introducing the Gromov-Wasserstein barycenter (GWB) proposed in [37]. Given a set of graphs
{Gm}Mm=1, their p-order Gromov-Wasserstein barycenter is a barycenter graph defined as

G(V̄, C̄, µ̄) := arg minḠ

∑M

m=1
ωmd

p
gw(Gm, Ḡ), (2)

where ω = [ωm] ∈ ΣM contains predefined weights, and Ḡ = G(V̄, C̄ ∈ R|V̄|×|V̄|, µ̄ ∈ Σ|V̄|) is the
barycenter graph with a predefined number of nodes. The barycenter graph minimizes the weighted
average of its GW discrepancy to observed graphs. It is an average of the observed graphs aligned by
their optimal transports. The matrix C̄ is a “soft” adjacency matrix of the barycenter. Its elements
reflect the confidence of the edges between the corresponding nodes in V̄ . As shown in Figure 1(c),
the barycenter graph works as a “reference” connecting with the observed graphs. For each node
in the barycenter graph, we can find its matched nodes in different graphs with the help of the
corresponding optimal transport. These matched nodes construct a node set, and two arbitrary nodes
in the set are a correspondence. The collection of all the node sets achieves multi-graph matching.

Multi-graph partitioning We can also use the barycenter graph to achieve multi-graph partitioning,
with the learned barycenter graph playing the role of the aforementioned disconnected graph. Given
two or more graphs, whose nodes may have unobserved correspondences, existing partitioning
methods [21, 16, 12, 6, 34] only partition them independently because they are designed for clustering
nodes in a single graph. As a result, the first cluster of a graph may correspond to the second cluster
of another graph. Without the correspondence between clusters, we cannot reduce the search space
in matching tasks. Although this correspondence can be estimated by matching two coarse graphs
that treat the clusters as their nodes, this strategy not only introduces additional computations but
also leads to more uncertainty on matching, because different graphs are partitioned independently
without leveraging structural information from each other. By learning a barycenter graph for multiple
graphs, we can partition them and align their clusters simultaneously. As shown in Figure 1(d), when
applying K-way multi-graph partitioning, we initialize a disconnected graph with K isolated nodes
as the barycenter graph, and then learn it by minḠ

∑M
m=1 ωmd

p
gw(Gm, Ḡ). For each node of the

barycenter graph, its matched nodes in each observed graph belong to the same cluster.

3 Scalable Gromov-Wasserstein Learning
Based on Gromov-Wasserstein discrepancy and the barycenter graph, we have established a GWL
framework for graph partitioning and matching. To make this framework scalable to large graphs, we
propose a regularized proximal gradient method to calculate GW discrepancy and integrate multiple
acceleration strategies to greatly reduce the computational complexity of GWL.

3.1 Regularized proximal gradient method
Inspired by the work in [48, 49], we calculate the GW discrepancy in (1) based on a proximal gradient
method, which decomposes a complicated non-convex optimization problem into a series of convex
sub-problems. For simplicity, we set p = 2 in (1, 2). Given two graphs Gs = G(Vs,Cs,µs) and
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Gt = G(Vt,Ct,µt), in the n-th iteration, we update the current optimal transport T (n) by calculating
d2
gw(Gs, Gt):

T (n+1) = arg minT∈Π(µs,µt)

∑
i,j∈Vs

∑
i′,j′∈Vt

|csij − cti′j′ |2T
(n)
ii′ Tjj′ + γKL(T ‖T (n))

= arg minT∈Π(µs,µt)〈L(Cs,Ct,T
(n)),T 〉+ γKL(T ‖T (n)).

(3)

Here, L(Cs,Ct,T ) = Csµs1
>
|Vt| + 1|Vs|µ

>
t C
>
t − 2CsTC

>
t , derived based on [37], and

〈·, ·〉 represents the inner product of two matrices. The Kullback-Leibler (KL) divergence, i.e.,
KL(T ‖T (n)) =

∑
ij Tij log(Tij/T

(n)
ij )− Tij + T

(n)
ij , is added as the proximal term. We can solve

(3) via the Sinkhorn-Knopp algorithm [41, 15] with nearly-linear convergence [1]. As demonstrated
in [49], the global convergence of this proximal gradient method is guaranteed, so repeating (3) leads
to a stable optimal transport, denoted as T̂ . Additionally, this method is robust to hyperparameter γ,
achieving better convergence and numerical stability than the entropy-based method in [37].

Learning the barycenter graph is also based on the proximal gradient method. Given M graphs, we
estimate their barycenter graph via alternating optimization. In the n-th iteration, given the previous
barycenter graph Ḡ(n) = G(V̄, C̄(n), µ̄), we update M optimal transports via solving (3). Given the
updated optimal transports {T (n+1)

m }Mm=1, we update the adjacency matrix of the barycenter graph by

C̄(n+1) =
1

µ̄µ̄>

∑
m
ωm(T (n+1)

m )>CmT
(n+1)
m . (4)

The weights ω, the number of the nodes |V̄| and the node distribution µ̄ are predefined.

Different from the work in [49, 37], we use the following initialization strategies to achieve a
regularized proximal gradient method and estimate optimal transports with few iterations.

Node distributions We estimate the node distribution µ of a graph empirically by a function of node
degree, which reflects the local topology of nodes, e.g., the density of neighbors. In particular, for a
graph with |V| nodes, we first calculate a vector of node degree, i.e., n = [ni] ∈ Z|V|, where ni is
the number of neighbors of the i-th node. Then, we estimate the node distribution µ as

µ = µ̃/‖µ̃‖1, µ̃ = (n+ a)b. (5)

where a ≥ 0 and b ≥ 0 are the hyperparameters controlling the shape of the distribution. For the
graphs with isolated nodes, whose ni’s are zeros, we set a > 0 to avoid numerical issues when solving
(3). For the graphs whose nodes obey to power-law distributions, i.e., Barabási-Albert graphs, we
set b ∈ [0, 1) to balance the probabilities of different nodes. This function generalizes the empirical
settings used in other methods: when a = 0 and b = 1, we derive the distribution based on the
normalized node degree used in [49]; when b = 0, we assume the distribution is uniform as the work
in [37, 44] does. We find that the node distributions have a huge influence on the stability and the
performance of our learning algorithms, which will be discussed in the following sections.

Optimal transports For graph analysis, we can leverage prior knowledge to get a better regularization
of optimal transport. Generally, the nodes with similar local topology should be matched with a
high probability. Therefore, given two node distributions µs and µt, we construct a node-based
cost matrix Cnode ∈ R|Vs|×|Vt|, whose element is cij = |µs

i − µt
j |, and add a regularization term

〈Cnode,T
(n)〉 to (3). As a result, in the learning phase, we replace the L(Cs,Ct,T

(n)) in (3) with
L(Cs,Ct,T

(n)) + τCnode, where τ controls the significance of Cnode. Introducing the proposed
regularizer helps us measure the similarity between nodes directly, which extends our GW discrepancy
to the fused GW discrepancy in [44, 43]. In such a situation, the main difference here is that we
use the proximal gradient method to calculate the discrepancy, rather than the conditional gradient
method in [43].

Barycenter graphs When learning GWB, the work in [37] fixed the node distribution to be uniform
In practice, however, both the node distribution of the barycenter graph and its optimal transports
to observed graphs are unknown. In such a situation, we need to first estimate the node distribution
µ̄ = [µ̄1, ..., µ̄|V̄|]. Without loss of generality, we assume that the node distribution of the barycenter
graph is sorted, i.e., µ̄1 ≥ ... ≥ µ̄|V̄|. We estimate the node distribution via the weighted average of
the sorted and re-sampled node distributions of observed graphs:

µ̄ =
∑M

m=1
ωminterpolate|V̄|(sort(µm)), (6)
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Algorithm 1 ProxGrad(Gs, Gt, γ)

1: Set n = 0, a = µs.
2: CalculateCnode with cij = |µsi − µtj |.
3: Initialize T (n) = µsµ

>
t .

4: While not converge
5: G = e−(Cnode+L(Cs,Ct,T

(n)))/γ � T (n).
6: b = µt/(G

>a), and a = µs/(Gb).
7: T (n+1) = diag(a)Gdiag(b), then n = n+ 1.
8: Output: T̂ = T (n).

Algorithm 2 GWB({Gm}Mm=1, γ, |V̄|,ω)

1: Set n = 0.
2: Initialize µ̄ via (6). C̄(n) = diag(µ̄).
3: While not converge
4: For m = 1, ...,M

5: T
(n+1)
m = ProxGrad(Gm, Ḡ

(n), γ).
6: Calculate C̄(n+1) via (4).
7: n = n+ 1.
8: Output: T̂m = T

(n)
m for m = 1, ..,M .

where sort(·) sorts the elements of the input vector in descending order, and interpolate|V̄|(·) samples
|V̄| values from the input vector via bilinear interpolation. Given the node distribution, we initialize
the optimal transports via the method mentioned above.

Algorithms 1 and 2 show the details of our method, where “�” and “·/·” represent elementwise
multiplication and division, respectively. The GWL framework for the tasks in Figures 1(a)-1(d) are
implemented based on these two algorithms, with details in Appendix A.1.

3.2 A recursive K-partition mechanism for large-scale graph matching
Assume that the observed graphs have comparable size, whose number of nodes and edges are
denoted as V and E, respectively. When using the proximal gradient method directly to calculate the
GW discrepancy between two graphs, the time complexity, in the worst case, is O(V 3) because the
L(Cs,Ct,T

(n)) in (3) involves CsTC
>
t . Even if we consider the sparsity of edges and implement

sparse matrix multiplications, the time complexity is still as high as O(EV ).

To improve the scalability of our GWL framework, we introduce a recursive K-partition mechanism,
recursively decomposing observed large graphs to a set of aligned small graphs. As shown in
Figure 2(a), given two graphs, we first calculate their barycenter graph (with K nodes) and achieve
their joint K-way partitioning. For each node of the barycenter graph, the corresponding sub-
graphs extracted from the observed two graphs construct an aligned sub-graph pair, shown as the
dotted frames connected with grey circles in Figure 2(a). For each aligned sub-graph pair, we
further calculate its barycenter graph and decompose the pair into more and smaller sub-graph pairs.
Repeating the above step, we finally calculate the GW discrepancy between the sub-graphs in each
pair, and find the correspondence between their nodes. Note that this recursive mechanism is also
applicable to multi-graph matching: for multiple graphs, in the final step we calculate the GWB
among the sub-graphs in each set. The details of our S-GWL method are provided in Appendix A.2.

Complexity analysis In Table 1, we compare the time and memory complexity of our S-GWL method
with other matching methods. The Hungarian algorithm [24] has time complexityO(V 3) [17, 33, 50].
Denoting the largest node degree in a graph as d, the time complexity of GHOST [35] is O(d4).
The methods above take the graph affinity matrix as input, so their memory complexity in the worst
case is O(V 4). MI-GRAAL [23], HubAlign [19] and NETAL [32] are relatively efficient, with time
complexity O(V E + V 2 log V ), O(V 2 log V ) and O(E2 + EV log V ), respectively. CPD+Emb
first learns D-dimensional node embeddings [18], and then registers the embeddings by the CPD
method [31], whose time complexity is O(DV 2). The memory complexity of these four methods
is O(V 2). For GW discrepancy-based methods, the GWL+Emb in [49] achieves graph matching
and node embedding jointly. It uses the distance matrix of node embeddings and breaks the sparsity
of edges, so its time complexity is O(V 3) and memory complexity is O(V 2). The time complexity
of GWL is O(V E), but its memory complexity is still O(V 2) because the L(Cs,Ct,T

(n)) in (3)
is a dense matrix. Our S-GWL combines the recursive mechanism with the regularized proximal
gradient method and implements the CsT

(n)C>t in (3) by sparse matrix multiplications. Ideally, we
can apply R = blogK V c recursions. In the r-th recursion we calculate Kr barycenter graphs for Kr

sub-graph pairs. The sub-graphs in each pair have O( V
Kr ) nodes. As a result, we have

Proposition 3.1. Suppose that we have M graphs, each of which has V nodes and E edges. With
the help of the recursive K-partition mechanism, the time complexity of our S-GWL method is
O(MK(E + V ) logK V ), and its memory complexity is O(M(E + V K)).

Choosing K = 2 and ignoring the number of graphs, we obtain the complexity shown in Table 1.
Our S-GWL has lower computational time complexity and memory requirements than many existing
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GWL GWL GWL

(a) Scheme of our S-GWL method

GWL
S-GWL (K2 R3)
S-GWL (K4 R2)
S-GWL (K8 R1)

(b) Runtime
Figure 2: (a) An illustration of S-GWL. (b) Comparisons on runtime.

Table 1: Comparisons for graph matching methods on time and memory complexity.
Hungarian GHOST∗ MI-GRAAL HubAlign NETAL CPD+Emb GWL+Emb GWL S-GWL

Time O(·) V 3 d4 V E+V 2 log V V 2 log V E2+EV log V DV 2 V 3 V E 2(E+V ) log V
Memory O(·) V 4 V 4 V 2 V 2 V 2 V 2 V 2 V 2 E + 2V

* d is the largest node degree in a graph.

methods. Figure 2(b) visualizes the runtime of GWL and S-GWL on matching synthetic graphs. The
S-GWL methods with different configurations (i.e., the number of partitions K and that of recursions
R) are consistently faster than GWL. More detailed analysis is provided in Appendix A.3.

4 Related Work
Gromov-Wasserstein learning GW discrepancy has been applied in many matching problems,
e.g., registering 3D objects [28, 29] and matching vocabulary sets between different languages [2].
Focusing on graphs, a fused Gromov-Wasserstein distance is proposed in [44, 43], combining GW
discrepancy with Wasserstein discrepancy [46]. The work in [49] further takes node embedding
into account, learning the GW discrepancy between two graphs and their node embeddings jointly.
The appropriateness of these methods is supported by [11], which proves that GW discrepancy is a
pseudometric on measure graphs. Recently, an adversarial learning method based on GW discrepancy
is proposed in [9], which jointly trains two generative models in incomparable spaces. The work
in [37] further proposes Gromov-Wasserstein barycenters for clustering distributions and interpolating
shapes. Currently, GW discrepancy is mainly calculated based on Sinkhorn iterations [41, 15, 5, 37],
whose applications to large-scale graphs are challenging because of its high complexity. Our S-GWL
method is the first attempt to make GW discrepancy applicable to large-scale graph analysis.

Graph partitioning and graph matching Graph partitioning is important for community detection
in networks. Many graph partitioning methods have been proposed, such as Metis [21], EdgeBe-
tweenness [16], FastGreedy [12], Label Propagation [38], Louvain [6] and Fluid Community [34].
All of these methods explore the clustering structure of nodes heuristically based on the modularity-
maximization principle [16, 12]. Graph matching is important for network alignment [39, 40, 54]
and 2D/3D object registration [31, 51, 20, 53]. Traditional methods formulate graph matching as a
quadratic assignment problem (QAP) and solve it based on the Hungarian algorithm [17, 33, 51, 50],
which are only applicable to small graphs. For large graphs like protein networks, many heuristic
methods have been proposed, such as GRAAL [22], IsoRank [40], PISwap [10], MAGNA++ [45],
NETAL [32], HubAlign [19], and GHOST [35], which mainly focus on two-graph matching and are
sensitive to the noise in graphs. With the help of GW discrepancy, our work establishes a unified
framework for graph partitioning and matching, that can be readily extended to multi-graph cases.

5 Experiments
The implementation of our S-GWL method can be found at https://github.com/HongtengXu/s-gwl.
We compare it with state-of-the-art methods for graph partitioning and matching. All the methods are
run on an Intel i7 CPU with 4GB memory. Implementation details and a further set of experimental
results are provided in Appendix B.

5.1 Graph partitioning
We first verify the performance of the GWL framework on graph partitioning, comparing it with the
following four baselines: Metis [21], FastGreedy [12], Louvain [6], and Fluid Community [34].
We consider synthetic and real-world data. Similar to [52], we compare these methods in terms of
adjusted mutual information (AMI) and runtime. Each synthetic graph is a Gaussian random partition
graph with N nodes and K clusters. The size of each cluster is drawn from a normal distribution
N (200, 10). The nodes are connected within clusters with probability pin and between clusters with
probability pout. The ratio pout

pin
indicates the clearness of the clustering structure, and accordingly
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Table 2: Comparisons for graph partitioning methods on AMI, time complexity and runtime (second).
Method Metis FastGreedy Louvain Fluid GWL

Time complexity O(V +E+K logK) O(V E log V ) O(V log V ) O(E) O((E + V )K)
(N, pin, pout) AMI Time AMI Time AMI Time AMI Time AMI Time

(4000, 0.2, 0.05) 0.413 1.744 0.247 55.435 0.747 22.889 0.776 21.580 0.812 13.033
(4000, 0.2, 0.1) 0.009 2.340 0.064 65.441 0.574 95.114 0.577 111.043 0.590 12.740
(4000, 0.2, 0.15) 0.002 3.592 0.002 80.322 0.005 290.846 0.005 203.225 0.012 12.901

Table 3: Comparisons for graph partitioning methods on AMI.
Method Metis FastGreedy Louvain Fluid GWL
Dataset Raw Noisy Raw Noisy Raw Noisy Raw Noisy Raw Noisy

EU-Email 0.421 0.246 0.312 0.118 0.434 0.272 — 0.338 0.459 0.349
Indian-Village 0.834 0.513 0.882 0.275 0.880 0.633 — 0.401 0.857 0.664

“—”: Fluid is inapplicable when the networks have disconnected nodes or sub-graphs.

the difficulty of partitioning. We set N = 4000, pin = 0.2, and pout ∈ {0.05, 0.1, 0.15}. Under
each configuration (N, pin, pout), we simulate 10 graphs. For each method, its average performance
on these 10 graphs is listed in Table 2. GWL outperforms the alternatives consistently on AMI.
Additionally, as shown in Table 2, GWL has time complexity comparable to other methods, especially
when the graph is sparse, e.g., E = O(V log V ). According to the runtime in practice, GWL is faster
than most baselines except Metis, likely because Metis is implemented in the C language while GWL
and other methods are based on Python.

Table 3 lists the performance of different methods on two real-world datasets. The first dataset is the
email network from a large European research institution [25]. The network contains 1,005 nodes
and 25,571 edges. The edge (vi, vj) in the network mean that person vi sent person vj at least one
email, and each node in the network belongs to exactly one of 42 departments at the research institute.
The second dataset is the interactions among 1,991 villagers in 12 Indian villages [3]. Furthermore,
to verify the robustness of GWL to noise, we not only consider the raw data of these two datasets
but also create their noisy version by adding 10% more noisy edges between different communities
(i.e., departments and villages). Experimental results show that GWL is at least comparable to its
competitors on raw data, and it is more robust to noise than other methods.

5.2 Graph matching
For two-graph matching, we compare our S-GWL method with the following baselines: PISwap [10],
GHOST [35], MI-GRAAL [23], MAGNA++ [45], HubAlign [19], NETAL [32], CPD+Emb [18,
31], the GWL framework based on Algorithm 1, and the GWL+Emb in [49]. We test all methods
on both synthetic and real-world data. For each method, given the learned correspondence set S and
the ground-truth correspondence set Sreal, we calculate node correctness as NC = |S ∩ Sreal|/|S| ×
100%. The runtime of each method is recorded as well.

In the synthetic dataset, each source graph G(Vs, Es) obeys a Gaussian random partition model [7] or
Barabási-Albert model [4]. For each source graph, we generate a target graph by adding |Vs| × q%
noisy nodes and |Es|×q% noisy edges to the source graph. Figure 1(e) compares our S-GWL with the
baselines when |Vs| = 2000 and q = 5. For each method, its average node correctness and runtime
on matching 10 synthetic graph pairs are plotted. Compared with existing heursitic methods, GW
discrepancy-based methods (GWL+Emb, GWL and S-GWL) obtain much higher node correctness.
GWL+Emb achieves the highest node correctness, with runtime comparable to many baselines. Our
GWL framework does not learn node embeddings when matching graphs, so it is slightly worse
than GWL+Emb on node correctness but achieves about 10 times acceleration. Our S-GWL method
further accelerates GWL with the help of the recursive mechanism. It obtains high node correctness
and makes its runtime comparable to the fastest methods (HubAlign and NETAL).

In addition to graph matching on synthetic data, we also consider two real-world matching tasks. The
first task is matching the protein-protein interaction (PPI) network of yeast with its noisy version.
The PPI network of yeast contains 1,004 proteins and their 4,920 high-confidence interactions.
Its noisy version contains q% more low-confidence interactions, and q ∈ {5, 10, 15, 20, 25}. The
dataset is available on https://www3.nd.edu/~cone/MAGNA++/. The second task is matching user
accounts in different communication networks. The dataset is available on http://vacommunity.org/
VAST+Challenge+2018+MC3, which records the communications among a company’s employees.
Following the work in [49], we extract 622 employees and their call-network and email-network.
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Table 4: Comparisons for graph matching methods on node correctness (%) and runtime (second).
Dataset Yeast 5% noise Yeast 15% noise Yeast 25% noise MC3 sparse MC3 dense
Method NC Time NC Time NC Time NC Time NC Time
PISwap 0.10 15.80 0.10 18.31 0.00 22.09 6.32 10.27 0.00 11.81
GHOST 11.06 25.67 0.40 30.22 0.30 35.54 21.27 17.86 0.03 22.90

MI-GRAAL 18.03 189.21 6.87 202.77 5.18 240.03 35.53 72.89 0.64 197.65
MAGNA++ 48.13 603.29 25.04 630.60 13.61 624.17 7.88 425.16 0.09 447.86
HubAlign 50.00 3.27 35.16 3.50 12.85 3.89 36.21 2.11 3.86 2.29
NETAL 6.87 1.91 0.90 2.06 1.00 2.09 36.87 1.23 1.77 1.30

CPD+Emb 3.59 103.22 2.09 110.19 2.00 108.62 4.35 87.54 0.48 95.68
GWL+Emb 83.66 1340.58 66.63 1499.20 57.97 1537.93 40.45 608.76 4.23 831.80

GWL 82.37 190.97 65.34 212.16 58.76 210.86 34.21 89.43 3.96 93.94
S-GWL 81.08 68.58 61.85 70.06 56.27 74.64 36.92 8.39 4.03 9.01

Table 5: Comparisons for multi-graph matching methods on yeast networks.

Method 3 graphs 4 graphs 5 graphs 6 graphs
NC@1 NC@all NC@1 NC@all NC@1 NC@all NC@1 NC@all

MultiAlign 62.97 45.19 — — — — — —
GWL 63.84 46.22 68.73 39.14 71.61 31.57 76.49 28.39

S-GWL 60.06 43.33 68.53 38.45 73.21 33.27 76.99 29.68

For each communication network, we construct a dense version and a sparse one: the dense version
keeps all the communications (edges) among the employees, while the sparse version only preserves
the communications happening more than 8 times. We test different methods on i) matching yeast’s
PPI network with its 5%, 15% and 25% noisy versions; and ii) matching the employee call-network
with their email-network in both sparse and dense cases. Table 4 shows the performance of various
methods in these two tasks. Similar to the experiments on synthetic data, the GW discrepancy-based
methods outperform other methods on node correctness, especially for highly-noisy graphs, and our
S-GWL method achieves a good trade-off between accuracy and efficiency.

Given the PPI network of yeast and its 5 noisy versions, we test GWL and S-GWL for multi-graph
matching. We consider several existing multi-graph matching methods and find that the methods
in [33, 51, 50] are not applicable for the graphs with hundreds of nodes because i) their time
complexity is at leastO(V 3), and ii) they suffer from inadequate memory on our machine (with 4GB
memory) because their memory complexity in the worst case is O(V 4). The IsoRankN in [26] can
align multiple PPI networks jointly, but it needs confidence scores of protein pairs as input, which are
not available for our dataset. The only applicable baseline we are aware of is the MultiAlign in [54].
However, it can only achieve three-graph matching. Table 5 lists the performance of various methods.
Given learned correspondence sets, each of which is a set of matched nodes from different graphs,
NC@1 represents the percentage of the set containing at least a pair of correctly-matched nodes, and
NC@all represents the percentage of the set in which arbitrary two nodes are matched correctly. Both
GWL and S-GWL obtain comparable performance to MultiAlign on three-graph matching, and GWL
is the best. When the number of graphs increases, NC@1 increases while NC@all decreases for all
the methods, and S-GWL becomes even better than GWL.

6 Conclusion and Future Work
We have developed a scalable Gromov-Wasserstein learning method, achieving large-scale graph
partitioning and matching in a unified framework, with theoretical support. Experiments show that our
approach outperforms state-of-the-art methods in many situations. However, it should be noted that
our S-GWL method is sensitive to its hyperparameters. Specifically, we observed in our experiments
that the γ in (3) should be set carefully according to observed graphs. Generally, for large-scale graphs
we have to use a large γ and solve (3) with many iterations. The a and b in (5) are also significant for
the performance of our method. The settings of these hyperparameters and their influences are shown
in Appendix B. In the future, we will further study the influence of hyperparameters on the rate of
convergence and set the hyperparameters adaptively according to observed data. Additionally, our
S-GWL method can decompose a large graph into many independent small graphs, so we plan to
further accelerate it by parallel processing and/or distributed learning.
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A Details of Algorithms

A.1 The GWL framework for different tasks

Based on Algorithms 1 and 2, our GWL framework achieve the graph partitioning and matching
tasks in Figures 1(a)-1(d). The schemes of GWL for these tasks are shown in Algorithms 3-6.

Algorithm 3 S = GWL-GraphMatching(Gs, Gt, γ)

Require: Gs = G(Vs,Cs,µs), Gt = G(Vt,Ct,µt), hyperparameter γ.
1: Initialize correspondence set S = ∅.
2: T̂ = ProxGrad(Gs, Gt, γ).
3: For vsi ∈ Vs
4: Find j = arg maxj T̂ij , then S = S ∪ {(vsi , vtj)}.
5: return S

Algorithm 4 {Gk}Kk=1 = GWL-GraphPartitioning(G, γ,K)

Require: G = G(V,C,µ), hyperparameter γ, the number of clusters K.
1: Initialize a node distribution via (6): µdc = interpolateK(sort(µ))
2: Construct a disconnected graph Gdc = G(Vdc, diag(µdc),µdc), where Vdc = {1, ...,K}.
3: T̂ = ProxGrad(G,Gdc, γ).
4: Initialize Vk = ∅ for k = 1, ...,K.
5: For vi ∈ V
6: Find j = arg maxj T̂ij , then Vj = Vj ∪ {vi}.
7: For k = 1, ...,K
8: Construct a adjacency matrix by selecting rows and columns: Ck = C(Vk,Vk).
9: Construct a node distribution by selecting elements and normalizing them: µk = µ(Vk)

‖µ(Vk)‖1
.

10: return {Gk = G(Vk,Ck,µk)}Kk=1

Algorithm 5 S = GWL-MultiGraphMatching(G, γ)

Require: A graph set G = {Gm = G(Vm,Cm,µm)}Mm=1, hyperparameter γ
1: Initialize correspondence set S = ∅, K = min{|Vm|}Mm=1, ω = [ 1

M
, .., 1

M
].

2: {T̂m}Mm=1 = GWB({Gm}Mm=1, γ,K,ω).
3: For k = 1, ...,K
4: s = ∅
5: For m = 1, ..,M

6: Find i = arg maxi T̂
m
ik , then s = s ∪ {vmi }.

7: S = S ∪ s.
8: return S.

Algorithm 6 {Gk}Kk=1 = GWL-MultiGraphPartitioning(G, γ,K)

Require: A graph set G = {Gm = G(Vm,Cm,µm)}Mm=1, hyperparameter γ, the number of clusters K.
1: Initialize ω = [ 1

M
, .., 1

M
].

2: {T̂m}Mm=1 = GWB({Gm}Mm=1, γ,K,ω).
3: Initialize Vk,m = ∅ for k = 1, ..,K and m = 1, ..,M .
4: For m = 1, ..,M
5: For vmi ∈ Vm
6: Find j = arg maxj T̂

m
ij , then Vj,m = Vj,m ∪ {vmi }.

7: For k = 1, ...,K

8: Ck,m = Cm(Vk,m,Vk,m), and µk,m =
µm(Vk,m)

‖µ(Vk,m)‖1
.

9: return {Gk}Kk=1, where Gk = {Gk,m = G(Vk,m,Ck,m,µk,m)}Mm=1.
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A.2 The scheme of S-GWL

Based on Algorithms 3, 5 and 6, we show the scheme of our S-GWL method for (multi-) graph
matching in Algorithm 7.

Algorithm 7 S = S-GWL(G0, γ,K,R)

Require: A graph set with M graphs, i.e., G0 = {Gm = G(Vm,Cm,µm)}Mm=1, γ, the number of partitions
K and that of recursions R.

1: Initialize correspondence set S = ∅.
2: Initialize the root collection of graph sets as G0 = {G0}.
3: For r = 1, ..., R \\ Recursive K-partition mechanism
4: Initialize Gr = ∅.
5: For each graph set G ∈ Gr−1

6: {Gk}Kk=1 = GWL-MultiGraphPartitioning(G, γ,K).
7: Gr = Gr ∪ {Gk}Kk=1.
8: For each graph set G ∈ GR
9: If M = 2 \\ Two-graph matching

10: Stmp = GWL-GraphMatching(Gs, Gt, γ), where G = {Gs, Gt}.
11: Else \\ Multi-graph matching
12: Stmp = GWL-MultiGraphMatching(G, γ).
13: S = S ∪ Stmp.
14: return S.

A.3 Detailed complexity analysis for GWL and S-GWL

Algorithms 3 and 5 Suppose that we have a source graph with Vs nodes and Es edges and a
target graph with Vt nodes and Et edges. The most time- and memory-consuming operation in
Algorithm 3 is the CsT

(n)C>t in (3). Because Cs is with size Vs × Vs and Ct is with size Vt × Vt,
the computational time complexity of this step in the worst case is O(V 2

s Vt + VsV
2
t ) and its memory

complexity is O(V 2
s + V 2

t + VsVt). Taking advantage of the sparsity of edge, CsT
(n)C>t can be

implemented by sparse matrix multiplications (i.e., save Cs, Ct as “csr” matrix in Python), whose
computational time complexity and memory cost can be reduced to O(EsVt + VsEt) and O(VsVt)

1,
respectively. Assuming that these two graphs are with comparable size, we ignore the number of
graphs and the subscripts and rewrite the time and memory complexity as O(V E) and O(V 2), as
shown in the “GWL” column of Table 1.

Algorithm 5 is a natural extension of Algorithm 3 based on GWB. Suppose that we haveM graphs. We
assume that these graphs and the target barycenter graph are with comparable size. The computational
time complexity of Algorithm 5 is O(MVE) and its memory complexity is O(MV 2).

Algorithms 4 and 6 The main difference between Algorithm 4 and Algorithm 3 is that the size of
target graph is much smaller than that of source graph, i.e., K = Vt � Vs and K = Et, because
the target graph is disconnected, whose number of nodes indicates the number of partitions in the
source graph. According to the analysis above, the time and memory complexity of Algorithm 4 is
O(EsK + VsK) and O(Es + VsK)2. Ignoring the subscripts, we obtain the complexity shown in
Table 2.

Similarly, Algorithm 6 is an extension of Algorithm 4 for M graphs, whose time and memory
complexity is O(MK(E + V )) and O(M(E + V K)), respectively.

Algorithm 7 Given M graphs with comparable sizes, each of which has about V nodes and E edges,
we can apply R = blogK V c recursions. In the r-th recursion, the Gr in Algorithm 7) contains Kr

sub-graph sets. If we assume that each partitioning operation partition a graph intoK sub-graphs with
comparable sizes, the m-th sub-graph in each set should be with O( V

Kr ) nodes and O( E
Kr ) edges.

For each sub-graph set, we calculate its barycenter graph by Algorithm 6, thus, its time and memory
complexity is O(MK( E

Kr + V
Kr )) and O( M

Kr (E + V K)), respectively. At the end of recursion,

1The memory complexity actually should be O(Es +Et + VsVt). Based on the sparsity of edge, we ignore
the edge-related terms.

2Even if edges are sparse, Es is often comparable to VsK. Therefore, different from the analysis for
Algorithms 3 and 5, here we do not ignore Es.
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Figure 3: Illustrations of the improvements on convergence achieved by our proximal gradient method
regularized by node prior (i.e., “prior + proximal” compared with the entropy-based method in [37]) and the
vanilla proximal gradient method in [49].

we obtain KR sub-graph sets. Each sub-graph is very small, with size O( V
KR ). As long as KR is

comparable to V , the computations in lines 8-13 of Algorithm 7 can be ignored compared with the
computations in the recursions.

In summary, we run blogK V c recursions, and in the r-th recursion we need to calculateKr barycenter
graphs. The overall time complexity of S-GWL is O(MK(E + V ) logK V ), and its memory
complexity is O(M(E + V K)), respectively, as shown in Proposition 3.1. Choosing K = 2 and
ignoring the number of graphs, we obtain the complexity shown in Table 1.

A.4 Usefulness of node prior

With the help of the prior knowledge of node (i.e., Cnode), our regularized proximal gradient method
can achieve a stable optimal transport with few iterations, whose rate of convergence is faster than the
entropy-based method in [37] and the vanilla proximal gradient method in [49]. Figure 3 illustrates
the improvements on convergence achieved by our method. Given two synthetic graphs with 1,000
nodes, we calculate their GW discrepancy by different methods. Our method can reach lower GW
discrepancy with fewer iterations, and its superiority is consistent with respect to the change of the
hyperparameter γ.

B More Experimental Results

B.1 Implementation details

For each baseline, we list its source and language below:

• Graph Partitioning:
– Metis (C): http://glaros.dtc.umn.edu/gkhome/views/metis
– FastGreedy (Python): https://networkx.github.io/documentation/networkx-2.2/

reference/algorithms/generated/networkx.algorithms.community.modularity_max.
greedy_modularity_communities.html#networkx.algorithms.community.modularity_
max.greedy_modularity_communities

– Louvain (Python): https://github.com/taynaud/python-louvain
– Fluid (Python): https://networkx.github.io/documentation/networkx-2.2/reference/

algorithms/generated/networkx.algorithms.community.asyn_fluid.asyn_fluidc.html#
networkx.algorithms.community.asyn_fluid.asyn_fluidc

• Graph Matching:
– PISwap (Python): http://cb.csail.mit.edu/cb/piswap/webserver/
– GHOST (C): http://www.cs.cmu.edu/~ckingsf/software/ghost/
– MI-GRAAL (C): http://www0.cs.ucl.ac.uk/staff/natasa/MI-GRAAL/index.html
– MAGNA++ (C): https://www3.nd.edu/~cone/MAGNA++/
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https://networkx.github.io/documentation/networkx-2.2/reference/algorithms/generated/networkx.algorithms.community.asyn_fluid.asyn_fluidc.html#networkx.algorithms.community.asyn_fluid.asyn_fluidc
https://networkx.github.io/documentation/networkx-2.2/reference/algorithms/generated/networkx.algorithms.community.asyn_fluid.asyn_fluidc.html#networkx.algorithms.community.asyn_fluid.asyn_fluidc
http://cb.csail.mit.edu/cb/piswap/webserver/
http://www.cs.cmu.edu/~ckingsf/software/ghost/
http://www0.cs.ucl.ac.uk/staff/natasa/MI-GRAAL/index.html
https://www3.nd.edu/~cone/MAGNA++/


Table 6: The settings of hyperparameters in different experiments.
Experiments τ a b γ K R

Synthetic partitioning (Table 2) 0 0 1 1e-2 — —
EU-Email partitioning (Table 3) 0 0 1e-3 5e-7 — —

Indian-Village partitioning (Table 3) 0 5e-1 1 5e-5 — —
Synthetic matching (Figure 4) 1e1 0 1 2e-1 2 3

Yeast graph matching (Table 4) 1e3 0 1 2.5e-2 2 3
MC3 network matching (Table 4) 1e1 1 1e-1 1e-3 2 3

Yeast multi-graph matching (Table 5) 1e3 0 1 2.5e-2 8 1
Yeast-Human matching (Table 7) 1 0 5e-1 5e-2 2 4

– HubAlign and NETAL (C): https://ttic.uchicago.edu/~hashemifar/
– CPD+Emb (Python): node2vec is from https://snap.stanford.edu/node2vec/, CPD is

from https://github.com/siavashk/pycpd.
– GWL+Emb (Python): https://github.com/HongtengXu/gwl.

All the baselines are tested under their default settings. For our GWL framework and S-GWL method,
their hyperparameters are set empirically in different experiments, which are shown in Table 6.

Note that using non-uniform node distributions is important for our method, especicially for the cases
involving multi-graph partitioning and matching. When doing multi-graph partitioning, the key step
of our S-GWL, the adjacency matrix of the barycenter graph is initialized as a diagonal matrix and its
node distribution is estimated by the node distributions of observed graphs. The node distribution
based on node degree enhances the consistency of the partitioning across different graphs. For
example, given two graphs GA and GB , we jointly partition them into two subgraph pairs {G1

A, G
1
B}

and {G2
A, G

2
B}. If we use uniform node distributions, the barycenter will be initialized with uniform

node distribution [0.5, 0.5]> and adjacency matrix 0.5I2, and we may have an identification problem
— G2

B can be finally paired with G1
A.

B.2 Performance on some challenging cases

Although our GWL framework and S-GWL method perform well in most of our experiments, we
find some challenging cases that point out our future research direction.

Matching Barabási-Albert (BA) graphs Figure 1(e) shows the averaged matching results in 10
trials. In five of these trials, we match synthetic graphs obeying to Gaussian random partition model.
In the remaining five trials, we match synthetic graphs obeying to Barabási-Albert (BA) model. The
overall performance shown in Figure 1(e) demonstrates the superiority of our S-GWL method. This
outstanding result is mainly contributed by the experiments on Gaussian partition graphs. Specifically,
when matching Gaussian partition graphs, all the GW discrepancy-based methods achieves very
high node correctness, and the speed of our method is almost the same with the fastest HubAlign
method, as shown in Figure 4(a). When it comes to BA graphs, Figure 4(b) indicates that although
GW discrepancy-based methods still outperform many baselines, there is a gap between them and the
state-of-the-art methods in the aspect of node correctness.

Additionally, the BA graphs also have a negative influence on our recursive mechanism. For Gaussian
partition graphs, it is relatively easy to partition them into several sub-graphs with comparable
size. In such a situation, the power of our recursive mechanism can be maximized, which helps us
achieve over 100 times acceleration. However, for BA graphs, the sub-graphs we get are often with
incomparable size. The largest sub-graph decides the runtime of our S-GWL method. As a result, our
S-GWL method only achieves about 10∼20 times acceleration.

Currently, we are making efforts to improve the performance and the speed of our method on BA
graphs. To solve this problem, we may need to use some node information, e.g., introducing node
embedding into our S-GWL method.

Matching incomparable graphs The second challenging case is matching incomparable graphs.
This case is common in the field of bioinformatics, e.g., matching the PPI networks from different
species. When the networks are with incomparable size, the performance of GW discrepancy-based
methods degrades. For example, in Table 7, we match the PPI network of yeast to that of human. This
yeast network has 2,340 proteins (nodes), while the human network has 9,141 proteins. Because the
ground truth correspondence between these proteins is unknown, we use edge correctness to evaluate
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(a) Gaussian Partition: Accuracy v.s. efficiency (b) Barabási-Albert: Accuracy v.s. efficiency

s-gwl-P2R3
s-gwl-P4R2
s-gwl-P8R1

(c) Gaussian Partition: Acceleration

s-gwl-P2R3
s-gwl-P4R2
s-gwl-P8R1

(d) Barabási-Albert: Acceleration

Figure 4: The performance of our method on different kinds of graphs. (a, b) For each method, its standard
deviation of node correctness and that of runtime are shown as well.

Table 7: Comparisons for graph matching methods on edge correctness (%).
Method IsoRank PISwap MI-GRAAL GHOST NETAL HubAlign GWL S-GWL

Yeast↔Human 2.12 2.16 13.87 17.04 28.65 21.59 19.56 18.89
The results of baselines are from [19].

our method. Specifically, edge correctness calculates the percentage of yeast’s edges appearing in the
human network.

Experimental results show that both GWL and S-GWL outperform most of their competitors except
HubAlign and NETAL. The main reason for this phenomenon, in our opinion, is because the constraint
of optimal transport. The constraint T ∈ Π(µs,µt) implies that each node in the target graph is
assigned to a source node with a probability as long as its probability in µt is nonzero. When the
number of target nodes is much larger than that of source nodes, the real correspondence will be
oversmoothed because each source node transports to too many target nodes. To overcome this issue,
we need to propose a preprocess to remove potentially-useless nodes from the large graph, which is
another future work for us.
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