
Thanks for the VERY careful, responsible and competent reviews our paper has received! We will implement all1

improvements recommended in the 3 reviews. Here we comment only on the more significant questions raised.2

Reviewer 1 “ relate to: "Non-Redundant Spectral Dimensionality Reduction", Michaeli et al.” Will do. Thanks for3

pointing us to this reference. “ The choice of kernel bandwidth (ε) not addressed.” For the real data, ε was optimized as4

in [JMM17]. For the synthetic data, ε was chosen heuristically; since, experiments were rerun using [JMM17] (see also5

below). “if ε is chosen as a diag matrix. . . , the aspect ratio problem could be fixed (see for example "Kernel Scaling for6

Manifold Learning and Classification"). To summarize, I think the paper should be accepted and hope that these minor7

changes could be easily addressed to improve this manuscript.” We will discuss this reference in final paper.8

Reviewer 2 “. . . experiment on synthetic data with added noise” Experiment with the 6.28 × 2 strip data (be-9

low, left): Gaussian noise with standard deviation σ and ambient dimension D = 3 was added; for each σ,10

the ε selection algorithm [JMM17] was run, as well as the INDEIGENSEARCH algorithm for selecting the co-11

ordinate for embedding in the top row, and intrinsic dimension estimation [LB04]. d̂ measures the degrada-12

tion of the manifold structure due to noise, and Corr the recovery of h (shorter dimension in stripe). We see13

that INDEIGENSEARCH degrades little even when d̂ ≈ 2.75. Similar experiment on tall torus is below, right.14

σ =
ε̂ =

0.05
0.39

0.12
0.44

0.19
0.53

0.25
0.50

0.32
0.61

0.40
0.60

0.46
0.61

0.53
0.78

0.60
0.83

0.67
0.86

1.5

2.0

2.5

3.0

3.5

4.0

E
st

.
d

im
en

si
on

,
d̂

0.4

0.6

0.8

1.0

C
or

r
( h
,[
φ
S
∗]

2
)

σ =
ε̂ =

0.05
2.59

0.32
2.61

0.67
2.66

1.5

2.0

2.5

3.0

3.5

4.0

E
st

.
d

im
en

si
on

,
d̂

In the submission, σ = 0.05 and15

the heuristic ε was 0.25 for stripe16

and 1.5 for tall torus. “. . . more17

interpretation of the utility of the18

embedding.” For MD data, the19

embeddings represent “slow mo-20

tions” of the molecule (e.g., rota-21

tions of one group w.r.t. another);22

for galaxy spectra, it is interest-23

ing to compare Fig. 3.f. with the24

“HR diagram principal sequence”,25

where stars align in spectral/brightness space in 1D, according to their ages. For galaxies, age of star population is26

also a feature, but the manifold is 2D. We now also have experiments with similar good results for UMAP embeddings27

initialized by coordinate sets chosen by INDEIGENSEARCH.28

Reviewer 4 “ the paper does not focus on how to optimize this objective function” In a longer paper, optimization29

will receive more space. See also below, and Supplements C, D, E1. Note that for the current data sets, the run times for30

[JMM17]/DiffMap/INDEIGENSEARCH are approximately in the ratio 30/3/1 (synthetic) and 100/10/1 (real).31

“ the INDEIGENSEARCH problem chooses a composition of the original map with a very specific Euclidean projection:32

a projection along coordinate axes. . . . Why is [searchign over sets better] than to search over all projections, ([by]33

e.g. manifold optimization on the Grassmannian)?” This is a super-interesting question for future work, and we34

thank the Reviewer for raising it. Presently, we can say that: the loss L(S) extends in a straightforward way to35

the Grassmanian manifold; L(P ), with P a projection matrix, is a difference of convex functions, while the original36

L(S) is a difference of submodular functions – see Supplement. Computational aspects: for small s or m, there are37

only ∼ 200 L calculations; the search for S is insignificant compared to computing the embedding (in particular, the38

neighborhood graph and ε search). When m, s grow, the brute force INDEIGENSEARCH cost will grow exponentially.39

The user has the choice between more advanced discrete optimization over S, based on submodularity, vs continuous40

optimization over P , but of essentially the same function. A minor but nice advantage of searching over sets is that it41

only requires the manifold learning toolbox; a practitioner needs not get tools (e.g. manopt) for optimization over the42

Grassmanian manifold.43

Mathematically, however, the question is deep and significant: can there be an advantage in using a linear combination44

of eigenfunctions, instead of a subset? More specifically, for manifolds with small injectivity radius and large aspect45

ratios, could it be that the required embedding dimension s is smaller if we optimize over the Grassmanian and not over46

discrete subsets of coordinates? We did not find any answers to this in the literature (so far).47

“. . . why is K-L between these two volume forms a good way to encourage local injectivity.” Local injectivity is by48

definition tied to a volume form j (sorry for yet another unusual notation); the only question is how do we “compare it49

with 0”. We compare it with its maximum j̃S ; then we integrate over the “inability to reach the max”, which is exactly50

what a K-L divergence does. Stretching it some, pjS is the “data” and pj̃S is the “model”, and we are looking for a51

view S of the data that agrees with the model. Here p is the density of the data sampled from a distribution onM, see52

also Assumption 2 in the manuscript.53
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