
Online Optimal Control with Linear Dynamics and
Predictions: Algorithms and Regret Analysis

Yingying Li
SEAS

Harvard University
Cambridge, MA, 02138

yingyingli@g.harvard.edu

Xin Chen
SEAS

Harvard University
Cambridge, MA, 02138

chen_xin@g.harvard.edu

Na Li
SEAS

Harvard University
Cambridge, MA, 02138

nali@seas.harvard.edu

Abstract

This paper studies the online optimal control problem with time-varying convex
stage costs for a time-invariant linear dynamical system, where a finite lookahead
window of accurate predictions of the stage costs are available at each time. We
design online algorithms, Receding Horizon Gradient-based Control (RHGC), that
utilize the predictions through finite steps of gradient computations. We study
the algorithm performance measured by dynamic regret: the online performance
minus the optimal performance in hindsight. It is shown that the dynamic regret of
RHGC decays exponentially with the size of the lookahead window. In addition,
we provide a fundamental limit of the dynamic regret for any online algorithms
by considering linear quadratic tracking problems. The regret upper bound of one
RHGC method almost reaches the fundamental limit, demonstrating the effective-
ness of the algorithm. Finally, we numerically test our algorithms for both linear
and nonlinear systems to show the effectiveness and generality of our RHGC.

1 Introduction

In this paper, we consider a N -horizon discrete-time sequential decision-making problem. At each
time t = 0, . . . , N − 1, the decision maker observes a state xt of a dynamical system, receives
a W -step lookahead window of future cost functions of states and control actions, i.e. ft(x) +
gt(u), . . . , ft+W−1(x) + gt+W−1(u), then decides the control input ut which drives the system to a
new state xt+1 following some known dynamics. For simplicity, we consider a linear time-invariant
(LTI) system xt+1 = Axt +But with (A,B) known in advance. The goal is to minimize the overall
cost over the N time steps. This problem enjoys many applications in, e.g. data center management
[1, 2], robotics [3], autonomous driving [4, 5], energy systems [6], manufacturing [7, 8]. Hence, there
has been a growing interest on the problem, from both control and online optimization communities.

In the control community, studies on the above problem focus on economic model predictive control
(EMPC), which is a variant of model predictive control (MPC) with a primary goal on optimizing
economic costs [9, 10, 11, 12, 13, 14, 15, 16]. Recent years have seen a lot of attention on the
optimality performance analysis of EMPC, under both time-invariant costs [17, 18, 19] and time-
varying costs [20, 12, 14, 21, 22]. However, most studies focus on asymptotic performance and there
is still limited understanding on the non-asymptotic performance, especially under time-varying
costs. Moreover, for computationally efficient algorithms, e.g. suboptimal MPC and inexact MPC
[23, 24, 25, 26], there is limited work on the optimality performance guarantee.

In online optimization, on the contrary, there are many papers on the non-asymptotic performance
analysis, where the performance is usually measured by regret, e.g., static regrets[27, 28], dynamic
regrets[29], etc., but most work does not consider predictions and/or dynamical systems. Further,
motivated by the applications with predictions, e.g. predictions of electricity prices in data center

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

management problems [30, 31], there is a growing interest on the effect of predictions on the online
problems [32, 33, 30, 34, 31, 35, 36]. However, though some papers consider switching costs which
can be viewed as a simple and special dynamical model [37, 36], there is a lack of study on the
general dynamical systems and on how predictions affect the online problem with dynamical systems.

In this paper, we propose novel gradient-based online control algorithms, receding horizon gradient-
based control (RHGC), and provide nonasymptotic optimality guarantees by dynamic regrets. RHGC
can be based on many gradient methods, e.g. vanilla gradient descent, Nesterov’s accelerated gradient,
triple momentum, etc., [38, 39]. Due to the space limit, this paper only presents receding horizon
gradient descent (RHGD) and receding horizon triple momentum (RHTM). For the theoretical
analysis, we assume strongly convex and smooth cost functions, whereas applying RHGC does not
require these conditions. Specifically, we show that the regret bounds of RHGD and RHTM decay
exponentially with the prediction window’s size W , demonstrating that our algorithms efficiently
utilize the prediction. Besides, our regret bounds decrease when the system is more “agile” in the
sense of a controllability index [40]. Further, we provide a fundamental limit for any online control
algorithms and show that the fundamental lower bound almost matches the regret upper bound of
RHTM. This indicates that RHTM achieves near-optimal performance at least in the worst case. We
also provide some discussion on the classic linear quadratic tracking problems, a widely studied
control problem in literature, to provide more insightful interpretations of our results. Finally, we
numerically test our algorithms. In addition to linear systems, we also apply RHGC to a nonlinear
dynamical system: path tracking by a two-wheeled robot. Results show that RHGC works effectively
for nonlinear systems though RHGC is only presented and theoretical analyzed on LTI systems.

Results in this paper are built on a paper on online optimization with switching costs [36]. Compared
with [36], this paper studies online optimal control with general linear dynamics, which includes
[36] as a special case; and studies how the system controllability index affects the regrets.

There has been some recent work on online optimal control problems with time-varying costs
[41, 42, 37, 43] and/or time-varying disturbances [43], but most papers focus on the no-prediction
cases. As we show later in this paper, these algorithms can be used in our RHGC methods as
initialization oracles. Moreover, our regret analysis shows that RHGC can reduce the regret of these
no-prediction online algorithms by a factor exponentially decaying with the prediction window’s size.

Finally, we would like to mention another related line of work: learning-based control [44, 45, 46,
47, 48]. In some sense, the results in this paper are orthogonal to that of the learning-based control,
because the learning-based control usually considers a time-invariant environment but unknown
dynamics, and aims to learn system dynamics or optimal controllers by data; while this paper
considers a time-varying scenario with known dynamics but changing objectives and studies decision
making with limited predictions. It is an interesting future direction to combine the two lines of work
for designing more applicable algorithms.

Notations. Consider matrices A and B, A ≥ B means A − B is positive semidefinite and [A,B]
denotes a block matrix. The norm ‖ · ‖ refers to the L2 norm for both vectors and matrices. Let xi

denote the ith entry of the vector. Consider a set I = {k1, . . . , km}, then xI = (xk1 , . . . , xkm)>,
and A(I, :) denotes the I rows of matrix A stacked together. Let Im be an identity matrix in Rm×m.

2 Problem formulation and preliminaries

Consider a finite-horizon discrete-time optimal control problem with time-varying cost functions
ft(xt) + gt(ut) and a linear time-invariant (LTI) dynamical system:

min
x,u

J(x,u) =

N−1∑
t=0

[ft(xt) + gt(ut)] + fN (xN)

s.t. xt+1 = Axt +But, t ≥ 0

(1)

where xt ∈ Rn, ut ∈ Rm, x = (x>1 , . . . , x
>
N)>, u = (u>0 , . . . , u

>
N−1)>, x0 is given, fN (xN) is the

terminal cost.1 To solve the optimal control problem (1), all cost functions from t = 0 to t = N
are needed. However, at each time t, usually only a finite lookahead window of cost functions are
available and the decision maker needs to make an online decision ut using the available information.

1The results in this paper can be extended to cost ct(xt, ut) with proper assumptions.

2

In particular, we consider a simplified prediction model: at each time t, the decision maker obtains
accurate predictions for the nextW time steps, ft, gt, . . . , ft+W−1, gt+W−1, but no further prediction
beyond these W steps, meaning that ft+W , gt+W , . . . can even be adversarially generated. Though
this prediction model may be too optimistic in the short term and over pessimistic in the long term,
this model i) captures a commonly observed phenomenon in predictions that short-term predictions
are usually much more accurate than the long-term predictions; ii) allows researchers to derive
insights for the role of predictions and possibly to extend to more complicated cases [31, 30, 49, 50].

The online optimal control problem is described as follows: at each time step t = 0, 1, . . . ,

• the agent observes state xt and receives prediction ft, gt, . . . , ft+W−1, gt+W−1;
• the agent decides and implements a control ut and suffers the cost ft(xt) + gt(ut);
• the system evolves to the next state xt+1 = Axt +But.2

An online control algorithm, denoted as A, can be defined as a mapping from the prediction informa-
tion and the history information to the control action, denoted by ut(A):

ut(A) = A(xt(A), . . . , x0(A), {fs, gs}t+W−1
s=0), t ≥ 0, (2)

where xt(A) is the state generated by implementing A and x0(A) = x0 is given.

This paper evaluates the performance of online control algorithms by comparing against the optimal
control cost J∗ in hindsight, that is, J∗ := min{J(x,u) | xt+1 = Axt +But, ∀ t ≥ 0}.
In this paper, the performance of an online algorithm A is measured by 3

Regret(A) := J(A)− J∗ = J(x(A),u(A))− J∗, (3)
which is sometimes called as dynamic regret [29, 51] or competitive difference [52]. Another popular
regret notion is the static regret, which compares the online performance with the optimal static
controller/policy [42, 41]. The benchmark in static regret is weaker than that in dynamic regret
because the optimal controller may be far from being static, and it has been shown in literature that
o(N) static regret can be achieved even without predictions (i.e., W = 0). Thus, we will focus on the
dynamic regret analysis and study how predictions can improve the dynamic regret.
Example 1 (Linear quadratic (LQ) tracking). Consider a discrete-time tracking problem for a system
xt+1 = Axt +But. The goal is to minimize the quadratic tracking loss of a trajectory {θt}Nt=0

J(x,u) =
1

2

N−1∑
t=0

[
(xt − θt)>Qt(xt − θt) + u>t Rtut

]
+

1

2
(xN − θN)>QN (xN − θN).

In practice, it is usually difficult to know the complete trajectory {θt}Nt=0 a priori, what are revealed
are usually the next few steps, making it an online control problem with predictions.

Assumptions and useful concepts. Firstly, we assume controllability, which is standard in control
theory and roughly means that the system can be steered to any state by proper control inputs [53].
Assumption 1. The LTI system xt+1 = Axt +But is controllable.

It is well-known that any controllable LTI system can be linearly transformed to a canonical form
[40] and the linear transformation can be computed efficiently a priori using A and B, which can
further be used to reformulate the cost functions ft, gt. Thus, without loss of generality, this paper
only considers LTI systems in the canonical form, defined as follows.
Definition 1 (Canonical form). A system xt+1 = Axt +But is said to be in the canonical form if

A =

0 1 0

...
. . .

. . .
0 1

∗ ∗ ··· ∗ ∗ ∗ ... ∗ ··· ∗
0 1 0

...
. . .

. . .
0 1

∗ ∗ ··· ∗ ∗ ∗ ··· ∗ ··· ∗ ··· ∗
··· ···

0 1 ··· 0

...
. . .

. . .
0 1

∗ ∗ ··· ∗ ∗ ∗ ··· ∗ ··· ∗ ∗ ··· ∗

, B =

0 0 ...

...
...

...
0
1 0 ···
0 0

...
... ···

0 1 ···
··· ···
0 ··· ···
...

. . .
0 0 ···1

,

2We assume known A,B, no process noises, state feedback, and leave relaxing assumptions as future work.
3The optimality gap depends on initial state x0 and {ft, gt}Nt=0, but we omit them for simplicity of notation.

3

where each * represents a (possibly) nonzero entry, and the rows of B with 1 are the same rows of A
with * and the indices of these rows are denoted as {k1, . . . , km} =: I . Moreover, let pi = ki − ki−1

for 1 ≤ i ≤ m, where k0 = 0. The controllability index of a canonical-form (A,B) is defined as
p = max{p1, . . . , pm}.

Next, we introduce assumptions on the cost functions and their optimal solutions.
Assumption 2. Assume ft is µf strongly convex and lf Lipschitz smooth for 0 ≤ t ≤ N , and gt is
convex and lg Lipschitz smooth for 0 ≤ t ≤ N − 1 for some µf , lf , lg > 0.
Assumption 3. Assume the minimizers to ft, gt, denoted as θt = arg minx ft(x), ξt =
arg minu gt(u), are uniformly bounded, i.e. there exist θ̄, ξ̄ such that ‖θt‖ ≤ θ̄, ‖ξt‖ ≤ ξ̄, ∀ t.

These assumptions are commonly adopted in convex analysis. The uniform bounds rule out extreme
cases. Notice that the LQ tracking problem in Example 1 satisfies Assumption 2 and 3 if Qt, Rt are
positive definite with uniform bounds on the eigenvalues and if θt are uniformly bounded for all t.

3 Online control algorithms: receding horizon gradient-based control

This section introduces our online control algorithms, receding horizon gradient-based control
(RHGC). The design is by first converting the online control problem to an equivalent online
optimization problem with finite temporal-coupling costs, then designing gradient-based online
optimization algorithms by utilizing this finite temporal-coupling property.

3.1 Problem transformation

Firstly, we notice that the offline optimal control problem (1) can be viewed as an optimization with
equality constraints over x and u. The individual stage cost ft(xt) + gt(ut) only depends on the
current xt and ut but the equality constraints couple xt, ut with xt+1 for each t. In the following, we
will rewrite (1) in an equivalent form of an unconstrained optimization problem on some entries of
xt for all t, but the new stage cost at each time t will depend on these new entries across a few nearby
time steps. We will harness this structure to design our online algorithm.

In particular, the entries of xt adopted in the reformulation are: xk1
t , . . . , x

km
t , where I =

{k1, . . . , km} is defined in Definition 1. For ease of notation, we define

zt := (xk1
t , . . . , x

km
t)>, t ≥ 0 (4)

and write zjt = x
kj
t where j = 1, . . . ,m. Let z := (z>1 , . . . , . . . , z

>
N)>. By the canonical-form

equality constraint xt = Axt−1 +But−1, we have xit = xi+1
t−1 for i 6∈ I, so xt can be represented by

zt−p+1, . . . , zt in the following way:

xt = (z1
t−p1+1, . . . , z

1
t︸ ︷︷ ︸

p1

, z2
t−p2+1, . . . , z

2
t︸ ︷︷ ︸

p2

, . . . , zmt−pm+1, . . . , z
m
t︸ ︷︷ ︸

pm

)>, t ≥ 0, (5)

where zt for t ≤ 0 is determined by x0 in a way to let (5) hold for t = 0. For ease of exposition and
without loss of generality, we consider x0 = 0 in this paper; then we have zt = 0 for t ≤ 0. Similarly,
ut can be determined by zt−p+1, . . . , zt, zt+1 by

ut = zt+1 −A(I, :)xt = zt+1 −A(I, :)(z1
t−p1+1, . . . , z

1
t , . . . , z

m
t−pm+1, . . . , z

m
t)>, t ≥ 0 (6)

where A(I, :) consists of k1, . . . , km rows of A.

It is straightforward to verify that equations (4, 5, 6) describe a bijective transformation between
{(x,u) | xt+1 = Axt+But} and z ∈ RmN , since the LTI constraint xt+1 = Axt+But is naturally
embedded in the relation (5, 6). Therefore, based on the transformation, an optimization problem with
respect to z ∈ RmN can be designed to be equivalent with (1). Notice that the resulting optimization
problem has no constraint on z. Moreover, the cost functions on z can be obtained by substituting (5,
6) into ft(xt) and gt(ut), i.e. f̃t(zt−p+1, . . . , zt) := ft(xt) and g̃t(zt−p+1, . . . , zt, zt+1) := gt(ut).
Correspondingly, the objective function of the equivalent optimization with respect to z is

C(z) :=

N∑
t=0

f̃t(zt−p+1, . . . , zt) +

N−1∑
t=0

g̃t(zt−p+1, . . . , zt+1) (7)

C(z) has many nice properties, some of which are formally stated below.

4

Lemma 1. The function C(z) has the following properties:

i) C(z) is µc = µf strongly convex and lc smooth for lc = plf + (p+ 1)lg‖[Im,−A(I, :)]‖2.

ii) For any (x,u) s.t. xt+1 = Axt+But,C(z) = J(x,u) where z is defined in (4). Conversely,
∀ z, the (x,u) determined by (5,6) satisfies xt+1 = Axt +But and J(x,u) = C(z);

iii) Each stage cost f̃t + g̃t in (7) only depends on zt−p+1, . . . , zt+1.

Property ii) implies that any online algorithm for deciding z can be translated to an online algorithm
for x and u by (5, 6) with the same costs. Property iii) highlights one nice property, finite temporal-
coupling, of C(z), which serves as a foundation for our online algorithm design.
Example 2. For illustration, consider the following dynamical system with n = 2, m = 1:[

x1t+1

x2t+1

]
=

[
0 1
a1 a2

] [
x1t
x2t

]
+

[
0
1

]
ut (8)

Here, k1 = 2, I = {2}, A(I, :) = (a1, a2), and zt = x2
t . By (8), x1

t = x2
t−1 and xt = (zt−1, zt)

>.
Similarly, ut = x2

t+1 − A(I, :)xt = zt+1 − A(I, :)(zt−1, zt)
>. Hence, f̃t(zt−1, zt) = ft(xt) =

ft((zt−1, zt)
>), g̃t(zt−1, zt, zt+1) = gt(ut) = gt(zt+1 −A(I, :)(zt−1, zt)

>).
Remark 1. This paper considers a reparameterization method with respect to states x via the canonical
form, and it might be interesting to compare it with the more direct reparameterization with respect
to control inputs u. The control-based reparameterization has been discussed in literature [54]. It
has been observed in [54] that when A is not stable, the condition number of the cost function
derived from the control-based reparameterization goes to infinity as W → +∞, which may result in
computation issues when W is large. However, the state-based reparameterization considered in this
paper can guarantee bounded condition number for all W even for unstable A, as shown in Lemma 1.
This is one major advantage of the state-based reparameterization method considered in this paper.

3.2 Online algorithm design: RHGC

This section introduces our RHGC based on the reformulation (7) and inspired by [36]. As mentioned
earlier, any online algorithm for zt can be translated to an online algorithm for xt, ut. Hence, we
will focus on designing an online algorithm for zt in the following. By the finite temporal-coupling
property of C(z), the partial gradient of the total cost C(z) only depends on the finite neighboring
stage costs {f̃τ , g̃τ}t+p−1

τ=t and finite neighboring stage variables (zt−p, . . . , zt+p) =: zt−p:t+p.

∂C

∂zt
(z) =

t+p−1∑
τ=t

∂f̃τ
∂zt

(zτ−p+1, . . . , zτ) +

t+p−1∑
τ=t−1

∂g̃τ
∂zt

(zτ−p+1, . . . , zτ+1)

Without causing any confusion, we use ∂C
∂zt

(zt−p:t+p) to denote ∂C
∂zt

(z) for highlighting the local
dependence. Thanks to the local dependence, despite the fact that not all the future costs are available,
it is still possible to compute the partial gradient of the total cost by using only a finite lookahead
window of the cost functions. This observation motivates the design of our receding horizon gradient-
based control (RHGC) methods, which are the online implementation of gradient methods, such as
vanilla gradient descent, Nesterov’s accelerated gradient, triple momentum, etc., [38, 39].

Algorithm 1: Receding Horizon Gradient Descent (RHGD)

1: inputs: Canonical form (A,B), W ≥ 1, K = bW−1
p c, stepsize γg , initialization oracle ϕ.

2: for t = 1−W : N − 1 do
3: Step 1: initialize zt+W (0) by oracle ϕ.
4: for j = 1, . . . ,K do
5: Step 2: update zt+W−jp(j) by gradient descent

zt+W−jp(j) = zt+W−jp(j − 1)− γg ∂C
∂zt+W−jp

(zt+W−(j+1)p:t+W−(j−1)p(j − 1)).
6: end for
7: Step 3: compute ut by zt+1(K) and the observed state xt: ut = zt+1(K)−A(I, :)xt
8: end for

Firstly, we illustrate the main idea of RHGC by receding horizon gradient descent (RHGD) based
on vanilla gradient descent. In RHGD (Algorithm 1), index j refers to the iteration number of the

5

corresponding gradient update of C(z). There are two major steps to decide zt. Step 1 is initializing
the decision variables z(0). Here, we do not restrict the initialization algorithm ϕ and allow any
oracle/online algorithm without using lookahead information, i.e. zt+W (0) is selected based only on
the information up to t+W −1: zt+W (0) = ϕ({f̃s, g̃s}t+W−1

s=0). One example of ϕ will be provided
in Section 4. Step 2 is using the W -lookahead costs to conduct gradient updates. Notice that the
gradient update from zτ (j−1) to zτ (j) is implemented in a backward order of τ , i.e. from τ = t+W
to τ = t. Moreover, since the partial gradient ∂C∂zt requires the local decision variables zt−p:t+p, given
W -lookahead information, RHGD can only conduct K = bW−1

p c iterations of gradient descent for
the total cost C(z). For more discussion, we refer the reader to [36] for the p = 1 case.

In addition to RHGD, RHGC can also incorporate accelerated gradient methods in the same way, such
as Nesterov’s accelerated gradient and triple momentum. For the space limit, we only formally present
receding horizon triple momentum (RHTM) in Algorithm 2 based on triple momentum [39]. RHTM
also consists of two major steps when determining zt: initialization and gradient updates based
on the lookahead window. The two major differences from RHGD are that the decision variables
in RHTM include not only z(j) but also auxiliary variables ω(j) and y(j), which are adopted in
triple momentum to accelerate the convergence, and that the gradient update is by triple momentum
instead of gradient descent. Nevertheless, RHTM can also conduct K = bW−1

p c iterations of triple
momentum for C(z) since the triple momentum update requires the same neighboring cost functions.

Though it appears that RHTM does not fully exploit the lookahead information since only a few
gradient updates are used, in Section 5, we show that RHTM achieves near-optimal performance with
respect to W , which means that RHTM successfully extracts and utilizes the prediction information.

Finally, we briefly introduce MPC[55] and suboptimal MPC[23], and compare them with our
algorithms. MPC tries to solve aW -stage optimization at each t and implements the first control input.
Suboptimal MPC, as a variant of MPC aiming at reducing computation, conducts an optimization
method only for a few iterations without solving the optimization completely. Our algorithm’s
computation time is similar to that of suboptimal MPC with a few gradient iterations. However,
the major difference between our algorithm and suboptimal MPC is that suboptimal MPC conducts
gradient updates for a truncatedW -stage optimal control problem based onW -lookahead information,
while our algorithm is able to conduct gradient updates for the complete N -stage optimal control
problem based on the same W -lookahead information by utilizing the reformulation (4, 5, 6, 7).

4 Regret upper bounds

Because our RHTM (RHGD) is designed to exactly implement the triple momentum (gradient
descent) of C(z) for K iterations, it is straightforward to have the following regret guarantees that
connect the regrets of RHTM and RHGD with the regret of the initialization oracle ϕ,

Algorithm 2: Receding Horizon Triple Momentum (RHTM)

inputs: Canonical form (A,B), W ≥ 1, K = bW−1
p c, stepsizes γc, γz, γω, γy > 0, oracle ϕ.

for t = 1−W : N − 1 do
Step 1: initialize zt+W (0) by oracle ϕ, then let ωt+W (−1), ωt+W (0), yt+W (0) be zt+W (0)
for j = 1, . . . ,K do

Step 2: update ωt+W−jp(j), yt+W−jp(j), zt+W−jp(j) by triple momentum.

ωt+W−jp(j) = (1 + γω)ωt+W−jp(j − 1)− γωωt+W−jp(j − 2)

− γc
∂C

∂yt+W−jp
(yt+W−(j+1)p:t+W−(j−1)p(j − 1))

yt+W−jp(j) = (1 + γy)ωt+W−jp(j)− γyωt+W−jp(j − 1)

zt+W−jp(j) = (1 + γz)ωt+W−jp(j)− γzωt+W−jp(j − 1)

end for
Step 3: compute ut by zt+1(K) and the observed state xt: ut = zt+1(K)−A(I, :)xt

end for

6

Theorem 1. Consider W ≥ 1 and stepsizes γg = 1
lc

, γc = 1+φ
lc

, γω = φ2

2−φ , γy = φ2

(1+φ)(2−φ) ,

γz = φ2

1−φ2 , φ = 1− 1/
√
ζ, and let ζ = lc/µc denote C(z)’s condition number. For any oracle ϕ,

Regret(RHGD) ≤ ζ
(
ζ − 1

ζ

)K
Regret(ϕ), Regret(RHTM) ≤ ζ2

(√
ζ − 1√
ζ

)2K

Regret(ϕ)

where K = bW−1
p c, Regret(ϕ) is the regret of the initial controller: ut(0) = zt+1(0)−A(I, :)xt(0).

Theorem 1 suggests that for any online algorithm ϕ without predictions, RHGD and RHTM can use
predictions to lower the regret by a factor of ζ(ζ−1

ζ)K and ζ2(
√
ζ−1√
ζ

)2K respectively via additional

K = bW−1
p c gradient updates. Moreover, the factors decay exponentially with K = bW−1

p c, and K
almost linearly increases with W . This indicates that RHGD and RHTM improve the performance
exponentially fast with an increase in the prediction window W for any initialization method. In
addition, K = bW−1

p c decreases with p, implying that the regrets increase with the controllability
index p (Definition 1). This is intuitive because p roughly indicates how fast the controller can
influence the system state effectively: the larger the p is, the longer it takes. To see this, consider
Example 2. Since ut−1 does not directly affect x1

t , it takes at least p = 2 steps to change x1
t to a

desirable value. Finally, RHTM’s regret decays faster than RHGD’s, which is intuitive because triple
momentum converges faster than gradient descent. Thus, we will focus on RHTM in the following.

An initialization method: follow the optimal steady state (FOSS). To complete the regret analysis
for RHTM, we provide a simple initialization method, FOSS, and its dynamic regret bound. As
mentioned before, any online control algorithm without predictions, e.g. [42, 41], can be applied as
an initialization oracle ϕ. However, most literature study static regrets rather than dynamic regrets.
Definition 2 (Follow the optimal steady state (FOSS)). The optimal steady state for stage cost
f(x) + g(u) refers to (xe, ue) := arg minx=Ax+Bu(f(x) + g(u)).

Follow the optimal steady state algorithm (FOSS) first solves the optimal steady state (xet , u
e
t) for

cost ft(x) + gt(u), then determines zt+1 by xet , i.e. zt+1 = (xe,k1

t , . . . , xe,kmt)> at each t+ 1.

FOSS is motivated by the fact that the optimal steady state cost is the optimal infinite-horizon
average cost for LTI systems with time-invariant cost functions [56], so FOSS should yield acceptable
performance at least for slowly changing cost functions. Nevertheless, we admit that FOSS is
proposed mainly for analytical purposes and other online algorithms may outperform FOSS in various
perspectives. The following is a regret bound for FOSS, relying on the solution to Bellman equations.
Definition 3 (Solution to the Bellman equations [57]). Consider optimal control problem:
min limN→+∞

1
N

∑N−1
t=0 (f(xt) + g(ut)) where xt+1 = Axt +But. Let λe be the optimal steady

state cost f(xe) + g(ue), which is also the optimal infinite-horizon average cost [56]. The Bellman
equations for the problem is he(x) + λe = minu(f(x) + g(u) + he(Ax + Bu)). The solution to
the Bellman equations, denoted by he(x), is sometimes called as a bias function [57]. To ensure the
uniqueness of the solution, some extra conditions, e.g. he(0) = 0, are usually imposed.
Theorem 2 (Regret bound of FOSS). Let (xet , u

e
t) and het (x) denote the optimal steady state and

the bias function with respect to cost ft(x) + gt(u) respectively for 0 ≤ t ≤ N − 1. Suppose het (x)
exists for 0 ≤ t ≤ N − 1,4 then the regret of FOSS can be bounded by

Regret(FOSS) = O

(
N∑
t=0

(‖xet−1 − xet‖+ het−1(x∗t)− het (x∗t))

)
,

where {x∗t }Nt=0 denotes the optimal state trajectory for (1), xe−1 = x∗0 = x0 = 0, he−1(x) =
0, heN (x) = fN (x), xeN = θN . Consequently, by Theorem 1, the regret bound of RHTM with initial-

ization FOSS is Regret(RHTM) = O
(
ζ2(
√
ζ−1√
ζ

)2K
∑N
t=0(‖xet−1 − xet‖+ het−1(x∗t)− het (x∗t))

)
.

Theorem 2 bounds the regret by the variation of the optimal steady states xet and the bias functions
het . If ft and gt do not change, xet and het do not change, yielding a small O(1) regret, i.e. O(‖xe0‖+
he0(x0)), matching our intuition. Though Theorem 2 requires het exists, the existence is guaranteed
for many control problems, e.g. LQ tracking and control problems with turnpike properties [58, 22].

4het may not be unique, so extra conditions can be imposed on het for more interesting regret bounds.

7

5 Linear quadratic tracking: regret upper bounds and a fundamental limit

To provide more intuitive meaning for our regret analysis in Theorem 1 and Theorem 2, we apply
RHTM to the LQ tracking problem in Example 1. Results for the time varyingQt, Rt, θt are provided
in Appendix E; whereas here we focus on a special case which gives clean expressions for regret
bounds: both an upper bound for RHTM with initialization FOSS and a lower bound for any online
algorithm. Further, we show that the lower bound and the upper bound almost match each other,
implying that our online algorithm RHTM uses the predictions in a nearly optimal way even though
it only conducts a few gradient updates at each time step .

The special case of LQ tracking problems is in the following form,

1

2

N−1∑
t=0

[
(xt − θt)>Q(xt − θt) + u>t Rut

]
+

1

2
x>NP

exN , (9)

where Q > 0, R > 0, and P e is the solution to the algebraic Riccati equation with respect to Q,R
[59]. Basically, in this special case, Qt = Q, Rt = R for 0 ≤ t ≤ N − 1, QN = P e, θN = 0, and
only θt changes for t = 0, 1, . . . , N − 1. The LQ tracking problem (9) aims to follow a time-varying
trajectory {θt} with constant weights on the tracking cost and the control cost.

Regret upper bound. Firstly, based on Theorem 1 and Theorem 2, we have the following bound.
Corollary 1. Under the stepsizes in Theorem 1, RHTM with FOSS as the initialization rule satisfies

Regret(RHTM) = O

(
ζ2(

√
ζ − 1√
ζ

)2K
N∑
t=0

‖θt − θt−1‖

)
where K = b(W − 1)/pc, ζ is the condition number of the corresponding C(z), θ−1 = 0.

This corollary shows that the regret can be bounded by the total variation of θt for constant Q,R.

Fundamental limit. For any online algorithm, we have the following lower bound.
Theorem 3 (Lower Bound). Consider 1 ≤W ≤ N/3, any condition number ζ > 1, any variation
budget 4θ̄ ≤ LN ≤ (2N + 1)θ̄, and any controllability index p ≥ 1. For any online algorithm
A, there exists an LQ tracking problem in form (9) where i) the canonical-form system (A,B) has
controllability index p, ii) the sequence {θt} satisfies the variation budget

∑N
t=0 ‖θt − θt−1‖ ≤ LN ,

and iii) the corresponding C(z) has condition number ζ, such that the following lower bound holds

Regret(A) = Ω

(
(

√
ζ − 1√
ζ + 1

)2KLN

)
= Ω

(
(

√
ζ − 1√
ζ + 1

)2K
N∑
t=0

‖θt − θt−1‖

)
(10)

where K = b(W − 1)/pc and θ−1 = 0.

Firstly, the lower bound in Theorem 3 almost matches the upper bound in Corollary 1, especially
when ζ is large, demonstrating that RHTM utilizes the predictions in a near-optimal way. The major
conditions in Theorem 3 require that the prediction window is short compared with the horizon:
W ≤ N/3, and the variation of the cost functions should not be too small: LN ≥ 4θ̄, otherwise the
online control problem is too easy and the regret can be very small. Moreover, the small gap between
the regret bounds is conjectured to be nontrivial, because this gap coincides with the long lasting gap
in the convergence rate of the first-order algorithms for strongly convex and smooth optimization. In
particular, the lower bound in Theorem 3 matches the fundamental convergence limit in [38], and the
upper bound is by triple momentum’s convergence rate, which is the best one to our knowledge.

6 Numerical experiments

LQ tracking problem in Example 1. The system considered here has n = 2, m = 1, and p = 2.
More details of the experiment settings are provided in Appendix H. We compare RHGC with a
suboptimal MPC algorithm, fast gradient MPC (subMPC) [23]. Roughly speaking, subMPC solves
the W -stage truncated optimal control from t to t + W − 1 by Nesterov’s accelerated gradient
[38], and one iteration of Nesterov’s accelerated gradient requires 2W gradient evaluations of stage

8

2 4 6 8 10 12 14

Prediction W

-10

-5

0

5

9

lo
g

(r
e

g
re

t)

RHGD

RHAG

RHTM

subMPC Iter = 1

subMPC Iter = 3

subMPC Iter = 5

Figure 1: Regret for LQ tracking.

-20 -10 0 10 20
X

-20

-10

0

10

20

Y

W = 40

reference robot path

-20 -10 0 10 20

X

-20

-10

0

10

20

Y

W = 80

reference robot path

Figure 2: Two-wheel robot tracking with nonlinear dynamics.

cost function since W stages are considered and each stage has two costs ft and gt. This implies
that, in terms of the number of gradient evaluations, subMPC with one iteration corresponds to our
RHTM because RHTM also requires roughly 2W gradient evaluations per stage. Therefore, Figure 1
compares our RHGC algorithms with subMPC with one iteration. Figure 1 also plots subMPC with 3
and 5 iterations for more insights. Besides, Figure 1 plots not only RHGD and RHTM, but also RHAG,
which is based on Nesterov’s accelerated gradient. Figure 1 shows that all our algorithms achieve
exponential decaying regrets with respect to W , and the regrets are piecewise constant, matching
Theorem 1. Further, it is observed that RHTM and RHAG perform better than RHGD, which is
intuitive because triple momentum and Nesterov’s accelerated gradient are accelerated versions of
gradient descent. In addition, our algorithms are much better than subMPC with 1 iteration, implying
that our algorithms utilize the lookahead information more efficiently given similar computational
time. Finally, subMPC achieves better performance by increasing the iteration number but the
improvement saturates as W increases, in contrast to the steady improvement of RHGC.

Path tracking for a two-wheel mobile robot. Though we presented our online algorithms on an
LTI system, our RHGC methods are applicable to some nonlinear systems as well. Here we consider
a two-wheel mobile robot with nonlinear kinematic dynamics ẋ = v cos δ, ẏ = v sin δ, δ̇ = w
where (x, y) is the robot location, v and w are the tangential and angular velocities respec-
tively, δ denotes the tangent angle between v and the x axis [60]. The control is directly on
the v and w, e.g., via the pulse-width modulation (PWM) of the motor [61]. Given a refer-
ence path (xrt , y

r
t), the objective is to balance the tracking performance and the control cost, i.e.,

min
∑N
t=0

[
ct ·
(
(xt − xrt)2 + (yt − yrt)2

)
+ cvt · (vt)2 + cwt · (wt)2

]
. We discretize the dynamics

with time interval ∆t = 0.025s; then follow similar ideas in this paper to reformulate the optimal
path tracking problem to an unconstrained optimization with respect to (xt, yt) and apply RHGC.
See Appendix H for details. Figure 2 plots the tracking results with window W = 40 and W = 80
corresponding to lookahead time 1s and 2s. A video showing the dynamic processes with different W
is provided at https://youtu.be/fal56LTBD1s. It is observed that the robot follows the reference
trajectory well especially when the path is smooth but deviates a little more when the path has sharp
turns, and a longer lookahead window leads to better tracking performance. These results confirm
that our RHGC works effectively on nonlinear systems.

7 Conclusion

This paper studies the role of predictions on dynamic regrets of online control problems with linear
dynamics. We design RHGC algorithms and provide regret upper bounds of two specific algorithms:
RHGD and RHTM. We also provide a fundamental limit and show the fundamental limit almost
matches RHTM’s upper bound. This paper leads to many interesting future directions, some of which
are briefly discussed below. The first direction is to study more realistic prediction models which
considers random prediction noises, e.g. [33, 35, 62]. The second direction is to consider unknown
systems with process noises, possibly by applying learning-based control tools [44, 46, 48]. Further,
more studies could be conducted on general control problems including nonlinear control and control
with input and state constraints. Besides, it is interesting to consider other performance metrics,
such as competitive ratio, since the dynamic regret is non-vanishing. Finally, other future directions
include closing the gap of the regret bounds and more discussion on the effect of the canonical-form
transformation on the condition number.

9

https://youtu.be/fal56LTBD1s

Acknowledgement

This work was supported by NSF Career 1553407, ARPA-E NODES, AFOSR YIP and ONR YIP
programs.

References

[1] Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, and Greg Imwalle.
Data center cooling using model-predictive control. In Advances in Neural Information Pro-
cessing Systems, pages 3814–3823, 2018.

[2] Wei Xu, Xiaoyun Zhu, Sharad Singhal, and Zhikui Wang. Predictive control for dynamic
resource allocation in enterprise data centers. In 2006 IEEE/IFIP Network Operations and
Management Symposium NOMS 2006, pages 115–126. IEEE, 2006.

[3] Tomas Baca, Daniel Hert, Giuseppe Loianno, Martin Saska, and Vijay Kumar. Model predictive
trajectory tracking and collision avoidance for reliable outdoor deployment of unmanned aerial
vehicles. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 6753–6760. IEEE, 2018.

[4] Jackeline Rios-Torres and Andreas A Malikopoulos. A survey on the coordination of connected
and automated vehicles at intersections and merging at highway on-ramps. IEEE Transactions
on Intelligent Transportation Systems, 18(5):1066–1077, 2016.

[5] Kyoung-Dae Kim and Panganamala Ramana Kumar. An mpc-based approach to provable
system-wide safety and liveness of autonomous ground traffic. IEEE Transactions on Automatic
Control, 59(12):3341–3356, 2014.

[6] Samir Kouro, Patricio Cortés, René Vargas, Ulrich Ammann, and José Rodríguez. Model pre-
dictive control—a simple and powerful method to control power converters. IEEE Transactions
on industrial electronics, 56(6):1826–1838, 2008.

[7] Edgar Perea-Lopez, B Erik Ydstie, and Ignacio E Grossmann. A model predictive control
strategy for supply chain optimization. Computers & Chemical Engineering, 27(8-9):1201–
1218, 2003.

[8] Wenlin Wang, Daniel E Rivera, and Karl G Kempf. Model predictive control strategies for
supply chain management in semiconductor manufacturing. International Journal of Production
Economics, 107(1):56–77, 2007.

[9] Moritz Diehl, Rishi Amrit, and James B Rawlings. A lyapunov function for economic optimizing
model predictive control. IEEE Transactions on Automatic Control, 56(3):703–707, 2010.

[10] Matthias A Müller and Frank Allgöwer. Economic and distributed model predictive control:
Recent developments in optimization-based control. SICE Journal of Control, Measurement,
and System Integration, 10(2):39–52, 2017.

[11] Matthew Ellis, Helen Durand, and Panagiotis D Christofides. A tutorial review of economic
model predictive control methods. Journal of Process Control, 24(8):1156–1178, 2014.

[12] Antonio Ferramosca, James B Rawlings, Daniel Limón, and Eduardo F Camacho. Economic
mpc for a changing economic criterion. In 49th IEEE Conference on Decision and Control
(CDC), pages 6131–6136. IEEE, 2010.

[13] Matthew Ellis and Panagiotis D Christofides. Economic model predictive control with time-
varying objective function for nonlinear process systems. AIChE Journal, 60(2):507–519,
2014.

[14] David Angeli, Alessandro Casavola, and Francesco Tedesco. Theoretical advances on economic
model predictive control with time-varying costs. Annual Reviews in Control, 41:218–224,
2016.

[15] Rishi Amrit, James B Rawlings, and David Angeli. Economic optimization using model
predictive control with a terminal cost. Annual Reviews in Control, 35(2):178–186, 2011.

[16] Lars Grüne. Economic receding horizon control without terminal constraints. Automatica,
49(3):725–734, 2013.

10

[17] David Angeli, Rishi Amrit, and James B Rawlings. On average performance and stability of
economic model predictive control. IEEE transactions on automatic control, 57(7):1615–1626,
2012.

[18] Lars Grüne and Marleen Stieler. Asymptotic stability and transient optimality of economic mpc
without terminal conditions. Journal of Process Control, 24(8):1187–1196, 2014.

[19] Lars Grüne and Anastasia Panin. On non-averaged performance of economic mpc with terminal
conditions. In 2015 54th IEEE Conference on Decision and Control (CDC), pages 4332–4337.
IEEE, 2015.

[20] Antonio Ferramosca, Daniel Limon, and Eduardo F Camacho. Economic mpc for a changing
economic criterion for linear systems. IEEE Transactions on Automatic Control, 59(10):2657–
2667, 2014.

[21] Lars Grüne and Simon Pirkelmann. Closed-loop performance analysis for economic model
predictive control of time-varying systems. In 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pages 5563–5569. IEEE, 2017.

[22] Lars Grüne and Simon Pirkelmann. Economic model predictive control for time-varying system:
Performance and stability results. Optimal Control Applications and Methods, 2018.

[23] Melanie Nicole Zeilinger, Colin Neil Jones, and Manfred Morari. Real-time suboptimal
model predictive control using a combination of explicit mpc and online optimization. IEEE
Transactions on Automatic Control, 56(7):1524–1534, 2011.

[24] Yang Wang and Stephen Boyd. Fast model predictive control using online optimization. IEEE
Transactions on Control Systems Technology, 18(2):267–278, 2010.

[25] Knut Graichen and Andreas Kugi. Stability and incremental improvement of suboptimal mpc
without terminal constraints. IEEE Transactions on Automatic Control, 55(11):2576–2580,
2010.

[26] Douglas A Allan, Cuyler N Bates, Michael J Risbeck, and James B Rawlings. On the inherent
robustness of optimal and suboptimal nonlinear mpc. Systems & Control Letters, 106:68–78,
2017.

[27] E. Hazan. Introduction to Online Convex Optimization. Foundations and Trends(r) in Optimiza-
tion Series. Now Publishers, 2016.

[28] S. Shalev-Shwartz. Online Learning and Online Convex Optimization. Foundations and
Trends(r) in Machine Learning. Now Publishers, 2012.

[29] Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan. Online
optimization: Competing with dynamic comparators. In Artificial Intelligence and Statistics,
pages 398–406, 2015.

[30] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. Dynamic right-
sizing for power-proportional data centers. IEEE/ACM Transactions on Networking (TON),
21(5):1378–1391, 2013.

[31] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew. Online algorithms
for geographical load balancing. In Green Computing Conference (IGCC), 2012 International,
pages 1–10. IEEE, 2012.

[32] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In
Conference on Learning Theory, pages 993–1019, 2013.

[33] Niangjun Chen, Anish Agarwal, Adam Wierman, Siddharth Barman, and Lachlan LH Andrew.
Online convex optimization using predictions. In ACM SIGMETRICS Performance Evaluation
Review, volume 43, pages 191–204. ACM, 2015.

[34] Masoud Badiei, Na Li, and Adam Wierman. Online convex optimization with ramp constraints.
In Decision and Control (CDC), 2015 IEEE 54th Annual Conference on, pages 6730–6736.
IEEE, 2015.

[35] Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wierman. Using
predictions in online optimization: Looking forward with an eye on the past. In Proceedings
of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Science, pages 193–206. ACM, 2016.

11

[36] Yingying Li, Guannan Qu, and Na Li. Online optimization with predictions and switching costs:
Fast algorithms and the fundamental limit. arXiv preprint arXiv:1801.07780, 2018.

[37] Gautam Goel and Adam Wierman. An online algorithm for smoothed regression and lqr control.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 2504–2513,
2019.

[38] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[39] Bryan Van Scoy, Randy A Freeman, and Kevin M Lynch. The fastest known globally convergent
first-order method for minimizing strongly convex functions. IEEE Control Systems Letters,
2(1):49–54, 2017.

[40] David Luenberger. Canonical forms for linear multivariable systems. IEEE Transactions on
Automatic Control, 12(3):290–293, 1967.

[41] Yasin Abbasi-Yadkori, Peter Bartlett, and Varun Kanade. Tracking adversarial targets. In
International Conference on Machine Learning, pages 369–377, 2014.

[42] Alon Cohen, Avinatan Hasidim, Tomer Koren, Nevena Lazic, Yishay Mansour, and Kunal
Talwar. Online linear quadratic control. In International Conference on Machine Learning,
pages 1028–1037, 2018.

[43] Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. Online control
with adversarial disturbances. In International Conference on Machine Learning, pages 111–
119, 2019.

[44] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample
complexity of the linear quadratic regulator. arXiv preprint arXiv:1710.01688, 2017.

[45] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for
robust adaptive control of the linear quadratic regulator. In Advances in Neural Information
Processing Systems, pages 4188–4197, 2018.

[46] Stephen Tu and Benjamin Recht. Least-squares temporal difference learning for the linear
quadratic regulator. arXiv preprint arXiv:1712.08642, 2017.

[47] Kyriakos G Vamvoudakis and Frank L Lewis. Online actor–critic algorithm to solve the
continuous-time infinite horizon optimal control problem. Automatica, 46(5):878–888, 2010.

[48] Yi Ouyang, Mukul Gagrani, and Rahul Jain. Learning-based control of unknown linear systems
with thompson sampling. arXiv preprint arXiv:1709.04047, 2017.

[49] Lian Lu, Jinlong Tu, Chi-Kin Chau, Minghua Chen, and Xiaojun Lin. Online energy generation
scheduling for microgrids with intermittent energy sources and co-generation, volume 41. ACM,
2013.

[50] Allan Borodin, Nathan Linial, and Michael E Saks. An optimal on-line algorithm for metrical
task system. Journal of the ACM (JACM), 39(4):745–763, 1992.

[51] Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. Online optimiza-
tion in dynamic environments: Improved regret rates for strongly convex problems. In 2016
IEEE 55th Conference on Decision and Control (CDC), pages 7195–7201. IEEE, 2016.

[52] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson, Alan
Roytman, and Adam Wierman. A tale of two metrics: Simultaneous bounds on competitiveness
and regret. In Conference on Learning Theory, pages 741–763, 2013.

[53] Joao P Hespanha. Linear systems theory. Princeton university press, 2018.
[54] Stefan Richter, Colin Neil Jones, and Manfred Morari. Computational complexity certification

for real-time mpc with input constraints based on the fast gradient method. IEEE Transactions
on Automatic Control, 57(6):1391–1403, 2011.

[55] JB Rawlings and DQ Mayne. Postface to model predictive control: Theory and design. Nob
Hill Pub, pages 155–158, 2012.

[56] David Angeli, Rishi Amrit, and James B Rawlings. Receding horizon cost optimization for
overly constrained nonlinear plants. In Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pages 7972–7977.
IEEE, 2009.

12

[57] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[58] Tobias Damm, Lars Grüne, Marleen Stieler, and Karl Worthmann. An exponential turnpike
theorem for dissipative discrete time optimal control problems. SIAM Journal on Control and
Optimization, 52(3):1935–1957, 2014.

[59] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. 2011.
[60] Gregor Klancar, Drago Matko, and Saso Blazic. Mobile robot control on a reference path. In

Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control
and Automation Intelligent Control, 2005., pages 1343–1348. IEEE, 2005.

[61] Pololu Corporation. Pololu m3pi User’s Guide. Available at https://www.pololu.com/
docs/pdf/0J48/m3pi.pdf.

[62] Heejung Bang and James M Robins. Doubly robust estimation in missing data and causal
inference models. Biometrics, 61(4):962–973, 2005.

[63] Paul Concus, Gene H Golub, and Gérard Meurant. Block preconditioning for the conjugate
gradient method. SIAM Journal on Scientific and Statistical Computing, 6(1):220–252, 1985.

[64] Mishael Zedek. Continuity and location of zeros of linear combinations of polynomials.
Proceedings of the American Mathematical Society, 16(1):78–84, 1965.

13

https://www.pololu.com/docs/pdf/0J48/m3pi.pdf
https://www.pololu.com/docs/pdf/0J48/m3pi.pdf

Appendices

In Appendix A, we will discuss the canonical-form transformation. In Appendix B, we will briefly
introduce the triple momentum algorithm proposed in [39] and provide the proof of Theorem 1. In
Appendix C, we will provide the proof of Lemma 1. In Appendix D, we will present the proof of
Theorem 2. Appendix E provides a proof of Corollary 1 and regret analysis for more general linear
quadratic tracking problems. Appendix F provides a proof of Theorem 3. In Appendix G, we will
provide the proofs of the technical lemmas used in Appendix E. In Appendix H, we will provide a
more detailed description of our numerical experiments.

A Canonical form

In this section, we introduce the linear transformation from a general LTI system to a canonical-form
LTI system, and then discuss how to convert a general online optimal control problem to an online
optimal control problem with a canonical-form system.

Firstly, consider a general LTI system: xt+1 = Axt+But and two invertible matrices Sx ∈ Rn, Su ∈
Rm. Under the linear transformation on state and control: x̂t = Sxxt, ût = Suut, the equivalent
LTI system with respect to the new state x̂t and the new control ût is

x̂t+1 = SxAS
−1
x x̂t + SxBS

−1
u ût

By [40, Theorem 1], for any controllable (A,B), there exist Sx, Su such that Â = SxAS
−1
x and

B̂ = SxBS
−1
u are in the canonical form defined in Definition 1. The computation method of Sx, Su

is also provided in [40].

In an online optimal control problem, sinceA,B are known as priors, Sx, Su can be computed offline.
When stage cost functions ft(xt), gt(ut) are received online, the new cost functions f̂t(x̂t), ĝt(ût)
for the canonical-form system can be computed online by applying Sx, Su:

f̂t(x̂t) = ft(xt) = ft(S
−1
x x̂t), ĝt(ût) = gt(ut) = gt(S

−1
u ût)

Moreover, it is straightforward to verify that f̂t(x̂t) and ĝt(ût) still satisfy Assumption 2 and 3, just
with perhaps different parameters. For example, f̂t(x̂t) is µf/‖Sx‖2 strongly convex and lf‖S−1

x ‖2
smooth and ĝt(ût) is convex and lg‖S−1

u ‖2 smooth. Therefore, it is without loss of generality to
only consider online optimal control with canonical-form systems.

B Triple momentum and a proof of Theorem 1

Triple Momentum (TM) is an accelerated version of gradient descent proposed in [39]. When
optimizing an unconstrained optimization minz C(z), at each iteration j ≥ 0, TM conducts

ωωω(j + 1) = (1 + δω)ωωω(j)− δωωωω(j − 1)− δc∇C(y(j))

y(j + 1) = (1 + δy)ωωω(j + 1)− δyωωω(j)

z(j + 1) = (1 + δz)ωωω(j + 1)− δzωωω(j)

where ωωω(j),y(j) are auxiliary variables to accelerate the convergence, z(j) is the decision variable,
ωωω(0) = ωωω(−1) = z(0) = y(0) are given initial values.

Suppose z = (z>1 , . . . , z
>
N)>. Zooming in to each coordinate zt, the update of zt(j) by TM is

provided below

ωt(j + 1) = (1 + δω)ωt(j)− δωωt(j − 1)− δc
∂C

∂yt
(y(j))

yt(j + 1) = (1 + δy)ωt(j + 1)− δyωt(j)
zt(j + 1) = (1 + δz)ωt(j + 1)− δzωt(j)

By Section 3, ∂C
∂yt

(y(j)) only depends on stage cost functions and stage variables across a finite
neighboring stages, allowing the online implementation in Algorithm 2 based on the finite-lookahead
window.

14

TM enjoys a faster convergence rate than the gradient descent for µc strongly convex and lc smooth
functions under proper step sizes. In particular, when γc = 1+φ

lc
, γw = φ2

2−φ , γy = φ2

(1+φ)(2−φ) , γz =
φ2

1−φ2 , and φ = 1− 1/
√
ζ, ζ = lc/µc, by [39, Theorem 1], the convergence of TM satisfies:

C(z(j))− C(z∗) ≤ (

√
ζ − 1√
ζ

)2j lcζ

2
‖z(0)− z∗‖2 ≤ ζ2(

√
ζ − 1√
ζ

)2j(C(z(0))− C(z∗)) (11)

In the following, we will apply this result to prove Theorem 1.

B.1 Proof of Theorem 1

By comparing TM with RHTM, it can be verified that zt+1(K) computed by RHTM is the same
as zt+1(K) computed by the triple momentum after K iterations. Moreover, according to the
equivalence between the optimization minz C(z) and the optimal control J(x,u) in Lemma 1,

J(RHTM) = C(z(K)), J(ϕ) = C(z(0)), J∗ = C(z∗)

Finally, by utiltizing (11), the bound on Regret(RHTM) is straightforward.

The regret of RHGD can be proved in the same way.

C Proof of Lemma 1

Property ii) and iii) can be directly verified by definition. Thus, it suffices to prove i): the strong
convexity and smoothness of C(z).

Notice that xt, ut are linear with respect to z by (5) (6). For ease of reference, we define matrix
Mxt ,Mut to represent the relation between xt, ut and z, i.e, xt = Mxtz and ut = Mutz. Similarly,
we write f̃t(zt−p+1, . . . , zt) and g̃t(zt−p+1, . . . , zt+1) in terms of z for simplicity of notation:

f̃t(zt−p+1, . . . , zt) = f̃t(z) = ft(M
xtz)

g̃t(zt−p+1, . . . , zt+1) = g̃t(z) = gt(M
utz)

A direct consequence of the linear relations is that f̃t(z) and g̃t(z) are convex with respect to z
because ft(xt), gt(ut) are convex and the linear transformation preserves convexity.

In the following, we will focus on the proof of strong convexity and smoothness. For simplicity,
in the following, we only consider cost function ft, gt with minimum values zero: ft(θt) = 0, and
gt(ξt) = 0 for all t. This is without loss of generality because by strong convexity and smoothness,
ft, gt have minimum values, and by subtracting the minimum value, we can let ft, gt have minimum
value 0.

Strong convexity. Since g̃t is convex, we only need to prove that
∑
t f̃t(z) is strongly convex then

the sum C(z) is strongly convex because the sum of convex functions and a strongly convex function
is strongly convex.

In particular, by the strong convexity of ft(xt), we have the following result: for any z, z′ ∈ RNm
and xt = Mxtz, x′t = Mxtz′:

f̃t(z
′)− f̃t(z)− 〈∇f̃t(z), z′ − z〉 − µf

2
‖z′t − zt‖2

= f̃t(z
′)− f̃t(z)− 〈(Mxt)>∇ft(xt), z′ − z〉 − µf

2
‖z′t − zt‖2

= f̃t(z
′)− f̃t(z)− 〈∇ft(xt),Mxt(z′ − z)〉 − µf

2
‖z′t − zt‖2

= f̃t(z
′)− f̃t(z)− 〈∇ft(xt), x′t − xt〉 −

µf
2
‖z′t − zt‖2

≥ ft(x′t)− ft(xt)− 〈∇ft(xt), x′t − xt〉 −
µf
2
‖x′t − xt‖2 ≥ 0

where the first equality is by the chain rule, the second equality is by the definition of inner product,
the third equality is by the definition of xt, x′t, the first inequality is by f̃t(z) = ft(x) and zt =

(xk1
t , . . . , x

km
t)>, and the last inequality is because ft(xt) is µf strongly convex.

15

Summing over t on both sides of the inequality results in the strong convexity of
∑
t f̃t(z):

N∑
t=1

[
f̃t(z

′)− f̃t(z)− 〈∇f̃t(z), z′ − z〉 − µf
2
‖z′t − zt‖2

]
=

N∑
t=1

f̃t(z
′)−

N∑
t=1

f̃t(z)− 〈∇
N∑
t=1

f̃t(z), z′ − z〉 − µf
2
‖z′ − z‖2 ≥ 0

Consequently, C(z) is strongly convex with parameter at least µf by the convexity of g̃t.

Smoothness. We will prove the smoothness by considering f̃t(z) and g̃t(z) respectively.

Firstly, let’s consider f̃t(z). Similar to the proof for strong convexity, we use the smoothness of
ft(xt). For any z, z′, and xt = Mxtz, x′t = Mxtz′, we can show that

f̃t(z
′) = ft(x

′
t) ≤ ft(xt) + 〈∇ft(xt), x′t − xt〉+

lf
2
‖x′t − xt‖2

≤ f̃t(z) + 〈∇f̃t(z), z′ − z〉+
lf
2

(‖z′t−p+1 − zt−p+1‖2 + · · ·+ ‖z′t − zt‖2)

where the second inequality is by xt = Mxtz and the chain rule and (5).

Secondly, we consider g̃t(z) in a similar way. For any z, z′, and ut = Mutz, u′t = Mutz′, we have

g̃t(z
′) = gt(u

′
t) ≤ gt(ut) + 〈∇gt(ut), u′t − ut〉+

lg
2
‖u′t − ut‖2

= g̃t(z) + 〈(Mut)>∇gt(ut), z′ − z〉+
lg
2
‖u′t − ut‖2

= g̃t(z) + 〈∇g̃t(z), z− z〉+
lg
2
‖u′t − ut‖2

Since ut = zt+1 −A(I, :)xt = [Im,−A(I, :)](z>t+1, x
>
t)>, we have that

lg
2
‖u′t − ut‖2 ≤

lg
2
‖[Im,−A(I, :)]

[
((z′t+1)>, (x′t)

>)> − (z>t+1, x
>
t)>

]
‖2

≤ lg
2
‖[Im,−A(I, :)]‖2(‖zt+1 − z′t+1‖2 + ‖xt − x′t‖2)

≤ lg
2
‖[Im,−A(I, :)]‖2(‖zt+1 − z′t+1‖2 + · · ·+ ‖zt−p+1 − z′t−p+1‖2)

Finally, by summing f̃t(z′), g̃t(z′)’s inequalities above over all t, we have

C(z′) ≤ C(z) + 〈∇C(z), z′ − z〉+ (plf + (p+ 1)lg‖[Im,−A(I, :)]‖2)/2‖z′ − z‖2

Thus, we have proved the smoothness of C(z).

D Proof of Theorem 2

Remember that Regret(FOSS) = J(FOSS) − J∗. To bound the regret, we let the sum of the
optimal steady state costs,

∑N−1
t=0 λet , be a middle ground and bound J(FOSS) −

∑N−1
t=0 λet and∑N−1

t=0 λet − J∗ in Lemma 2 and Lemma 3 respectively. Then, the regret bound can be obtained by
combining the two bounds.

Lemma 2 (Bound on J(FOSS)−
∑N−1
t=0 λet). Let xt(0) denote the state determined by FOSS.

J(FOSS)−
N−1∑
t=0

λet ≤ c1
N−1∑
t=0

‖xet − xet−1‖+ fN (xN (0)) = O

(
N∑
t=0

‖xet − xet−1‖

)
where we define xeN := δN , xe−1 := x0 = 0 for simplicity of notation, c1 is a constant that does not
depend on N,W and big O hides a constant that does not depend on N,W .

16

Lemma 3 (Bound on
∑N−1
t=0 λet − J∗). Let het (x) denote a solution to the Bellman equations under

cost ft(x) + gt(u). Let {x∗t } denote the optimal state trajectory to the offline optimal control (1).
N−1∑
t=0

λet − J∗ ≤
N∑
t=1

(het−1(x∗t)− het (x∗t))− he0(x0) =

N∑
t=0

(het−1(x∗t)− het (x∗t))

where we define heN (x) := fN (x), he−1(x) := 0 and x∗0 := x0 for simplicity of notation.

Then, we can complete the proof by applying Lemma 2 and 3:

J(FOSS)− J∗ = J(FOSS)−
N−1∑
t=0

λet +

N−1∑
t=0

λet − J∗

= O

(
N∑
t=0

(‖xet−1 − xet‖+ het−1(x∗t)− het (x∗t))

)

In the following, we will prove Lemma 2 and 3 respectively. For simplicity, we only consider cost
function ft, gt with minimum values zero: ft(θt) = 0, and gt(ξt) = 0 for all t. There is no loss
of generality because by strong convexity and smoothness, ft, gt have minimum values, and by
subtracting the minimum value, we can let ft, gt have minimum value 0.

D.1 Proof of Lemma 2.

Notice that J(FOSS) =
∑N−1
t=0 (ft(xt(0)) + gt(ut(0))) + fN (xN (0)) and

∑N−1
t=0 λet =∑N−1

t=0 (ft(x
e
t) + gt(u

e
t)). Thus, it suffices to bound ft(xt(0)) − ft(x

e
t) and gt(ut(0)) − gt(u

e
t)

for 0 ≤ t ≤ N − 1. We will first focus on ft(xt(0))− ft(xet), then bound gt(ut(0))− gt(uet) in the
same way.

For 0 ≤ t ≤ N − 1, by the convexity of ft, and the property of L2 norm,

ft(xt(0))− ft(xet) ≤ 〈∇ft(xt(0)), xt(0)− xet 〉 ≤ ‖∇ft(xt(0))‖‖xt(0)− xet‖ (12)

In the following, we will bound ‖∇ft(xt(0))‖ and ‖xt(0)− xet‖ respectively.

Firstly, we provide a bound on ‖∇ft(xt(0))‖:
‖∇ft(xt(0))‖ = ‖∇ft(xt(0))−∇ft(θt)‖ ≤ lf‖xt(0)− θt‖ ≤ lf (

√
nx̄e + θ̄) (13)

where the first equality is because θt is the global minimizer of ft, and first inequality is by Lipschitz
smoothness, the second inequality is by ‖θt‖ ≤ θ̄ according to Assumption 3 and by ‖xt(0)‖ ≤√
nx̄e‖ proved in the following lemma.

Lemma 4 (Uniform upper bounds on xet , u
e
t , xt(0), ut(0)). There exist x̄e and ūe that are inde-

pendent of N,W , such that ‖xet‖ ≤ x̄e and ‖uet‖ ≤ ūe for all 0 ≤ t ≤ N − 1. Moreover,
‖xt(0)‖ ≤

√
nx̄e for 0 ≤ t ≤ N and ‖ut(0)‖ ≤

√
nūe for 0 ≤ t ≤ N − 1, where xt(0), ut(0)

denote the state and control at t determined by FOSS.

The proof is technical and is deferred to Appendix D.3.

Secondly, we provide a bound on ‖xt(0)− xet‖. The proof relies on the expressions of the steady
state xet and the initialized state xt(0) of a canonical-form system.
Lemma 5 (The steady state and the initialized state of canonical-form systems). Consider a canonical-
form system: xt+1 = Axt +But.

(a) Any steady state (x, u) is in the form of

x = (z1, . . . , z1︸ ︷︷ ︸
p1

, z2, . . . , z2︸ ︷︷ ︸
p2

, . . . , zm, . . . , zm︸ ︷︷ ︸
pm

)>

u = (z1, . . . , zm)> −A(I, :)x

for some z1, . . . , zm ∈ R. Let z = (z1, . . . , zm)>. For the optimal steady state with
respect to cost ft + gt, we denote the corresponding z as zet , and the optimal steady
state can be represented as xet = (ze,1t , . . . , ze,1t , ze,2t , . . . , ze,2t , . . . , ze,mt , . . . , ze,mt)> and
uet = zet −A(I, :)xet for 0 ≤ t ≤ N − 1.

17

(b) By FOSS initialization, zt+1(0) = zet , and xt(0), ut(0) satisfy

xt(0) = (ze,1t−p1
, . . . , ze,1t−1︸ ︷︷ ︸
p1

, ze,2t−p2
, . . . , ze,2t−1︸ ︷︷ ︸
p2

, . . . , ze,mt−pm , . . . , z
e,m
t−1︸ ︷︷ ︸

pm

), 0 ≤ t ≤ N

ut(0) = zet −A(I, :)xt(0) 0 ≤ t ≤ N − 1

where zet = 0 for t ≤ −1.

Proof. (a) This is by the definition of the canonical form and the definition of the steady state.

(b) By the initialization, zt(0) = xe,It−1 = zet−1. By the relation between zt(0) and xt(0), ut(0),
we have xIt (0) = zt(0) = zet−1, and xI−1

t (0) = zt−1(0) = zet−2, so on and so forth. This
proves the structure of xt(0). The structure of ut(0) is because ut(0) = zt+1(0)− A(I, :
)xt(0) = zet −A(I, :)xt(0)

By Lemma 5, we can bound ‖xt(0)− xet‖ for 0 ≤ t ≤ N − 1 by

‖xt(0)− xet‖ ≤
√
‖zet−1 − zet ‖2 + · · ·+ ‖zet−p − zet ‖2

≤
√
‖xet−1 − xet‖2 + · · ·+ ‖xet−p − xet‖2

≤ ‖xet−1 − xet‖+ · · ·+ ‖xet−p − xet‖
≤ p(‖xet−1 − xet‖+ · · ·+ ‖xet−p − xet−p+1‖) (14)

Combining (12) (13) and (14) yields

N−1∑
t=0

ft(xt(0))− ft(xet) ≤
N−1∑
t=0

‖∇ft(xt(0))‖‖xt(0)− xet‖

≤
N−1∑
t=0

lf (
√
nx̄e + θ̄)p(‖xet−1 − xet‖+ · · ·+ ‖xet−p − xet−p+1‖)

≤ p2lf (
√
nx̄e + θ̄)

N−1∑
t=0

‖xet−1 − xet‖ (15)

Notice that the constant term p2lf (
√
nx̄e + θ̄) does not depend on N,W .

Similarly, we can provide a bound on gt(ut(0))− gt(uet).

N−1∑
t=0

gt(ut(0))− gt(uet) ≤
N−1∑
t=0

‖∇gt(ut(0))‖‖ut(0)− uet‖

≤
N−1∑
t=0

lg‖ut(0)− ξt‖‖ut(0)− uet‖

≤
N−1∑
t=0

lg(
√
nūe + ξ̄)‖A(I, :)xt(0)−A(I, :)xet‖

≤
N−1∑
t=0

lg(
√
nūe + ξ̄)‖A(I, :)‖‖xt(0)− xet‖

≤ p2lg(
√
nūe + ξ̄)‖A(I, :)‖

N−1∑
t=0

‖xet−1 − xet‖ (16)

where the first inequality is by the convexity, the second inequality is because ξt is the global
minimizer of gt and gt is lg-smooth, the third inequality is by Assumption 3, Lemma 4 and Lemma

18

5, the fifth inequality is by (14). Notice that the constant term p2lg(
√
nūe + ξ̄)‖A(I, :)‖ does not

depend on N,W .

By (15) and (16), we complete the proof of the first inequality in the statement of Lemma 2:

J(FOSS)−
N−1∑
t=0

λet ≤ c1
N−1∑
t=0

‖xet−1 − xet‖+ fN (xN (0))

where c1 does not depend on N , W .

By defining xeN = θN , we can bound fN (xN (0)) by ‖xN (0)− xeN‖ up to some constants because
fN (xN (0)) = fN (xN (0))− fN (θN) ≤ lf

2 (
√
nx̄e + θ̄)‖xN (0)− xeN‖. By the same argument as in

(14), we have ‖xN (0)− xeN‖ = O(
∑N
t=0 ‖xet−1 − xet‖), where the big O hides some constant that

does not depend on N , W . Consequently,

J(FOSS)−
N−1∑
t=0

λet = O

(
N∑
t=0

‖xet−1 − xet‖

)

D.2 Proof of Lemma 3.

The proof heavily relies on dynamic programming and the Bellman equations. For simplicity, we
introduce a Bellman operator B(f + g, h) defined by B(f + g, h)(x) = minu(f(x) + g(u) +h(Ax+
Bu)). Now the Bellman equations can be written as B(f + g, he)(x) = he(x) + λe for any x.

We define a sequence of auxiliary functions Sk: Sk(x) = hek(x) +
∑N−1
t=k λet for k = 0, . . . , N ,

where heN (x) = fN (x).

We first provide a recursive equation for Sk. By Bellman equations, we have hek(x) + λek =
B(fk + gk, h

e
k)(x) for 0 ≤ k ≤ N − 1. Let πek be the corresponding optimal control policy that

solves the Bellman equations. We have the following recursive relation for Sk when 0 ≤ k ≤ N − 1:

Sk(x) = B(fk + gk, Sk+1 − hek+1 + hek)(x)

where SN (x) = fN (x).

Further, let Vk(x) denote the optimal cost-to-go function from k to N , then we obtain a recursive
equation for Vk by dynamic programming:

Vk(x) = B(fk + gk, Vk+1)(x) = fk(x) + gk(π∗k(x)) + Vk+1(Ax+Bπ∗k(x))

where 0 ≤ k ≤ N − 1, and π∗k denotes the optimal control policy and VN (x) = fN (x).

Now, we are ready for a recursive inequality for Sk(x∗k) − Vk(x∗k). Let {x∗k} denote the optimal
trajectory, then x∗k+1 = Ax∗k +Bπ∗k(x∗k). For any k = 0, . . . , N − 1,

Sk(x∗k)− Vk(x∗k) = B(fk + gk, Sk+1 − hek+1 + hek)(x∗k)− B(fk + gk, Vk+1)(x∗k)

≤ fk(x∗k) + gk(π∗k(x∗k)) + Sk+1(x∗k+1)− hek+1(x∗k+1) + hek(x∗k+1)

− (fk(x∗k) + gk(π∗k(x∗k)) + Vk+1(x∗k+1))

= Sk+1(x∗k+1)− hek+1(x∗k+1) + hek(x∗k+1)− Vk+1(x∗k+1)

where the first inequality is because π∗k is not optimal for the Bellman operator B(fk + gk, Sk+1 −
hek+1 + hek)(x∗k).

Summing over k = 0, . . . , N − 1 the recursive inequality for Sk(x∗k)− Vk(x∗k) yields

S0(x0)− V0(x0) ≤
N−1∑
k=0

(hek(x∗k+1)− hek+1(x∗k+1))

By subtracting he0(x0) on both sides,
N−1∑
t=0

λet − J∗ ≤
N−1∑
k=0

(hek(x∗k+1)− hek+1(x∗k+1))− he0(x0)

19

For the simplicity of notation, we define he−1(x0) = 0 and x∗0 = x0, then the bound can be written as

N−1∑
t=0

λet − J∗ ≤
N∑
k=0

(hek−1(x∗k)− hek(x∗k))

D.3 Proof of Lemma 4

The proof relies on the (strong) convexity and smoothness of the cost functions and the uniform upper
bounds on θt, ξt.

First of all, suppose there exists x̄e such that ‖xet‖2 ≤ x̄e for all 0 ≤ t ≤ N − 1. We will bound
uet , xt(0), ut(0) by using x̄e. Notice that the optimal steady state and the corresponding steady control
satisfy: uet = xe,It − A(I, :)xet . If we can bound xet by ‖xet‖ ≤ x̄e for all t, uet can be bounded
accordingly:

‖uet‖ ≤ ‖x
e,I
t ‖+ ‖A(I, :)xet‖ ≤ ‖xet‖+ ‖A(I, :)‖‖xet‖ ≤ (1 + ‖A(I, :)‖)x̄e =: ūe

Moreover, xt(0) can also be bounded by x̄e multiplied by some factors, because by Lemma 5, xt(0)’s
each entry is determined by some entry of xes for s < t. As a result, for 0 ≤ t ≤ N

‖xt(0)‖2 ≤
√
n‖xt(0)‖∞ ≤

√
nmax
s<t
‖xes‖∞ ≤

√
nmax
s<t
‖xes‖2 ≤

√
nx̄e

We can bound ut(0) by noticing that ut(0) = xIt+1(0)−A(I, :)xt(0) and

‖ut(0)‖ ≤ ‖xIt+1(0)‖+ ‖A(I, :)xt(0)‖ ≤ ‖xt+1(0)‖+ ‖A(I, :)‖‖xt(0)‖
≤ (1 + ‖A(I, :)‖)

√
nx̄e =

√
nūe

Next, it suffices to prove ‖xet‖ ≤ x̄e for all t for some x̄e. To prove this bound, we construct another
(suboptimal) steady state: x̂t = (θ1

t , . . . , θ
1
t). Let ût = x̂It −A(I, :)x̂t. It can be easily verified that

(x̂t, ût) is indeed a steady state of the canonical-form system. Moreover, x̂t and ût can be bounded
similarly as follows.

‖x̂t‖ ≤
√
n|θ1

t | ≤
√
n‖θt‖∞ ≤

√
n‖θt‖ ≤

√
nθ̄

‖ût‖2 ≤ (1 + ‖A(I, :)‖)‖x̂t‖ ≤ (1 + ‖A(I, :)‖)
√
nθ̄

Now, we can bound ‖xet − θt‖.
µ

2
‖xet − θt‖2 ≤ ft(xet)− ft(θt) + gt(u

e
t)− gt(ξt)

≤ ft(x̂t)− ft(θt) + gt(ût)− gt(ξt)

≤ lf
2
‖x̂t − θt‖2 +

lg
2
‖ût − ξt‖2

≤ lf (‖x̂t‖2 + ‖θt‖2) + lg(‖ût‖2 + ‖ξt‖2)

≤ lf (nθ̄2 + θ̄2) + lg(((1 + ‖A(I, :)‖)
√
nθ̄)2 + ξ̄) =: c5

where the first inequality is by ft’s strong convexity and gt’s convexity, the second inequality is
because (xet , u

e
t) is an optimal steady state, the third inequality is by the smoothness and ∇ft(θt) =

∇gt(ξt) = 0, the last inequality is by the bounds of ‖x̂t‖, ‖ût‖, θt, and ξt.

As a result, we have ‖xet − θt‖ ≤
√

2c5/µ. Then, we can bound xet by ‖xet‖ ≤ ‖θt‖+
√

2c5/µ ≤
θ̄ +

√
2c5/µ =: x̄e for all t. It can be verified that x̄e does not depend on N,W .

E Linear quadratic tracking

In this section, we will provide a regret bound in Corollary 2 for the general LQT defined in Example
1. Based on this, we prove Corollary 1, which is a special case when Qt, Rt are not changing.

20

E.1 Regret bound on the general online LQT problems

Before the regret bound, we provide an important lemma to characterize the solution to the Bellman
equations of the LQT problem.

Lemma 6. One solution to the Bellman equations with stage cost 1
2 (x− θ)>Q(x− θ) + 1

2u
>Ru

can be represented by

he(x) =
1

2
(x− βe)>P e(x− βe) (17)

where P e denotes the solution to the discrete-time algebraic Riccati equation (DARE) with respect to
Q,R,A,B

P e = Q+A>(P e − P eB(B>P eB +R)−1B>P e)A (18)

and βe = Fθ where F is a matrix determined by A,B,Q,R.

The proof is in Appendix G.

For simplicity of notation, let P e(Q,R) denote the solution to the DARE under the parameters
Q,R,A,B and F (Q,R) denote the matrix in βe = Fθ given parameters Q,R,A,B. Here we omit
A,B in the arguments of the functions because they will not change in this paper.

In addition, we introduce the following useful notations: Q = µfIn, Q̄ = lfIn, R = µgIm, R̄ =

lgIm for µf , µg > 0, 0 < lf , lg < +∞; and P̄ = P e(Q̄, R̄) and P = P e(Q,R). Based on the
notations above, we define some sets of matrices to be used later:

Q = {Q | Q ≤ Q ≤ Q̄},
R = {R | R ≤ R ≤ R̄},
P = {P | P ≤ P ≤ P̄}.

Now, we are ready for the regret bound for the general LQT problem.

Corollary 2 (Bound on general LQT). Consider the LQT problem in Example 1. Suppose for
t = 0, 1, . . . , N − 1, the cost matrices satisfy Qt ∈ Q, Rt ∈ R. Suppose the terminal cost function
satisfies QN ∈ P .5 Then, the regret of RHTM with initialization FOSS can be bounded by

Regret(RHTM) = O

(
ζ2(

√
ζ − 1√
ζ

)2K

(
N∑
t=1

(‖P et − P et−1‖+ ‖βet − βet−1‖) +

N∑
t=0

‖xet−1 − xet‖

))

whereK = b(W−1)/pc, xe−1 = x0, xeN = θN , ζ is the condition number of the correspondingC(z),
(xet , u

e
t) is the optimal steady state under cost Qt, Rt, θt, P et = P e(Qt, Rt) and βet = F (Qt, Rt)θt

for t = 0, . . . , N − 1 and βeN = θN , P eN = QN .

Proof. Before the proof, we introduce some supportive lemmas on the uniform bounds of P et , β
e
t , x
∗
t

respectively. The intuition behind these uniform bounds is that the cost function coefficientsQt, Rt, θt
are all uniformly bounded by Assumption 2 and 3. The proofs are technical and deferred to Appendix
G.

Lemma 7 (Upper bound on x∗t). For any Qt ∈ Q, Rt ∈ R, QN ∈ P , there exists x̄ that does not
depend on t, N,W , such that

‖x∗t ‖2 ≤ x̄, ∀ 0 ≤ t ≤ N.

Lemma 8 (Upper bound on βe). For any Q ∈ Q, R ∈ R, any ‖θ‖ ≤ θ̄, there exists β̄ ≥ 0 that does
not depend on N and only depends on A,B, lf , µf , lg, µg, θ̄, such that max(θ̄, ‖βe‖) ≤ β̄, where βe
is defined in Lemma 6.

Lemma 9 (Upper bound on P e). For any Q ∈ Q, R ∈ R, we have P e = P e(Q,R) ∈ P .
Consequently, ‖P e‖ ≤ υmax(P̄), where υmax(P̄) denotes the largest eigenvalue of P̄ .

5This additional condition is for technical simplicity and can be removed.

21

Now, we are ready for the proof of Corollary 2.

By Theorem 2, we only need to bound
∑N
t=0(het−1(x∗t)− het (x∗t)). By definition, P eN = QN , β

e
N =

θN , heN (x) = fN (x), so we can write het (x) = 1
2 (x− βet)>P et (x− βet) for 0 ≤ t ≤ N .

For 0 ≤ t ≤ N − 1, we split het (x
∗
t+1)− het+1(x∗t+1) into two parts.

het (x
∗
t+1)− het+1(x∗t+1) =

1

2
(x∗t+1 − βet)>P et (x∗t+1 − βet)− 1

2
(x∗t+1 − βet+1)>P et+1(x∗t+1 − βet+1)

=
1

2
(x∗t+1 − βet)>P et (x∗t+1 − βet)− 1

2
(x∗t+1 − βet+1)>P et (x∗t+1 − βet+1)︸ ︷︷ ︸

Part 1

+
1

2
(x∗t+1 − βet+1)>P et (x∗t+1 − βet+1)− 1

2
(x∗t+1 − βet+1)>P et+1(x∗t+1 − βet+1)︸ ︷︷ ︸

Part 2

Part 1 can be bounded by the following

Part 1 =
1

2
(x∗t+1 − βet + x∗t+1 − βet+1)>P et (x∗t+1 − βet − (x∗t+1 − βet+1))

≤ 1

2
‖x∗t+1 − βet + x∗t+1 − βet+1‖2‖P et ‖2‖βet+1 − βet ‖2

≤ (x̄+ β̄)υmax(P̄)‖βet+1 − βet ‖2
where the last inequality is by Lemma 7, 8 9.

Part 2 can be bounded by the following when 0 ≤ t ≤ N − 1,

Part 2 =
1

2
(x∗t+1 − βet+1)>(P et − P et+1)(x∗t+1 − βet+1)

≤ 1

2
‖x∗t+1 − βet+1‖22‖P et − P et+1‖2 ≤

1

2
(x̄+ β̄)2‖P et − P et+1‖2

Therefore, we have

N∑
t=0

(het−1(x∗t)− het (x∗t)) ≤
N−1∑
t=0

(het (x
∗
t+1)− het+1(x∗t+1))

= O(

N−1∑
t=0

(‖βet+1 − βet ‖2 + ‖P et − P et+1‖2)) (19)

where the first inequality is by he0(x) ≥ 0 and he−1(x) = 0. Thus, by Theorem 2, we have

Regret(RHTM) = O

(
ζ2(

√
ζ − 1√
ζ

)2K
(

N∑
t=1

(‖P et − P et−1‖+ ‖βet − βet−1‖) +
N∑
t=0

‖xet−1 − xet‖

))

E.2 Proof of Corollary 1

Roughly speaking, the proof is mostly by applying Corollary 2 and by showing ‖βet − βet−1‖ and
‖xet − xet−1‖ can be bounded by ‖θt− θt−1‖ up to some constants and ‖P et −P et−1‖ = 0 in the LQT
problem (9) where Q and R are not changing. However, directly applying the results in Theorem 2
and Corollary 2 will result in some extra constant terms because some inequalities used to derive the
bounds in Theorem 2 and Corollary 2 are not necessary when Q,R are not changing. Therefore, we
will need some intermediate results in the proofs of Theorem 2 and Corollary 2 to prove Corollary 1.

Firstly, by Lemma 2 and Lemma 3, we have

J(FOSS)− J∗ = J(FOSS)−
N−1∑
t=0

λet +

N−1∑
t=0

λet − J∗

22

≤ c1
N−1∑
t=0

‖xet−1 − xet‖︸ ︷︷ ︸
Part I

+

N−1∑
t=0

(het (x
∗
t+1)− het+1(x∗t+1))︸ ︷︷ ︸

Part II

+ fN (xN (0))− he0(x0)︸ ︷︷ ︸
Part III

We are going to bound each part by
∑
t ‖θt − θt−1‖ in the following.

Part I: We will bound Part I by
∑
t ‖θt−θt−1‖ through showing that xet = F1F2θt for some matrices

F1, F2. The representation of xet relies on Lemma 5.

By Lemma 5, any steady state (x, u) can be represented as a matrix multiplied by z:

x = (z1, . . . , z1︸ ︷︷ ︸
p1

, z2, . . . , z2︸ ︷︷ ︸
p2

, . . . , zm, . . . , zm︸ ︷︷ ︸
pm

)> =: F1z

u = (z1, . . . , zm)> −A(I, :)x = (Im −A(I, :)F1)z

where F1 ∈ Rn,m is a binary matrix with full column rank.

Consider cost function 1
2 (x− θ)>Q(x− θ) + 1

2u
>Ru. By the steady-state representation above, the

optimal steady state can be solved by the following unconstrained optimization:

min
z

(F1z − θ)>Q(F1z − θ) + z>(I −A(I, :)F1)>R(I −A(I, :)F1)z

Since F1 is full column rank, the function is strongly convex and has the unique solution

ze = F2θ (20)

where F2 = (F>1 QF1 + (I − A(I, :)F1)>R(I − A(I, :)F1))−1F>1 Q. Accordingly, the optimal
steady state can be represented as

xe = F1F2θ, ue = (Im −A(I, :)F1)F2θ. (21)

Consequently, when 1 ≤ t ≤ N−1,‖xet−xet−1‖ ≤ ‖F1F2‖‖θt−θt−1‖. When t = 0, ‖xe0−xe−1‖ ≤
‖F1F2‖‖θ0 − θ−1‖ holds since xe−1 = x0 = θ−1 = 0. Combining the upper bounds above, we have

Part I = O

(
N−1∑
t=0

‖θt − θt−1‖

)

Part II: By (19) in the proof of Corollary 2, and by noticing that P et = P e(Q,R) does not change,
we have

N−1∑
t=0

(het (x
∗
t+1)− het+1(x∗t+1)) = O

(
N−1∑
t=0

‖βet+1 − βet ‖

)
By Lemma 6, βet = F (Q,R)θt for 0 ≤ t ≤ N − 1. In addition, since βeN = θN = 0 as defined in
(9) and Corollary 2, we can also write βeN = F (Q,R)θN . Thus,

Part II = O

(
N−1∑
t=0

‖βet+1 − βet ‖

)
= O

(
N∑
t=1

‖θt − θt−1‖

)

Part III: By our condition for the terminal cost function, we have fN (xN (0)) = 1
2 (xN (0) −

βeN)>P e(xN (0) − βeN). By Lemma 6, we have he0(x0) = 1
2 (x0 − βe0)>P e(x0 − βe0). So Part III

can be bounded by

Part III =
1

2
(xN (0)− βeN)>P e(xN (0)− βeN)− 1

2
(x0 − βe0)>P e(x0 − βe0)

=
1

2
(xN (0)− βeN + x0 − βe0)>P e(xN (0)− βeN − (x0 − βe0))

≤ 1

2
‖xN (0)− βeN + x0 − βe0‖‖P e‖‖xN (0)− βeN − (x0 − βe0)‖

≤ 1

2
(
√
nx̄e + β̄ + β̄)‖P e‖(‖xN (0)− x0‖+ ‖βeN − βe0‖)

23

where the last inequality is by x0 = 0, Lemma 4, Lemma 8.

Next we will bound ‖xN (0) − x0‖ and ‖βeN − βe0‖ respectively. Firstly, by βet = F (Q,R)θt in
Lemma 6, we have

‖βeN − βe0‖ ≤
N−1∑
t=0

‖βet+1 − βet ‖ ≤ ‖F (Q,R)‖
N−1∑
t=0

‖θt+1 − θt‖

Secondly, we will bound ‖xN (0)− x0‖.
‖xN (0)− x0‖ ≤ ‖xN (0)− xeN−1‖+ ‖xeN−1 − x0‖

≤ ‖xN (0)− xeN−1‖+

N−1∑
t=0

‖xet − xet−1‖

≤ ‖xN (0)− xeN−1‖+ ‖F1F2‖
N−1∑
t=0

‖θt − θt−1‖

where the second inequality is by xe0 = x0, the third inequality is by (21).

Next, we will focus on ‖xN (0)− xeN−1‖. By Lemma 5,

xN (0) = (ze,1N−p1
, . . . , ze,1N−1, z

e,2
N−p2

, . . . , ze,2N−1, . . . , z
e,m
N−pm , . . . , z

e,m
N−1)>

xeN−1 = (ze,1N−1, . . . , z
e,1
N−1, z

e,2
N−1, . . . , z

e,2
N−1, . . . , z

e,m
N−1, . . . , z

e,m
N−1)>

As a result,
‖xN (0)− xeN−1‖2 ≤ ‖zeN−2 − zeN−1‖2 + · · ·+ ‖zeN−p − zeN−1‖2

= ‖F2‖2(‖θN−2 − θN−1‖2 + · · ·+ ‖θN−p − θN−1‖2)

where the equality is by (20). Taking square root on both sides yields

‖xN (0)− xeN−1‖ ≤ ‖F1‖
√
‖θN−2 − θN−1‖2 + · · ·+ ‖θN−p − θN−1‖2

≤ ‖F2‖(‖θN−2 − θN−1‖+ · · ·+ ‖θN−p − θN−1‖)

≤ ‖F2‖(p− 1)

N−2∑
t=N−p

‖θt+1 − θt‖

Combining the bounds above leads to

Part III = O

(
N−1∑
t=0

‖θt+1 − θt‖

)
The proof is completed by summing up the bounds for Part I, II, III.

F Proof of Theorem 3

Proof intuition: By the problem transformation in Section 3.1, the fundamental limit of the online
control problem is equivalent to the fundamental limit of the online convex optimization problem
with objective C(z). Therefore, we will focus on C(z). Since the lower bound is for the worst case
scenario, we only need to construct some tracking trajectories {θt} for Theorem 3 to hold. However,
it is generally difficult to construct the tracking trajectories, so we consider randomly generated θt
and show that the regret in expectation can be lower bounded. Then, there must exist some realization
of the randomly generated {θt} such that the regret lower bound holds.

Formal proof:

Step 1: construct LQ tracking. For simplicity, we construct a single-input system with n = p and
A ∈ Rn,n and B ∈ Rn×1 as follows: 6

A =

0 1 · · · 0
...

.
0 1

1 0 · · · 0

 , B =

0
...
0
1

6It is easy to generalize the construction to multi-input case by constructing m decoupled subsystems.

24

(A,B) is controllable because (B,AB, . . . , Ap−1B) is full rank. A’s controllability index is p = n.

Next, we construct Q and R. For any ζ > 1 and p, define δ = 4
(ζ−1)p . Let Q = δIn and R = 1 for

0 ≤ t ≤ N − 1. Let P e = P e(Q,R) be the solution to the DARE. The next lemma shows that P e is
a diagonal matrix and its diagonal entries can be characterized.
Lemma 10 (Form of P e). Let P e denote the solution to the DARE determined by A,B,Q,R defined
above. Then P e satisfies the form

P e =

q1 0 · · · 0
0 q2 · · · 0

. . .
0 · · · qn

 ,

where qi = q1 + (i− 1)δ for 1 ≤ i ≤ n and δ < q1 < δ + 1.

Proof of Lemma 10. The DARE exists a unique positive definite solution [59]. Suppose the solution
is diagonal and substitute it in the DARE as follows.

P e = Q+A>(P e − P eB(B>P eB +R)−1B>P e)A
q1 0 · · · 0
0 q2 · · · 0

. . .
0 · · · qn

 =

qn/(1 + qn) + δ 0 · · · 0

0 q1 + δ · · · 0
. . .

0 · · · qn−1 + δ

So we have qi = qi−1 + δ for 1 ≤ i ≤ n − 1, and qn/(1 + qn) + δ = q1 = qn − (n − 1)δ. Thus,
qn = nδ+

√
n2δ2+4nδ

2 > nδ. It is straightforward that q1 = qn − (n− 1)δ > δ > 0, and q1 < δ + 1
by qn/(1 + qn) < 1. So we have found the unique positive definite solution to the DARE.

Next, we will construct θt. Let θ0 = θN = βeN = 0 for simplicity. For θt when 1 ≤ t ≤ N − 1,
we divide the N − 1 stages into E epochs, each with length ∆ = d N−1

bLN
2θ̄
c
e, possibly except the last

epoch. This is possible because 1 ≤ ∆ ≤ N − 1 by the conditions in Theorem 3. Thus, E = dN−1
∆ e.

Let J be the first stage of the each epoch: J = {1,∆ + 1, . . . , (E − 1)∆ + 1}. Let θt for t ∈ J
independently and identically follow the distribution below.

Pr(θit = a) =

{
1/2 if a = σ

1/2 if a = −σ , i.i.d. for all i ∈ [n], t ∈ J ,

where σ = θ̄√
n

. It can be easily verified that ‖θ‖ = θ̄ for any realization of this distribution,
so Assumption 3 is satisfied. Let the other θt in each epoch be equal to the θ at the start of
their corresponding epochs, i.e. θk∆+1 = θk∆+2 = · · · = θ(k+1)∆, when k ≤ E − 1, and
θk∆+1 = · · · = θN−1 when k = E. The following inequalities show that the constructed {θt}
satisfies the variation budget:

N∑
t=0

‖θt − θt−1‖ = ‖θ1 − θ0‖+

E−1∑
k=1

‖θk∆+1 − θk∆‖+ ‖θN−1 − θN‖

≤ θ̄ + 2(E − 1)θ̄ + θ̄ = 2θ̄E

≤ 2θ̄bLN
2θ̄
c ≤ 2θ̄

LN
2θ̄

= LN

where the first equality is by θ0 = θ−1 = θN = 0, the first inequality is by ‖θt‖ = θ̄ when
1 ≤ t ≤ N − 1, the second inequality is by ∆ = d N−1

bLN
2θ̄
c
e ≥ N−1

bLN
2θ̄
c
, and thus bLN

2θ̄
c ≥ dN−1

∆ e = E.

The total cost of our constructed LQ tracking problem is

J(x,u) =

N−1∑
t=0

(
δ

2
‖xt − θt‖2 +

1

2
u2
t) +

1

2
x>NP

exN

25

We will verify that C(z)’s condition number is ζ in Step 2.

Step 2: problem transformation and the optimal solution z∗. By the problem transformation in
Section 3.1, we let zt = xnt , and the equivalent cost function C(z) is given below.

C(z) =

N−1∑
t=0

(
δ

2

n∑
i=1

(zt−n+i − θit)2 +
1

2
(zt+1 − zt−n+1)2) +

1

2

n∑
i=1

qiz
2
N−n+i

and zt = 0 and θt = 0 for t ≤ 0.

Since C(z) is strongly convex, minC(z) admits a unique optimal solution, denoted as z∗, which
is determined by the first-order optimality condition: ∇C(z∗) = 0. In addition, our constructed
C(z) is a quadratic function, so there exists a matrix H ∈ RN×N and a vector η ∈ RN such that
∇C(z∗) = Hz∗ − η = 0. By the partial gradients of C(z) below,

∂C

∂zt
= δ(zt − θnt + zt − θn−1

t+1 + · · ·+ zt − θ1
t+n−1) + zt − zt+n + zt − zt−n, 1 ≤ t ≤ N − n

∂C

∂zt
= δ(zt − θnt + · · ·+ zt − θn+t−N+1

N−1) + qn+t−Nzt + zt − zt−n, N − n+ 1 ≤ t ≤ N

For simplicity and without loss of generality, we assume that N/n is an integer. Then, by Lemma 10,
H can be represented as the block matrix below

H =

(δn+ 2)In −In · · ·

−In (δn+ 2)In
. . .

. −In
−In (qn + 1)In

 ∈ RN×N .

η is a linear combination of θ: for 1 ≤ t ≤ N , we have ηt = δ(θnt + · · ·+ θ1
t+n−1) = δ(e>n θt + · · ·+

e>1 θt+n−1) where e1, . . . , en ∈ Rn are standard basis vectors and θt = 0 for t ≥ N .

By Gergoskin’s Disc Theorem and Lemma 10, H’s condition number is (δn + 4)/δn = ζ by our
choice of δ in Step 1 and p = n. Thus we have shown that C(z)’s condition number is ζ.

Since H is strictly diagonally dominant with positive diagonal entries and nonpositive off-diagonal
entries, H is invertible and its inverse, denoted by Y , is nonnegative. Consequently, the optimal
solution can be represented as z∗ = Y η. Since η is linear in {θt}, z∗t is also linear in {θt} and can be
characterized by the following.

z∗t+1 =

N∑
i=1

Yt+1,iηi = δ

N∑
i=1

Yt+1,i

n−1∑
j=0

e>n−jθi+j

= δ

N−1∑
k=1

(
n∑
i=1

Yt+1,i+k−ne
>
i

)
θk

=: δ

N−1∑
k=1

vt+1,kθk (22)

where θt = 0 for t ≥ N , Yt+1,i = 0 for i ≤ 0, and vt+1,k :=
∑n
i=1 Yt+1,i+k−ne

>
i .

In addition, we are able to show in the next lemma that Y has decaying row entries starting at the
diagonal entries. The proof is technical and deferred to the Appendix F.1.
Lemma 11. When N/n is an integer, the inverse of H , denoted by Y , can be represented as a block
matrix

Y =

y1,1In y1,2In · · · y1,N/nIn
y2,1In y2,2In · · · y2,N/nIn

...
. . .

. . .
...

yN/n,1In yN/n,2In · · · yN/n,N/nIn

where yt,t+τ ≥ 1−ρ

δn+2ρ
τ > 0 for τ ≥ 0 and ρ =

√
ζ−1√
ζ+1

.

26

Step 3: characterize zt+1(Az). For any online control algorithm A, we can define an equivalent
online algorithm for z, denoted as Az . Az , at each time t, outputs zt+1(Az) based on the predictions
and the history, i.e.,

zt+1(Az) = Az({θs}t+W−1
s=0), t ≥ 0

For simplicity, we consider online deterministic algorithm.7 Notice that zt+1 is a random variable
because θ1, . . . , θt+W−1 are random. Based on this observation and Lemma 11, we are able to
provide a regret lower bound in Step 4.

Step 4: prove the regret lower bound on A. Roughly speaking, the regret occurs when something
unexpected happens beyond the prediction window, that is, at each t, the prediction window goes
as far as t+W − 1, but if θt+W changes from θt+W−1, the online algorithm cannot prepare for it,
resulting in poor control and positive regret. By our construction, when t+W ∈ J , θt+W changes
from θt+W−1. To study such t, we define a set J1 = {0 ≤ t ≤ N −W − 1 | t+W ∈ J }. It can be
shown that the cardinality of J1 can be lower bounded by LN up to some constants:

|J1| ≥
1

18θ̄
LN (23)

The proof of (23) is provided below.

|J1| = |{W ≤ t ≤ N − 1 | t ∈ J }|
= |J | − |{1 ≤ t ≤W − 1 | t ∈ J }|

= dN − 1

∆
e − dW − 1

∆
e

≥ bN −W
∆

c

≥ 1

2

N −W
∆

≥ 1

2

N −W
N − 1 + bLN

2θ̄
c
bLN

2θ̄
c

≥ 1

2

N − 1
3N

N − 1 +N + 1/2
bLN

2θ̄
c ≥ 1

6
bLN

2θ̄
c

≥ 1

6

2

3

LN
2θ̄

=
1

18

LN
θ̄

where the first inequality is by the definition of the ceiling and floor operators, the second inequality
is by N−W

∆ ≥ 1 under the conditions on N,W,LN in Theorem 3, the third inequality is by ∆ =

d N−1

bLN
2θ̄
c
e ≤ N−1

bLN
2θ̄
c

+ 1, the fourth inequality is by LN ≤ (2N + 1)θ̄ in Theorem 3’s statement, the

last inequality is by LN ≥ 4θ̄ in Theorem 3’s statement.

Moreover, we can show in Lemma 12 that, for all t ∈ J1, the online decision zt+1(Az) is different
from the optimal solution z∗t+1 and the difference is lower bounded,
Lemma 12. For any online algorithm Az , when t ∈ J1,

E |zt+1(Az)− z∗t+1|2 ≥ c10σ
2ρ2K

where c10 is a constant determined by A,B, n,Q,R constructed above and ρ =
√
ζ−1√
ζ+1

.

The proof is provided in Appendix F.2.

The lower bound on the difference between the online decision and the optimal decision results in a
lower bound on the regret. By the nδ-strong convexity of C(z),

E(C(z(Az))− C(z∗)) ≥ δn

2

∑
t∈J1

E |zt+1(Az)− z∗t+1|2

≥ |J1|c10σ
2ρ2K

7The proof can be easily generalized to random algorithms

27

≥ LN
18θ̄

c10σ
2ρ2K = Ω(LNρ

2K)

By the equivalence between A and Az , we have E J(A)− E J∗ = Ω(ρ2KLN). By the property of
expectation, there must exist some realization of the random {θt} such that J(A)−J∗ = Ω(ρ2KLN),
where ρ =

√
ζ−1√
ζ+1

. This completes the proof.

F.1 Proof of Lemma 11

Proof. Since H is a block matrix

H =

(δn+ 2)In −In · · ·

−In (δn+ 2)In
. . .

. −In
−In (qn + 1)In

its inverse matrix Y can also be represented as a block matrix. Moreover, let

H1 =

δn+ 2 −1 · · · 0

−1 δn+ 2
. . . 0

...
.

...
0 · · · −1 qn + 1

and define Ȳ = (H1)−1 = (yij)

N/n
i,j=1. Then the inverse matrix Y can be represented as the block

matrix: Y = (yijIn)
N/n
i,j=1.

Now, it suffices to provide a lower bound on yij .

Since H1 is a symmetric positive definite tridiagonal matrix, by [63], the inverse has an explicit
formula given by (H1)−1

ij = aibj and

at =
ρ

1− ρ2

(
1

ρt
− ρt

)
bt = c3

1

ρN−t
+ c4ρ

N−t

c3 = bN

(
(qn + 1)ρ− ρ2

1− ρ2

)
c4 = bN

1− (qn + 1)ρ

1− ρ2

bN =
1

−aN−1 + (qn + 1)aN

In the following, we will show yt,t+τ = atbt+τ ≥ 1−ρ
δn+2ρ

τ when τ ≥ 0. Firstly, it is easy to verify
that

ρtat =
ρ

1− ρ2
(1− ρ2t) ≥ ρ

since t ≥ 1 and ρ < 1.

Secondly, we bound bN in the following way:

ρ−NbN =
1

(qn + 1)(1− ρ2N)− (ρ− ρ2N−1)

1− ρ2

ρ
≥ 1

(δn+ 2)

1− ρ2

ρ

because 0 < (qn + 1)(1− ρ2N)− (ρ− ρ2N−1) ≤ (δn+ 2) by nδ < qn < nδ + 1 in Lemma 10.

Thirdly, we bound bt+τ . When 1− (qn + 1)ρ ≥ 0

ρN−t−τ bt+τ = bN

(
(qn + 1)ρ− ρ2

1− ρ2

)
+ bN

1− (qn + 1)ρ

1− ρ2
ρ2(N−t−τ)

28

≥ bN
(

(qn + 1)ρ− ρ2

1− ρ2

)
≥ bN

(
(δn+ 1)ρ− ρ2

1− ρ2

)
=

1− ρ
1− ρ2

bN

where the first inequality is by 1− (qn + 1)ρ ≥ 0, the second inequality is by qn > nδ in Lemma 10,
and the last equality is by ρ2 − (δn+ 2)ρ+ 1 = 0.

When 1− (qn + 1)ρ < 0

ρN−t−τ bt+τ = bN

(
(qn + 1)ρ− ρ2

1− ρ2

)
+ bN

1− (qn + 1)ρ

1− ρ2
ρ2(N−t−τ)

≥ bN
(

(qn + 1)ρ− ρ2

1− ρ2

)
+ bN

1− (qn + 1)ρ

1− ρ2

≥ bN ≥
1− ρ
1− ρ2

bN

where the first inequality is by 1− (qn + 1)ρ < 0, ρ ≤ 1, the second inequality is by ρ2(N−t−τ) ≤ 1.
Thus, we obtained a lower bound for bt+τ .

Combining bounds of at, bt+τ , bN together yields

yt,t+τ = atbt+τ ≥ ρbN
1− ρ
1− ρ2

ρτ−N ≥ 1− ρ
(δn+ 2)

ρτ

F.2 Proof of Lemma 12

Proof. By our construction, θt is random, zAt+1 is also random and its randomness is provided by
θ1, . . . , θt+W−1, while z∗t+1 is determined by all θt. When t ∈ J1,

E |zAt+1 − z∗t+1|2 = E |zAt+1 − δ
N−1∑
i=1

vt+1,iθi|2

= E |zAt+1 − δ
t+W−1∑
i=1

vt+1,iθi‖2 + δ2 E |
N−1∑
i=t+W

vt+1,iθi|2

≥ δ2 E |
N−1∑
i=t+W

vt+1,iθi|2,

where the first equality is by (22), the second equality is by E θτ = 0 for all τ , and θt+W , . . . , θN are
independent of θ1, . . . , θt+W−1 when t ∈ J1.

Further,

E |
N−1∑
i=t+W

vt+1,iθi|2 = E |
t+W+∆−1∑
i=t+W

vt+1,iθt+W |2 + · · ·+ E |
N−1∑

i=(E−1)∆+1

vt+1,iθ(E−1)∆+1|2

= ‖
t+W+∆−1∑
i=t+W

vt+1,i‖2σ2 + · · ·+ ‖
N−1∑

i=(E−1)∆+1

vt+1,i‖2σ2

≥ σ2
N−1∑
i=t+W

‖vt+1,i‖2

= σ2
N−1∑
i=t+W

(

n−1∑
k=0

Y 2
t+1,i−k) ≥ σ2

N−1∑
i=t+1+W−n

Y 2
t+1,i

29

= σ2
N∑

i=t+1+W−n
Y 2
t+1,i

where the first equality is because the theta in one epoch are equal by our construction, the second
equality is because cov(θτ) = σ2In, the first inequality is because the entries of vt+1,i are nonneg-
ative, the third equality is by the definition of vt+1,i in (22), and the last equality is because when
t ∈ J1, Yt+1,N = 0.

When 1 ≤ W ≤ n,
∑N
i=t+1+W−n Y

2
t+1,i ≥ Y 2

t+1,t+1 = Yt+1,t+1+nbW−1
n c. When W > n,∑N

i=t+1+W−n Y
2
t+1,i ≥ Y 2

t+1,t+1+ndW−nn e. Moreover, when W ≥ 1, dW−nn e = bW−1
n c. In

summary, for W ≥ 1,

N∑
i=t+1+W−n

Y 2
t+1,i ≥ Y 2

t+1,t+1+nbW−1
n c ≥ ρ

2K(
1− ρ
δn+ 2

)2

where the last inequality is by Lemma 11. This completes the proof.

G Proofs of the LQT’s properties used in Appendix E

In this section, we provide proofs for the properties of LQ tracking (LQT) used in Appendix E.

G.1 Preliminaries: dynamic programming for finite-horizon LQT

In this section, we consider a discrete time LQ tracking problem with time-varying cost functions and
time-invariant dynamical system:

min
xt,ut

1

2

N−1∑
t=0

[
(xt − θt)>Qt(xt − θt) + u>t Rtut

]
+

1

2
(xN − θN)>QN (xN − θN)

s.t. xt+1 = Axt +But, t = 0, . . . , N − 1

where x0 = 0 for simplicity.

The problem can be solved by dynamic programming.
Theorem 4 (Dynamic programming for the finite-horizon LQT). Consider a finite-horizon time-
varying LQ tracking problem. Let Vt(xt) be the cost to go from k = t to k = N , then

Vt(xt) =
1

2
(xt − βt)>Pt(xt − βt) +

1

2

N−1∑
k=t

(Aθk − βk+1)>Hk(Aθk − βk+1)

for t = 0, . . . , N . The parameters can be obtained by

Pt = Qt +A>MtA, t = 0, . . . , N − 1, PN = QN

Mt = Pt+1 − Pt+1B(Rt +B>Pt+1B)−1BTPt+1, t = 0, . . . , N − 1

βt = (Qt +A>MtA)−1(Qtθt +A>Mtβt+1), t = 0, . . . , N − 1

βN = θN

Ht = Mt −MtA(Qt +A>MtA)−1A>Mt, t = 0, . . . , N − 1

The optimal controller is

u∗t = −Ktxt +K ′tβt+1, t = 0, . . . , N − 1

where the parameters are

Kt = (Rt +B>Pt+1B)−1B>Pt+1A

K ′t = (Rt +B>Pt+1B)−1B>Pt+1

30

There is another way to write the optimal controller:

u∗t = −Ktxt +Kα
t αt+1 t = 0, . . . , N − 1

where the parameters are

Kα
t = (Rt +B>Pt+1B)−1B>

αt = Ptβt

αt = Qtθt + (A−BKt)
>αt+1, t = 0, . . . , N − 1

αN = PNθN

Proof. The proof is straightforward by following dynamic programming procedures.

Firstly, it is direct to verify that VN (xN) = 1
2 (xN − θN)>QN (xN − θN). Then, suppose the claim

of Theorem 4 is true at t+ 1, we will verify the stage t in the following.

Vt(xt) = min
ut

[1
2

(xt − θt)>Qt(xt − θt) +
1

2
u>t Rtut + Vt+1(Axt +But)

]
=

1

2
min
ut

[
(xt − θt)>Qt(xt − θt) + u>t Rtut + (Axt +But − βt+1)>Pt+1(Axt +But − βt+1)

+

N−1∑
k=t+1

(Aθk − βk+1)>Hk(Aθk − βk+1)
]

=
1

2
(Axt − βt+1)>(Pt+1 − Pt+1B(Rt +B>Pt+1B)−1B>Pt+1)(Axt − βt+1)

+
1

2
(xt − θt)>Qt(xt − θt) +

1

2

N−1∑
k=t+1

(Aθk − βk+1)>Hk(Aθk − βk+1)

=
1

2
(Axt − βt+1)>Mt(Axt − βt+1) +

1

2
(xt − θt)>Qt(xt − θt)

+
1

2

N−1∑
k=t+1

(Aθk − βk+1)>Hk(Aθk − βk+1)

=
1

2
(xt − βt)>Pt(xt − βt)−

1

2
(Qtθt +A>Mtβt+1)>(Qt +A>MtA)−1(Qtθt +A>Mtβt+1)

+
1

2
θ>t Qtθt +

1

2
β>t+1Mtβt+1 +

1

2

N−1∑
k=t+1

(Aθk − βk+1)>Hk(Aθk − βk+1)

=
1

2
(xt − βt)>Pt(xt − βt) +

1

2

N−1∑
k=t

(Aθk − βk+1)>Hk(Aθk − βk+1)

where the third equality is by noticing that the optimal control input is

u∗t = −(Rt +B>Pt+1B)−1B>Pt+1(Axt − βt+1) = −Ktxt +K ′tβt+1,

the fourth equality is by Mt’s definition, the fifth equality is by combining the two quadratic terms of
xt as one quadratic term with a constant, and the last equality is by definition.

G.2 Proof of Lemma 9

In the following, we first prove that the recursive solution Pt to the finite-horizon LQT is bounded.
Then, we can prove Lemma 9 by taking limits.
Lemma 13 (Bounded Pt for finite-horizon LQT). Consider a finite-horizon time-varying LQT
problem. For any N , any 0 ≤ t ≤ N , any Qt ∈ Q, Rt ∈ R, QN ∈ P , we have Pt ∈ P where Pt is
defined in Theorem 4.

Proof. In the following, we use the notations and definitions introduced in Appendix E.1 and Theorem
4.

31

Since Pt does not depend on θt, we let θt = 0 and consider the LQR problem for simplicity. Since
Q ≤ Qt ≤ Q̄, R ≤ Rt ≤ R̄, for 0 ≤ t ≤ N − 1 and P ≤ QN ≤ P̄ , we have for any xt, ut, k,
Qt, Rt, QN ,

N−1∑
t=k

(x>t Qtxt + u>t Rtut) + x>NQNxN ≤
N−1∑
t=k

(x>t Q̄xt + u>t R̄ut) + x>N P̄ xN

N−1∑
t=k

(x>t Qtxt + u>t Rtut) + x>NQNxN ≥
N−1∑
t=k

(x>t Qxt + u>t Rut) + x>NPxN

Taking minimum over all feasible trajectories on both sides yields

min

N−1∑
t=k

(x>t Qtxt + u>t Rtut) + x>NQNxN ≤ min

N−1∑
t=k

(x>t Q̄xt + u>t R̄ut) + x>N P̄ xN

min

N−1∑
t=k

(x>t Qtxt + u>t Rtut) + x>NQNxN ≥ min

N−1∑
t=k

(x>t Qxt + u>t Rut) + x>NPxN

Notice that the left-hand-side terms of both inequalities are equal to x>k Pkxk. Moreover, notice that

x>k P̄ xk = min
xt+1=Axt+But

N−1∑
t=k

(x>t Q̄xt + u>t R̄ut) + x>N P̄ xN

because P̄ = P e(Q̄, R̄) is the solution to the DARE. The same holds for P . Therefore, we have

x>k Pxk ≤ x>k Pkxk ≤ x>k P̄ xk
for any xk. Thus, P ≤ Pk ≤ P̄ , i.e. Pk ∈ P .

Proof of Lemma 9. In the following, we use the notations and definitions introduced in Appendix
E.1 and Theorem 4. Since P e is not influenced by θt, we let θt = 0 for simplicity. Consider a
finite-horizon LQR problem:

∑N−1
k=0 (x>k Qxk + u>k Ruk) + x>NQNxN , where QN ∈ P . By Lemma

13, we have Pk ∈ P . Since Pk → P e as k → −∞ [59], and since P is a closed set [64], we have
P e ∈ P . Since P e and P̄ are positive definite, we have ‖P e‖2 ≤ υmax(P̄).

G.3 Proof of Lemma 6

In the following, we will provide and prove an enhanced version of Lemma 6 with detailed character-
ization of the solution to the Bellman equations in Proposition 1.
Proposition 1 (Optimal solution to average-cost LQ tracking). Suppose (A,B) is controllable, Q,R
are positive definite. The optimal average cost λe does not depend on the initial state x0 and is equal
to

λe =
1

2
(Aθ − βe)>He(Aθ − βe),

where Me = P e−P eB(R+B>P eB)−1B>P e and He = Me−MeA(Q+A>MeA)−1A>Me.

In addition, a bias function of the Bellman equations he(x)+λe = minu(f(x)+g(u)+he(Ax+Bu))
can be represented by

he(x) =
1

2
(x− βe)>P e(x− βe).

where P e = P e(Q,R).

The optimal controller is
u = −Kex+K ′βe

where Ke = (R+B>P eB)−1B>P eA, K ′ = (R+B>P eB)−1B>P e, and βe satisfies

βe = (P e)−1αe = Fθ (24)

where αe = Qθ + (A−BKe)>αe and thus F = (P e)−1(I − (A−BKe)>)−1Q.

32

Proof of Proposition 1. It is easy to see that the formulas of λe, he(x), and the optimal controller
are the limits of the corresponding formulas or the limiting solutions to the corresponding iterative
equations under fixed Q,R, θ in Theorem 4. However, to formally prove these formulas, we still
need to prove the existence of the limits, which is the focus of the following proof. In particular,
the proof consists of three parts: i) verify the formula of the optimal average cost λe, ii) verify the
formula of the bias function he(x), iii) verify the formula of the optimal controller.

Part i): Verify the formula of λe. Consider a finite horizon LQT problem:

min
xt,ut

1

2

N−1∑
t=0

[
(xt − θ)>Q(xt − θ) + u>t Rut

]
s.t. xt+1 = Axt +But, t = 0, . . . , N − 1

Given an initial state x0, by Theorem 4, the total optimal cost in N time steps is

J∗N (x0) =
1

2
(x0 − β0)>P0(x0 − β0) +

1

2

N−1∑
k=0

(Aθ − βk+1)>Hk(Aθ − βk+1)

If we can show that βk → βe and Pk → P e and Hk → He as k → −∞, then, consequently, we will
have 1

2 (Aθ − βk+1)>Hk(Aθ − βk+1) → 1
2 (Aθ − βe)>He(Aθ − βe) as k → −∞, and bounded

1
2 (x0 − β0)>P0(x0 − β0) for fixed x0. Then the formula of the optimal average cost in infinite
horizon can be proved by

λe = lim
N→+∞

[
1

N
min

xt+1=Axt+But

(
1

2

N−1∑
t=0

(
(xt − θ)>Q(xt − θ) + u>t Rut

))]

= lim
N→+∞

[
1

N

(
1

2
(x0 − β0)>P0(x0 − β0) +

1

2

N−1∑
k=0

(Aθ − βk+1)>Hk(Aθ − βk+1)

)]

=
1

2
(Aθ − βe)>He(Aθ − βe),

Therefore, it suffices to prove βk → βe, Pk → P e and Hk → He as k → −∞.

By Proposition 4.4.1 [59], Pk → P e as k → −∞. Then, Mk → Me as k → −∞ since Mk is a
continuous function of Pk by noticing that the matrix inverse operator is continuous when the matrix
is invertible. Similarly, Hk → He as k → −∞ since Hk is a continuous function of Mk. In addition,
Kk → Ke, and Kα

k → Kα and K ′k → K ′ as k → −∞ since Kk,K
α
k ,K

′
k are continuous functions

of Pk.

To show βk → βe, we only need to show αk → αe as k → −∞ since βk = P−1
k αk. αk satisfies

the recursive equation αk = Qθ + (A − BKk+1)>αk+1. Since (A − BKk)> → (A − BKe)>

as k → −∞ and (A − BKe)> is a stable matrix, by the claim below, we can show αk → αe as
k → −∞. Then, the proof of Part i) is completed.

Claim: If At → A and A is stable, then the state of the system xt+1 = Atxt + η will converge to
xs, where xs = Axs + η, for any bounded initial value x0.

The proof of the claim lemma is provided at the end of this subsection.

Part ii): Verify he(x)’s formula. The proof is by showing the Bellman equations hold under the
formulas of he(x) and λe provided in the statement of the lemma.

min
u

[
1

2
(x− θ)>Q(x− θ) +

1

2
u>Ru+

1

2
(Ax+Bu− βe)>P e(Ax+Bu− βe)

]
=

1

2
(x− θ)>Q(x− θ) +

1

2
(Ax− βe)>Me(Ax− βe)

+ min
u

1

2
(u+Kex−K ′βe)>(R+B>P eB)(u+Kex−K ′βe)

=
1

2
(x− θ)>Q(x− θ) +

1

2
(Ax− βe)>Me(Ax− βe)

33

=
1

2
(Aθ − βe)>He(Aθ − β) +

1

2
(x− βe)>P e(x− βe)

where the last equality is by Q+A>MeA = P e, βe = (P e)−1αe, αe = Qθ+ (A−BKe)>αe and
the formulas of Ke,Me.

Part iii): Verify the formula of the optimal controller. We prove u = −Kex+K ′βe is the optimal
controller by showing that the average cost by implementing this controller is no more than the
optimal average cost λe. Let xt, ut be the state and control at t by implementing the controller
u = −Kex+K ′βe.

1

N

(
1

2

N−1∑
t=0

[
(xt − θ)>Q(xt − θ) + u>t Rut

])

≤ 1

N

(
1

2

N−1∑
t=0

[
(xt − θ)>Q(xt − θ) + u>t Rut

]
+

1

2
(xN − βe)>P e(xN − βe)

)

=
1

N

(
1

2
(x0 − βe)>P e(x0 − βe) +

1

2

N−1∑
k=0

(Aθ − βe)>He(Aθ − βe)

)
where the last equality is by Theorem 4. Taking N → +∞ on both sides, we have

lim
N→+∞

1

N

1

2

N−1∑
t=0

[
(xt − θ)>Q(xt − θ) + u>t Rut

]
≤ 1

2
(Aθ − βe)>He(Aθ − βe) = λe

This completes the proof.

Proof of Claim: Define the error term dt = xt−xs. The dynamics of dt is dt+1 = Adt +wt, where
wt = (At − A)(dt + xs). It suffices to show dt → 0 as t → +∞. In the following, we will first
prove two facts, based on which we prove dt → 0.

Fact 1: Consider a stable matrix A and a sequence of uniformly bounded vectors: ‖vt‖2 ≤ D for all
t. There exists a constant c6 > 0 determined by A, such that, for any k = 1, 2, . . . ,

‖
k−1∑
t=0

Atvt‖2 ≤ c6D.

Proof of Fact 1: This is a consequence of the fact that exponential stability implies bounded-input-
bounded-output stability. To see this, consider a system xt+1 = Axt + ut with x0 = 0. Since A is
stable, the system is exponentially stable. By Theorem 9.4 [53], the exponential stability implies the
bounded-input-bounded-output stability. Thus, there exists c6 such that ‖xk‖2 ≤ c6D for any k and
any input sequence satisfying ‖ut‖2 ≤ D for all t.

For any k ≥ 0, consider inputs ut = vk−1−t for 0 ≤ t ≤ k − 1, then xk =
∑k−1
t=0 A

tvt. Since
‖ut‖ ≤ D, we have ‖xk‖ ≤ c6D, which completes the proof.

Fact 2: There exists a constant D > 0, such that maxt≥0(‖xs‖, ‖dt‖) ≤ D.

Proof of Fact 2: Since At → A, for ε1 = 1/(4c6), there exists N1, such that when t ≥ N1,
‖At−A‖ ≤ ε1. Since A is stable, we have At → 0, so for ε2 = 1/2, there exists N2, such that when
t > N2, ‖At‖ ≤ ε2.

Let D = max(‖d0‖, . . . , ‖dN1+N2‖, ‖xs‖). By definition, ‖dt‖ ≤ D for t ≤ N1 + N2. We can
show ‖dN1+N2+1‖ ≤ D in the following.

‖dN1+N2+1‖ = ‖AN2+1dN1
+ wN1+N2

+AwN1+N2−1 + · · ·+AN2wN1
‖

≤ ‖AN2+1‖2D + ‖wN1+N2 +AwN1+N2−1 + · · ·+AN2wN1‖
≤ ε2D + c6 max

N1≤k≤N1+N2

‖wk‖

≤ ε2D + 2c6ε1D = (1/2 + 1/2)D = D

34

where the second inequality is by Fact 1 and the definitions of ε2, and the third inequality is by
wk = (Ak −A)(dk + xs), k ≥ N1, and the definitions of D and ε1.

It can be shown by induction that ‖dt‖ ≤ D for any t ≥ N1 + N2 + 1 in the same way, which
completes the proof.

Prove dt → 0. We will show that for any ε3 > 0, there exists N3, such that ‖dt‖2 ≤ ε3 when t > N3.
The proof is very similar to the proof of Fact 2.

Since At → A, when ε′1 = ε3/(4c6D), there exists N ′1, such that when t ≥ N ′1, ‖At − A‖ ≤ ε′1,
where D is defined in Fact 2. Since A is stable, we have At → 0, so when ε′2 = ε3/(2D), there exists
N ′2, such that when t > N ′2, ‖At‖ ≤ ε′2. Let N3 = N ′1 +N ′2. When t > N3,

‖dt+1‖ = ‖At−N
′
1+1dN ′1 + wt +Awt−1 + · · ·+At−N

′
1wN ′1‖

≤ ‖At−N
′
1+1‖D + ‖wt +Awt−1 + · · ·+At−N

′
1wN ′1‖2

≤ ε′2D + c6 max
N ′1≤k≤t

‖wk‖

≤ ε′2D + 2c6ε
′
1D = (1/2 + 1/2)ε3 = ε3

where the second inequality is by Fact 1 and the definitions of ε2, and the third inequality is by
wk = (Ak −A)(dk + xs), k ≥ N1, maxk≥0(‖dk‖, ‖xs‖) ≤ D, and the definition of ε′1.

This completes the proof of the claim.

G.4 Proof of Lemma 7.

Let x∗t , u
∗
t denote the optimal state and the optimal control input at time t respectively. By Theorem

4, the optimal controller is u∗t = −Ktx
∗
t +Kα

t αt. For ease of notation, define

Dt := A−BKt.

Then, the dynamical system of x∗t can be represented as

x∗t+1 = Dtx
∗
t +BKα

t αt+1.

Proof outline: We will prove x∗t is bounded by three steps: 1) show that system xt+1 = Dtxt is
exponentially stable, 2) show that BKα

t αt+1 is bounded, 3) show x∗t is bounded by the fact that
exponentially stable systems are bounded-input-bounded-output stable.

Step 1: show xt+1 = Dtxt is exponentially stable by a Lyapunov function.
Lemma 14 (Exponential stability). Consider dynamical system xt+1 = Dtxt. Define the state
transition matrix:

Φ(t, t0) = Dt−1 · · ·Dt0

for t ≥ t0, and Φ(t, t) = I . For any N , any 0 ≤ t0 ≤ N t0 ≤ t ≤ N , any Qt ∈ Q, Rt ∈ R, QN ∈
P , and for any xt0 , the system is exponentially stable, i.e.

‖Φ(t, t0)‖ ≤ c7ct−t02 (25)

where c7 =
√

υmax(P̄)
υmin(P) , c2 =

√
1− µf

υmax(P̄)
∈ [0, 1).

Proof. We prove the exponential stability by constructing a Lyapunov function: L(t, xt) = x>t Ptxt
for t ≥ 0.

Claim: For any xt, the Lyapunov function satisfies

υmin(P)‖xt‖22 ≤ L(t, xt) ≤ υmax(P̄)‖xt‖2, L(t+ 1, Dtxt)− L(t, xt) ≤ −µf‖xt‖22.
where υmax(·) and υmin(·) denote the maximum and minimum eigenvalues of a matrix respectively.

Proof of Claim: By Lemma 13, Pt ∈ P , so υmin(P)In ≤ P ≤ Pt ≤ P̄ ≤ υmax(P̄)In. Thus, for
any xt,

υmin(P)‖xt‖22 ≤ L(t, xt) = x>t Ptxt ≤ υmax(P̄)‖xt‖2

35

Besides,
L(t+ 1, Dtxt)− L(t, xt) = x>t D

>
t Pt+1Dtxt − x>t Ptxt

= x>t (D>t Pt+1Dt − Pt)xt
= x>t (−Qt −K>t RtKt)xt

≤ −x>t Qxt = −µf‖xt‖2

where the third equality is by Theorem 4, the first inequality and the last equality are by Qt +
K>t RtKt ≥ Qt ≥ Q = µfIn.

By the claim above,

L(t+ 1, xt+1)− L(t, xt) ≤ −µf‖xt‖22 ≤ −
µf

υmax(P̄)
L(t, xt)

Thus, L(t + 1, xt+1) ≤ c22L(t, xt) where c2 =
√

1− µf
υmax(P̄)

. Here, c2 is well-defined because

0 ≤ µfIn ≤ Q̄ ≤ P̄ ≤ υmax(P̄).

For any tt0 and any xt0 , it is easy to verify that the state xt satisfies xt = Φ(t, tt0)xt0 . Therefore,

‖Φ(t, t0)‖ = max
xt0 6=0

‖xt‖
‖xt0‖

≤ max
xt0 6=0

√
υmax(P̄)

υmin(P)

L(t, xt)

L(t0, xt0)

≤

√
υmax(P̄)

υmin(P)
ct−t02

Step 2: show that BKα
t αt+1 is bounded. We will show that

‖αt‖ ≤
c7

1− c2
υmax(P̄)θ̄ =: ᾱ, ‖BKα

t αt‖2 ≤ ‖B‖22
ᾱ

µg
. (26)

By Theorem 4, αt satisfies the dynamical system αt = D>t αt+1 + Qtθt, with initial condition
αN = QNθN . As a result, we can write αt in terms of θs and the transition matrix Φ(t, s) as follows

αt = Qtθt +D>t Qt+1θt+1 + · · ·+D>t . . . D
>
N−1QNθN

= Φ(t, t)>Qtθt + Φ(t+ 1, t)>Qt+1θt+1 + · · ·+ Φ(N, t)>QNθN

Then, the bound of αt can be derived as follows.
‖αt‖ ≤ ‖Φ(t, t)>‖‖Qtθt‖+ · · ·+ ‖Φ(N, t)>‖‖QNθN‖

= ‖Φ(t, t)‖‖Qtθt‖+ · · ·+ ‖Φ(N, t)‖‖QNθN‖
≤ c7υmax(P̄)θ̄ + · · ·+ c7c

N−t
2 υmax(P̄)θ̄

≤ c7υmax(P̄)θ̄
1

1− c2
= ᾱ

where the second inequality is by Lemma 14, Qt ≤ Q̄ ≤ P̄ and QN ∈ P .

Consequently,

‖BKα
t αt‖ = ‖B(Rt +B>Pt+1B)−1B>αt‖

≤ ‖B‖2‖(Rt +B>Pt+1B)−1‖‖αt‖

≤ ‖B‖2 ᾱ
µg

Step 3: bound x∗t .
‖x∗t ‖ = ‖Φ(t, t)BKα

t−1αt + Φ(t, t− 1)BKα
t−2αt−1 + . . .Φ(t, 1)BKα

0 α1‖

≤ c7‖B‖2
ᾱ

µg
(1 + c2 + c22 + . . .) = c7

1

1− c2
‖B‖2 ᾱ

µg
=: x̄

36

G.5 Proof of Lemma 8

By Theorem 4 and (26), ‖βk‖ = ‖P−1
k αk‖ ≤ 1

υmin(P) ᾱ for any k, any N and any Qt ∈ Q, Rt ∈
R, QN ∈ P . When Qt = Q ∈ Q, Rt = R = R for all t, βk → βe as k → −∞ by the proof (Part
i)) of Proposition 1. Thus, ‖βe‖ ≤ 1

υmin(P) ᾱ. Define β̄ = max(θ̄, 1
υmin(P) ᾱ). This completes the

proof.

H Simulation descriptions

H.1 LQT

The experiment settings are as follows. Let A = [0, 1;−1/, 5/6], B = [0; 1], N = 30. Consider
diagonal Qt, Rt with diagonal entries i.i.d. from Unif[1, 2]. Let θt i.i.d. from Unif[−10, 10]. The
stepsizes of RHGD and RHTM are based on the conditions in Theorem 1. The stepsizes of RHAG
can be viewed as RHTM with δc = 1/lc, δy = δω =

√
ζ−1√
ζ+1

and δz = 0.

H.2 Robotics tracking

Consider the following discrete-time counterpart of the kinematic model

xt+1 = xt + ∆t · cos δt · vt
yt+1 = yt + ∆t · sin δt · vt
δt+1 = δt + ∆t · wt

Thus we have

δt = arctan(
yt+1 − yt
xt+1 − xt

)

vt =
1

∆t
·
√

(xt+1 − xt)2 + (yt+1 − yt)2

wt =
δt+1 − δt

∆t
=

1

∆t
·
[
arctan(

yt+2 − yt+1

xt+2 − xt+1
)− arctan(

yt+1 − yt
xt+1 − xt

)

]
So that (δt, vt, wt) can be expressed by the state variables (xt, yt).

In the simulation, the given reference trajectory is

xrt = 16 sin3(t− 6)

yrt = 13 cos(t)− 5 cos(2t− 12)− 2 cos(3t− 18)− cos(4t− 24)

As for the objective function, we set the cost coefficients as

ct =

{
0, t = 0

1, otherwise
cvt =

{
0, t = N

15∆t2, otherwise
cwt =

{
0, t = N

15∆t2, otherwise

The discrete-time resolution for online control is 0.025 second, i.e., ∆t = 0.025s. When imple-
menting each control decision, a much smaller time resolution of 0.001s is used to simulate the real
motion dynamics of the robot.

37

	Introduction
	Problem formulation and preliminaries
	Online control algorithms: receding horizon gradient-based control
	Problem transformation
	Online algorithm design: RHGC

	Regret upper bounds
	Linear quadratic tracking: regret upper bounds and a fundamental limit
	Numerical experiments
	Conclusion
	Canonical form
	Triple momentum and a proof of Theorem 1
	Proof of Theorem 1

	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Lemma 2.
	Proof of Lemma ??
	Proof of Lemma 4

	Linear quadratic tracking
	Regret bound on the general online LQT problems
	Proof of Corollary 1

	Proof of Theorem 3
	Proof of Lemma 11
	Proof of Lemma 12

	Proofs of the LQT's properties used in Appendix E
	Preliminaries: dynamic programming for finite-horizon LQT
	Proof of Lemma 9
	Proof of Lemma 6
	Proof of Lemma ??
	Proof of Lemma 8

	Simulation descriptions
	LQT
	Robotics tracking

