
Scalable Global Optimization via
Local Bayesian Optimization

Supplementary Material

David Eriksson
Uber AI

eriksson@uber.com

Michael Pearce
University of Warwick

m.a.l.pearce@warwick.ac.uk

Jacob R Gardner
Uber AI

jake.gardner@uber.com

Ryan Turner
Uber AI

ryan.turner@uber.com

Matthias Poloczek
Uber AI

poloczek@uber.com

In Sect. 1 we provide additional benchmarking results on synthetic problems. We explain the
algorithms considered in this paper in more detail in Sect. 2. Then we describe how we leverage
scalable GP regression in Sect. 3. We summarize the hyperparameters of TuRBO in Sect. 4 and give
additional details on how we shrink and expand the trust regions. Thompson sampling is summarized
in Sect. 5. Finally, we describe the test problems in Sect. 6 and provide runtimes for all benchmark
problems in Sect. 7.

1 Synthetic experiments

We present results on four popular synthetic problems: Ackley with domain [−5, 10]10, Levy with
domain [−5, 10]10, Rastrigin with domain [−3, 4]10, and the 6D Hartmann function with domain
[0, 1]6. The optimizers are given a budget of 50 batches of size q = 10 which results in a total of
n = 500 function evaluations. All methods use 20 initial points from a Latin hypercube design
(LHD) [8] except for TuRBO-5, where we use 10 initial points in each local region. To compute
confidence intervals on the results, we use 30 runs. For HeSBO-TS we used target dimension 4 for
Hartmann6 and 6 for the other benchmarks.

Fig. 1 summarizes the results. We observed a good performance for TuRBO-1 and TuRBO-5 on all
test problems. TuRBO-1 and TuRBO-5 outperform other methods on Ackley and consistently find
solutions close to the global optimum. The results for Levy also show that TuRBO-5 clearly performs
best. However, TuRBO-1 found solutions close to the global optimum in some trials but struggled in
others, which shows that a good starting position is important. On Rastrigin, TuRBO-5 performs the
best. BOBYQA and BFGS perform comparably to TuRBO-1. In contrast, the 6D Hartmann function is
much easier and most methods converge quickly.

Interestingly, the embedding-based HeSBO-TS algorithm performs well on Levy and Rastrigin. On
the other hand, BOHAMIANN struggles compared to other BO methods, suggesting that its model fit
is inaccurate compared to GP-based methods. We also observe that CMA-ES finds good solutions
eventually for Ackley, Rastrigin, and Hartmann, albeit considerably slower than TuRBO. For Levy
CMA-ES seems stuck with suboptimal solutions.

2 Algorithms background

In this section, we provide additional background on the three categories of competing optimization
methods: traditional local optimizers, evolutionary algorithms, and other recent works in large-scale
BO. Namely, we compare TuRBO to Nelder-Mead (NM), BOBYQA, BFGS, EBO, Bayesian optimization

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



0 100 200 300 400 500
Number of evaluations

0

2

4

6

8

10

12

14

V
al

u
e

10D Ackley function

0 100 200 300 400 500
Number of evaluations

0

5

10

15

20

25

30

V
al

u
e

10D Levy function

0 100 200 300 400 500
Number of evaluations

0

20

40

60

80

100

120

140

V
al

u
e

10D Rastrigin function

0 100 200 300 400 500
Number of evaluations

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

V
al

u
e

6D Hartmann function

TuRBO-5

TuRBO-1

EBO

Thompson sampling

BOCK

Bohamiann

HeSBO

CMA-ES

BOBYQA

Nelder-Mead

BFGS

Random search

Figure 1: TuRBO and TuRBO-5 perform well on all synthetic benchmark problems. HeSBO-TS
performs well on Levy and Rastrigin. BOBYQA and BFGS are competitive on Rastrigin and Hartmann6,
showing that local optimization can outperform global optimization on multimodal functions.

with cylindrical kernels (BOCK), HeSBO-TS, BOHAMIANN, Thompson sampling with a global GP
(GP-TS), CMA-ES, and random search (RS). This is an extensive set of state-of-the-art optimization
algorithms from both local and global optimization.

For local optimization, we use the popular NM, BOBYQA, and BFGS methods with multiple restarts.
They are all initialized from the best of a few initial points. We use the Scipy [6] implementations of
NM and BFGS and the nlopt [5] implementation of BOBYQA.

Evolutionary algorithms often perform well for black-box optimization with a large number of
function evaluations. These methods are appropriate for large batch sizes since they evaluate a
population in parallel. We compare to CMA-ES [3] as it outperforms differential evolution, genetic
algorithms, and particle swarms in most of our experiments. We use the pycma1 implementation with
the default settings and a population size equal to the batch size. The population is initialized from
the best of a few initial points.

To the best of our knowledge, EBO is the only BO algorithm that has been applied to problems
with large batch sizes and tens of thousands of evaluations. We also compare to GP-TS, BOCK,
HeSBO-TS, and BOHAMIANN, all using Thompson sampling as the acquisition function. The original
implementations of BOCK and BOHAMIANN often take hours to suggest a single point and do not
support batch suggestions. This necessitated changes to use them for our high-dimensional setting
with large batch sizes. To generate a discretized candidate set, we generate a set of scrambled Sobolev
sequences with 5000 points for each batch.

1https://github.com/CMA-ES/pycma

2

https://github.com/CMA-ES/pycma


3 Gaussian process regression

We further provide details on both the computational scaling and modeling setup for the GP. To
address computational issues, we use GPyTorch [2] for scalable GP regression. GPyTorch follows
Dong et al. [1] to solve linear systems using the conjugate gradient (CG) method and approximates
the log-determinant via the Lanczos process. Without GPyTorch, running BO with a GP model for
more than a few thousand evaluations would be infeasible as classical approaches to GP regression
scale cubically in the number of data points.

On the modeling side, the GP is parameterized using a Matérn-5/2 kernel with ARD and a constant
mean function for all experiments. The GP hyperparameters are fitted before proposing a new batch
by optimizing the log-marginal likelihood. The domain is rescaled to [0, 1]d and the function values
are standardized before fitting the GP. We use a Matérn-5/2 kernel with ARD for TuRBO and use
the following bounds for the hyperparameters: (lengthscale) λi ∈ [0.005, 2.0 ], (signal variance)
s2 ∈ [0.05, 20.0], (noise variance) σ2 ∈ [0.0005, 0.1].

4 TuRBO details

In all experiments, we use the following hyperparameters for TuRBO-1: τsucc = 3, τfail = dd/qe,
Lmin = 2−7, Lmax = 1.6, and Linit = 0.8, where d is the number of dimensions and q is the batch
size. Note that this assumes the domain has been scaled to the unit hypercube [0, 1]d. When using
TuRBO-1, we consider an improvement from at least one evaluation in the batch a success [9]. In
this case, we increment the success counter and reset the failure counter to zero. If no point in the
batch improves the current best solution we set the success counter to zero and increment the failure
counter.

When using TuRBO with more than one TR, we use the same tolerances as in the sequential case
(q = 1) as the number of evaluations allocated by each TR may differ in each batch. We use separate
success and failure counters for each TR. We consider a batch a success for TR` if q` > 0 points are
selected from this TR and at least one is better than the best solution in this TR. The counters for this
TR are updated just as for TuRBO-1 in this case. If all q` > 0 evaluations are worse than the current
best solution we consider this a failure and set the success counter to zero and add q` to the failure
counter. The failure counter is set to τfail if we increment past this tolerance, which will trigger a
halving of its side length.

For each TR, we initialize L← Linit and terminate the TR when L < Lmin. Each TR in TuRBO uses
a candidate set of size min{100d, 5000} on which we generate each Thompson sample. We create
each candidate set by first generating a scrambled Sobolev sequence within the intersection of the TR
and the domain [0, 1]d. A new candidate set is generated for each batch. In order to not perturb all
coordinates at once, we use the value in the Sobolev sequence with probability min{1, 20/d} for a
given candidate and dimension, and the value of the center otherwise. A similar strategy is used by
Regis and Shoemaker [10] where perturbing only a few dimensions at a time showed to substantially
improve the performance for high-dimensional functions.

5 Thompson sampling

In this section, we provide details and pseudo-code that makes the background on Thompson sampling
(TS) with GPs precise. Conceptually, TS [12] for BO works by drawing a function f from the surrogate
model (GP) posterior. It then makes a suggestion by reporting the optimum of the function f . This
process is repeated independently for multiple suggestions (q > 1). The exploration-exploitation
trade off is naturally handled by the stochasticity in sampling.

Furthermore, parallel batching is naturally handled by the marginalization coherence of GPs. Many
acquisition functions handle batching by imputing function evaluations for the other suggested (but
unobserved) points via sampling from the posterior. Independent TS for parallel batches is exactly
equivalent to conditioning on imputed values for unobserved suggestions. This means TS also trivially
handles asynchronous batch sampling [4, 7].

Note that we cannot sample an entire function f from the GP posterior in practice. We therefore work
in a discretized setting by first drawing a finite candidate set; this puts us in the same setting as the

3



traditional multi-arm bandit literature. To do so, we sample the GP marginal on the candidate set, and
then apply regular Thompson sampling.

6 Test problems

In this section we provide some brief additional details for the test problems. We refer the reader to
the original papers for more details.

6.1 Robot pushing

The robot pushing problem was first considered in Wang et al. [13]. The goal is to tune a controller
for two robot hands to push two objects to given target locations. The robot controller has d = 14
parameters that specify the location and rotation of the hands, pushing speed, moving direction, and
pushing time. The reward function is f(x) =

∑2
i=1 ‖xgi − xsi‖ − ‖xgi − xfi‖, where xsi are the

initial positions of the objects, xfi are the final positions of the objects, and xgi are the goal locations.

6.2 Rover trajectory planning

This problem was also considered in Wang et al. [13]. The goal is to optimize the trajectory of a
rover over rough terrain, where the trajectory is determined by fitting a B-spline to 30 points in a 2D
plane. The reward function is f(x) = c(x)− 10(‖x1,2 − xs‖1 + ‖x59,60 − xg‖1) + 5, where c(x)
penalizes any collision with an object along the trajectory by −20. Here, xs and xg are the desired
start and end positions of the trajectory. The cost function hence adds a penalty when the start and
end positions of the trajectory are far from the desired locations.

6.3 Cosmological constant learning

The cosmological constant experiment uses luminous red galaxy data from the Sloan Digital Sky
Survey [11]. The objective function is a likelihood estimate of a simulation based astrophysics model
of the observed data. The parameters include various physical constants, such as Hubble’s constant,
the densities of baryonic and other forms of matter. We use the nine parameters tuned in previous
papers, plus three additional parameters chosen from the many available to the simulator.

6.4 Lunar lander reinforcement learning

The lunar lander problem is taken from the OpenAI gym2. The objective is to learn a controller for a
lunar lander that minimizes fuel consumption and distance to a landing target, while also preventing
crashes. At any time, the state of the lunar lander is its angle and position, and their respective time
derivatives. This 8-dimensional state vector s is passed to a handcrafted parameterized controller
that determines which of 4 actions a to take. Each corresponds to firing a booster engine: a ∈
{nothing, left, right, down}. The handcrafted control policy has d = 12 parameters that parameterize
linear score functions of the state vector and also the thresholds that determine which action to
prioritize. The objective is the average final reward over a fixed constant set of 50 randomly generated
terrains, initial positions, and initial velocities. Simulation runs were capped at 1000 time steps, after
which failure to land was scored as a crash.

7 Runtimes

In Table 1, we provide the algorithmic runtime for the numerical experiments. This is the total
runtime for one optimization run, excluding the time spent evaluating the objective function. We see
that the local optimizers and the evolutionary methods run with little to no overhead on all problems.
The BO methods with a global GP model become computationally expensive when the number of
evaluations increases and we leverage scalable GPs on an NVIDIA RTX 2080 TI. TuRBO does not
only outperform the other BO methods, but runs in minutes on all test problems and is in fact more
than 2000× faster than the slowest BO method.

2gym.openai.com/envs/LunarLander-v2/

4

gym.openai.com/envs/LunarLander-v2/


Synthetic Lunar landing Cosmological constant Robot pushing Rover trajectory Ackley-200
Evaluations n 500 1500 2000 10,000 20,000 10,000
Dimensions d 6 or 10 12 12 14 60 200
TuRBO <1min <1min <1min 8min 22min 10min
EBO 4min 23min 1 h 11 d >30 d NA
GP-TS 3min 6min 11min 1 h 3 h 1 h
BOCK 6min 10min 19min 2 h 7 h 2 h
BOHAMIANN 2 h 5 h 7 h 20 h 2 d 25 h
NM <1min <1min <1min <1min <1min <1min
CMA-ES <1min <1min <1min <1min <1min <1min
BOBYQA <1min <1min <1min <1min <1min <1min
BFGS <1min <1min <1min <1min <1min <1min
RS <1min <1min <1min <1min <1min <1min

Table 1: Algorithmic overhead for one optimization run for each test problem. The times are rounded
to minutes, hours, or days.

References
[1] K. Dong, D. Eriksson, H. Nickisch, D. Bindel, and A. G. Wilson. Scalable log determinants

for Gaussian process kernel learning. In Advances in Neural Information Processing Systems,
pages 6327–6337, 2017.

[2] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. GPyTorch: Blackbox
matrix-matrix Gaussian process inference with GPU acceleration. In Advances in Neural
Information Processing Systems, pages 7576–7586, 2018.

[3] N. Hansen. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary
Computation, pages 75–102. Springer, 2006.

[4] J. M. Hernández-Lobato, J. Requeima, E. O. Pyzer-Knapp, and A. Aspuru-Guzik. Parallel and
distributed Thompson sampling for large-scale accelerated exploration of chemical space. In
Proceedings of the International Conference on Machine Learning, pages 1470–1479, 2017.

[5] S. G. Johnson. The nlopt nonlinear-optimization package, 2014. URL: http://ab-
initio.mit.edu/nlopt, 2014.

[6] E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scientific tools for Python. 2014.

[7] K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Póczos. Parallelised Bayesian opti-
misation via Thompson sampling. In International Conference on Artificial Intelligence and
Statistics, pages 133–142, 2018.

[8] M. D. McKay, R. J. Beckman, and W. J. Conover. Comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics, 21(2):
239–245, 1979.

[9] R. G. Regis and C. A. Shoemaker. A stochastic radial basis function method for the global
optimization of expensive functions. INFORMS Journal on Computing, 19(4):497–509, 2007.

[10] R. G. Regis and C. A. Shoemaker. Combining radial basis function surrogates and dynamic coor-
dinate search in high-dimensional expensive black-box optimization. Engineering Optimization,
45(5):529–555, 2013.

[11] M. Tegmark, D. J. Eisenstein, M. A. Strauss, D. H. Weinberg, M. R. Blanton, J. A. Frieman,
M. Fukugita, J. E. Gunn, A. J. Hamilton, G. R. Knapp, et al. Cosmological constraints from the
SDSS luminous red galaxies. Physical Review D, 74(12):123507, 2006.

[12] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[13] Z. Wang, C. Gehring, P. Kohli, and S. Jegelka. Batched large-scale Bayesian optimization in
high-dimensional spaces. In International Conference on Artificial Intelligence and Statistics,
pages 745–754, 2018.

5


	Synthetic experiments
	Algorithms background
	Gaussian process regression
	TuRBO details
	Thompson sampling
	Test problems
	Robot pushing
	Rover trajectory planning
	Cosmological constant learning
	Lunar lander reinforcement learning

	Runtimes

