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Abstract

Bayesian optimisation is a popular technique for hyperparameter learning but typi-
cally requires initial exploration even in cases where similar prior tasks have been
solved. We propose to transfer information across tasks using learnt representations
of training datasets used in those tasks. This results in a joint Gaussian process
model on hyperparameters and data representations. Representations make use of
the framework of distribution embeddings into reproducing kernel Hilbert spaces.
The developed method has a faster convergence compared to existing baselines, in
some cases requiring only a few evaluations of the target objective.

1 Introduction

Hyperparameter selection is an essential part of training a machine learning model and a judicious
choice of values of hyperparameters such as learning rate, regularisation, or kernel parameters is what
often makes the difference between an effective and a useless model. To tackle the challenge in a
more principled way, the machine learning community has been increasingly focusing on Bayesian
optimisation (BO) [34], a sequential strategy to select hyperparameters ✓ based on past evaluations
of model performance. In particular, a Gaussian process (GP) [31] prior is used to represent the
underlying accuracy f as a function of the hyperparameters ✓, whilst different acquisition functions
↵(✓; f) are proposed to balance between exploration and exploitation. This has been shown to give
superior performance compared to traditional methods [34] such as grid search or random search.
However, BO suffers from the so called ‘cold start’ problem [28, 38], namely, initial observations
of f at different hyperparameters are required to fit a GP model. Various methods [38, 6, 36, 28]
were proposed to address this issue by transferring knowledge from previously solved tasks, however,
initial random evaluations of the models are still needed to consider the similarity across tasks. This
might be prohibitive: evaluations of f can be computationally costly and our goal may be to select
hyperparameters and deploy our model as soon as possible. We note that treating f as a black-box
function, as is often the case in BO, is ignoring the highly structured nature of hyperparameter
learning – it corresponds to training specific models on specific datasets. We make steps towards
utilizing such structure in order to borrow strength across different tasks and datasets.

Contribution. We consider a scenario where a number of tasks have been previously solved and we
propose a new BO algorithm, making use of the embeddings of the distribution of the training data
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[4, 23]. In particular, we propose a model that can jointly model all tasks at once, by considering an
extended domain of inputs to model accuracy f , namely the distribution of the training data PXY ,
sample size of the training data s and hyperparameters ✓. Through utilising all seen evaluations
from all tasks and meta-information, our methodology is able to learn a useful representation of
the task that enables appropriate transfer of information to new tasks. As part of our contribution,
we adapt our modelling approach to recent advances in scalable hyperparameter transfer learning
[26] and demonstrate that our proposed methodology can scale linearly in the number of function
evaluations. Empirically, across a range of regression and classification tasks, our methodology
performs favourably at initialisation and has a faster convergence compared to existing baselines – in
some cases, the optimal accuracy is achieved in just a few evaluations.

2 Related Work

The idea of transferring information from different tasks in the context of hyperparameter learning
has been studied in various settings [38, 6, 36, 28, 43, 26]. Amongst this literature, one common
feature is that the similarity across tasks is captured only through the evaluations of f . This implies
that sufficient evaluations from the task of interest is necessary, before we can transfer information.
This is problematic, if model training is computationally expensive and our goal is to employ our
model as quickly as possible. Further, the hyperparameter search for a machine learning model in
general is not a black-box function, as we have additional information available: the dataset used in
training. In our work, we aim to learn feature representation of training datasets in-order to yield
good initial hyperparameter candidates without having seen any evaluations from our target task.

While such use of such dataset features, called meta-features, has been previously explored, current
literature focuses on handcrafted meta-features2. These strategies are not optimal, as these meta-
features can be be very similar, while having very different fs, and vice versa. In fact a study on
OpenML [40] meta-features have shown that the optimal set depends on the algorithm and data [39].
This suggests that the reliance on these features can have an adverse effect on exploration, and we
give an example of this in section 5. To avoid such shortcomings, given the same input space, our
algorithm is able to learn meta-features directly from the data, avoiding such potential issues.

Although [15] previously have also proposed to learn the meta-feature representations (for image data
specifically), their proposed methodology requires the same set of hyperparameters to be evaluated for
all previous tasks. This is clearly a limitation considering that different hyperparameter regions will
be of interest for different tasks, and we would thus require excessive exploration of all those different
regions under each task. To utilise meta-features, [15] propose to warm-start Bayesian optimisation
[10, 32, 8] by initialising with the best hyperparameters from previous tasks. This also might be
sub-optimal as we neglect non-optimal hyperparameters that can still provide valuable information
for our new task, as we demonstrate in section 5. Our work can be thought of to be similar in spirit to
[17], which considers an additional input to be the sample size s, but do not consider different tasks
corresponding to different training data distributions.

3 Background

Our goal is to find:
✓
⇤
target = argmax✓2⇥f

target(✓)

where f
target is the target task objective we would like to optimise with respect to hyperparameters ✓.

In our setting, we assume that there are n (potentially) related source tasks f i
, i = 1, . . . n, and for

each f
i, we assume that we have {✓ik, zik}

Ni
k=1 from past runs, where z

i
k denotes a noisy evaluation

of f i(✓ik) and Ni denotes the number of evaluations of f i from task i. Here, we focus on the case
that f i(✓) is some standardised accuracy (e.g. test set AUC) of a trained machine learning model
with hyperparameters ✓ and training data Di = {xi

`, y
i
`}

si
`=1, where xi

` 2 Rp are the covariates, yi`
are the labels and si is the sample size of the training data. For a general framework, Di is any input
to f

i apart from ✓ (can be unsupervised) – but following a typical supervised learning treatment, we
assume it to be an i.i.d. sample from the joint distribution PXY . For each task we now have:

(f i
, Di = {xi

`, y
i
`}

si
`=1, {✓

i
k, z

i
k}

Ni
k=1), i = 1, . . . n

2A comprehensive survey on meta-learning and handcrafted meta-features can be found in [13, Ch.2], [8]
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Our strategy now is to measure the similarity between datasets (as a representation of the task itself), in
order to transfer information from previous tasks to help us quickly locate ✓⇤target. In order to construct
meaningful representations and measure between different tasks, we will make the assumption that
xi
` 2 X and y

i
` 2 Y for all i, and that throughout the supervised learning model class is the same.

While this setting might seem limiting, there are many examples of practical applications, including
ride-sharing, customer analytics model and online inventory system [6, 28]. In all these cases, as new
data becomes available, we might want to either re-train our model or re-fit our parameters of the
system to adapt to a specific distributional data input. In section 5.3, we further demonstrate that our
methodology is applicable to a real life protein-ligand binding problem in the area of drug design,
which typically require significant efforts to tune hyperparameters of the models for different targets
[33].

Intuitively, this assumption implies that the source of differences of f i(✓) across i and f
target(✓) is

in the data Di and Dtarget. To model this, we will decompose the data Di into the joint distribution
Pi
XY of the training data (Di = {xi

`, y
i
`}

si
`=1

i.i.d.⇠ Pi
XY ) and the sample size si for task i. Sample

size3 is important here as it is closely related to model complexity choice which is in turn closely
related to hyperparameter choice [17]. While we have chosen to model Di as P i

XY and si, in practice
through simple modifications of the methodology we propose, it is possible to model Di as a set [44].
Under this setting, we will consider f(✓,PXY , s), where f is a function on hyperparameters ✓, joint
distribution PXY and sample size s. For example, f could be the negative empirical risk, i.e.

f(✓,PXY , s) = �1

s

sX

`=1

L(h✓(x`), y`)),

where L is the loss function and h✓ is the model’s predictor. To recover f i and f
target, we can evaluate

at the corresponding PXY and s, i.e. f i(✓) = f(✓,Pi
XY , si), f

target(✓) = f(✓,P target
XY , starget). In this

form, we can see that similarly to assuming that f varies smoothly as a function of ✓ in standard
BO, this model also assumes smoothness of f across PXY as well as across s following [17]. Here
we can see that if two distributions and sample sizes are similar (with respect to a distance of their
representations that we will learn), their corresponding values of f will also be similar. In this source
and target task setup, this would suggest we can selectively utilise information from previous source
datasets evaluations {✓ik, zik}

Ni
k=1 to help us model f target.

4 Methodology

4.1 Embedding of data distributions

To model PXY , we will construct  (D), a feature map on joint distributions for each task, estimated
through its task’s training data D. Here, we will follow [4] which considers transfer learning, and
make use of kernel mean embedding to compute feature maps of distributions (cf. [23] for an
overview). We begin by considering various feature maps of covariates and labels, denoting them by
�x(x) 2 Ra, �y(y) 2 Rb and �xy([x, y]) 2 Rc, where [x, y] denotes the concatenation of covariates
x and label y. Depending on the different scenarios, different quantities will be of interest.

Marginal Distribution PX . Modelling of the marginal distribution PX is useful, as we might expect
various tasks to differ in the distribution of x and hence in the hyperparameters ✓, which, for example,
may be related to the scales of covariates. We also might find that x is observed with different
levels of noise across tasks. In this situation, it is natural to expect that those tasks with more noise
would perform better under a simpler, more robust model (e.g. by increasing `2 regularisation in the
objective function). To embed PX , we can estimate the kernel mean embedding µPX [23] with D by:

 (D) = µ̂PX =
1

s

sX

`=1

�x(x`)

where  (D) 2 Ra is an estimator of a representation of the marginal distribution PX .

Conditional Distribution PY |X . Similar to PX , we can also embed the conditional distribution
PY |X . This is an important quantity, as across tasks, the form of the signal can shift. For example, we

3Following [17], in practice we re-scale s to [0, 1], so that the task with the largest sample size has s = 1.
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might have a latent variable W that controls the smoothness of a function, i.e. P i
Y |X = PY |X,W=wi

.
In a ridge regression setting, we will observe that those tasks (functions) that are less smooth would
require a smaller bandwidth � in order to perform better. For regression, to model the conditional
distribution, we will use the kernel conditional mean operator CY |X [35] estimated with D by:

ĈY |X = �>
y (�x�

>
x + �I)�1�x = �

�1�>
y (I � �x(�I + �

>
x �x)

�1�>
x )�x

where �x = [�x(x1), . . . ,�x(xs)]T 2 Rs⇥a, �y = [�y(y1), . . . ,�y(ys)]T 2 Rs⇥b and � is a
regularisation parameter that we learn. It should be noted the second equality [31] here allows us
to avoid the O(s3) arising from the inverse. This is important, as the number of samples s per task
can be large. As ĈY |X 2 Rb⇥a, we will flatten it to obtain  (D) 2 Rab to obtain a representation
of PY |X . In practice, as we rarely have prior insights into which quantity is useful for transferring
hyperparameter information, we will model both the marginal and conditional distributions together
by concatenating the two feature maps above. The advantage of such an approach is that the learning
algorithm does not have to itself decouple the overall representation of training dataset into the
information about marginal and conditional distributions which is likely to be informative.

Joint Distribution PXY . Taking an alternative and a more simplistic approach, it is also possible to
model the joint distribution PXY directly. One approach is to compute the kernel mean embedding,
based on concatenated samples [x, y], considering the feature map �xy. Alternatively, we can also
embed PXY using the cross covariance operator CXY [11], estimated by D with:

ĈXY =
1

s

sX

`=1

�x(x`)⌦ �y(y`) =
1

s
�>

x �y 2 Ra⇥b
.

where ⌦ denotes the outer product and similarly to CY |X , we will flatten it to obtain  (D) 2 Rab.

An important choice when modelling these quantities is the form of feature maps �x, �y and �xy,
as these define the corresponding features of the data distribution we would like to capture. For
example �x(x) = x and �x(x) = xx> would be capturing the respective mean and second moment
of the marginal distribution Px. However, instead of defining a fixed feature map, here we will opt
for a flexible representation, specifically in the form of neural networks (NN) for �x, �y and �xy
(except �y for classification4), in a similar fashion to [42]. To provide a better intuition on this choice,
suppose we have two task i, j and that Pi

XY ⇡ Pj
XY (with the same sample size s). This will imply

that f i ⇡ f
j , and hence ✓⇤i ⇡ ✓

⇤
j . However, the converse does not hold in general: f i ⇡ f

j does not

necessary imply Pi
XY ⇡ Pj

XY . For example, regularisation hyperparameters of a standard machine
learning model are likely to be robust to rotations and orthogonal transformations of the covariates
(leading to a different PX ). Hence, it is important to define a versatile model for  (D), which can
yield representations invariant to variations in the training data irrelevant for hyperparameter choice.

4.2 Modelling f

Given  (D), we will now construct a model for f(✓,PXY , s), given observationsn
{(✓ik,Pi

XY , si), z
i
k}

Ni
k=1

on

i=1
, along with any observations on the target. Note that we will in-

terchangeably use the notation f to denote the model and the underlying function of interest. We will
now focus on the algorithms distGP and distBLR, with additional details in Appendix A.

Gaussian Processes (distGP). We proceed similarly to standard BO [34] using a GP to model f and
a normal likelihood (with variance �2 across all tasks5) for our observations z,

f ⇠ GP (µ,C) z|� ⇠ N (f(�),�2)

where here µ is a constant, C is the corresponding covariance function on (✓,PXY , s) and � is a
particular instance of an input. In order to fit a GP with inputs (✓,PXY , s), we use the following C:

C({✓1,P1
XY , s1}, {✓2,P2

XY , s2}) = ⌫k✓(✓1, ✓2)kp([ (D1), s1], [ (D2), s2])

where ⌫ is a constant, k✓ and kp is the standard Matérn-3/2 kernel (with separate bandwidths across
the dimensions). For classification, we additionally concatenate the class size ratio per class, as this

4For classification, we use ĈXY and a one-hot encoding for �y implying a marginal embedding per class.
5For different noise levels across tasks, we can allow for different �2

i per task i in distGP and distBLR.
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is not captured in  (Di). Utilising
n
{(✓ik,Pi

XY , si), z
i
k}

Ni
k=1

on

i=1
, we can optimise µ, ⌫, �2 and any

parameters in  (D), k✓ and kp using the marginal likelihood of the GP (in an end-to-end fashion).

Bayesian Linear Regression (distBLR). While GP with its well-calibrated uncertainties have shown
superior performance in BO [34], it is well known that they suffer from O(N3) computational
complexity [31], where N is the total number of observations. In this case, as N =

Pn
i=1 Ni, we

might find that the total number of evaluations across all tasks is too large for the GP inference to be
tractable or that the computational burden of GPs outweighs the cost of computing f in the first place.
To overcome this problem, we will follow [26] and use Bayesian linear regression (BLR), which
scales linearly in the number of observations, with the model given by

z|� ⇠ N (⌥�,�2
I) � ⇠ N (0,↵I)  i = [ (Di), si]

⌥ = [�([✓11, 1]), . . . , �([✓
1
N1

, 1]), . . . , �([✓
n
1 , n]), . . . , �([✓

n
Nn

, n])]
> 2 RN⇥d

where ↵ > 0 denotes the prior regularisation, and [·, ·] denotes concatentation. Here � denotes a
feature map on concatenated hyperparameters ✓, data embedding  (D) and sample size s. Following
[26], we also employ a neural network for �. While conceptually similar to [26] who fits a BLR per
task, here we consider a single BLR fitted jointly on all tasks, highlighting differences across tasks
using meta-information available. The advantage of our approach is that for a given new task, we are
able to utilise directly all previous information and one-shot predict hyperparameters without seeing
any evaluations from the target task. This is especially important when our goal might be to employ
our system with only a few evaluations from our target task. In addition, a separately trained target
task BLR is likely to be poorly fitted given only a few evaluations. Similar to the GP case, we can
optimise ↵,�,�2 and any unknown parameters in  (D), �([✓, ]) using the marginal likelihood of
the BLR.

4.3 Hyperparameter learning

Having constructed a model for f and optimised any unknown parameters through the marginal
likelihood, in order to construct a model for the f

target, we let f target(✓) = f(✓,P target
XY , starget). Now,

to propose the next ✓target to evaluate, we can simply proceed with Bayesian optimisation on f
target,

i.e. maximise the corresponding acquisition function ↵(✓; f target). While we adopt standard BO
techniques and acquisition functions here, note that the generality of the developed framework allows
it to be readily combined with many advances in the BO literature, e.g. [12, 24, 19, 34, 41].

Acquisition Functions. For the form of the acquisition function ↵(✓; f target), we will use the popular
expected improvement (EI) [22]. However, for the first iteration, EI is not appropriate in our context,
as these acquisition functions can favour ✓s with high uncertainty. Recalling that our goal is to quickly
select ‘good’ hyperparameters ✓ with few evaluations, for the first iteration we will maximise the
lower confidence bound (LCB)6, as we want to penalise uncertainties and exploit our knowledge
from source task’s evaluations. While this approach works well for the GP case, for BLR, we will
use the LCB restricted to the best hyperparameters from previous tasks, as BLR with a NN feature
map does not extrapolate as well as GPs in the first iteration. For the exact forms of these acquisition
functions, implementation and alternative warm-starting approaches, please refer to Appendix A.3.

Optimisation. We make use of ADAM [16] to maximise the marginal likelihood until convergence.
To ensure relative comparisons, we standardised each task’s dataset features to have mean 0 and
variance 1 (except for the unsupervised toy example), with regression labels normalised individually
to be in [0, 1]. As the sample size per task si is likely to be large, instead of using the full set of
samples si to compute  (Di), we will use a different random sub-sample of batch-size b for each
iteration of optimisation (i.e. gradients are stochastic). In practice, this parameter b depends on the
number of tasks, and the evaluation cost of f . It should be noted that a smaller batch-size b would
still provide an unbiased estimate of  (Di) At testing time, it is also possible to use a sub-sample
of the dataset to avoid any computational costs arising from a large

P
i si. When retraining, we

will initialise from the previous set of parameters, hence few gradient steps are required before
convergence occurs.

Extension to other data structures. Throughout the paper, we focus on examples with x 2 Rp.
However our formulation is more general, as we only require the corresponding feature maps to be

6Note this is not the upper confidence bound, as we want to exploit and obtain a good starting initialisation.
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Figure 1: Unsupervised toy task over 30 runs. Left: Mean of the maximum observed f
target so

far (including any initialisation). Right: Mean of the similarity measure kp( (Di), (Dtarget)) for
distGP. For clarity purposes, the legend only shows the µi for the 3 source tasks that are similar to the
target task with µ

i = �0.25. It is noted the rest of the source task have µ
i ⇡ 4.

defined on individual covariates and labels. For example, image data can be modelled by taking �x(x)
to be a representation given by a convolutional neural network (CNN)7, while for text data, we might
construct features using Word2vec [21], and then retrain these representations for hyperparameter
learning setting. More broadly, we can initialize  (D) to any meaningful representation of the
data, believed to be useful to the selection of ✓⇤target. Of course, we can also choose  (D) simply
as a selection of handcrafted meta-features [13, Ch. 2], in which case our methodology would use
these representations to measure similarity between tasks, while performing feature selection [39].
In practice, learned feature maps via kernel mean embeddings can be used in conjunction with
handcrafted meta-features, letting data speak for itself. In Appendix B.1, we provide a selection of 13
handcrafted meta-features that we employ as baselines for the experiments below.

5 Experiments

We will denote our methodology distBO, with BO being a placeholder for GP and BLR versions.
For �x and �y we will use a single hidden layer NN with tanh activation (with 20 hidden and 10
output units), except for classification tasks, where we use a one-hot encoding for �y. We further
investigate this choice of NN structure in Appendix C.6 for the Protein dataset (results are fairly
robust). For clarity purposes, we will focus on the approach where we separately embed the marginal
and conditional distributions, before concatenation. Additional results for embedding the joint
distribution can be found in Appendix C.1. For BLR, we will follow [26] and take feature map � to
be a NN with three 50-unit layers and tanh activation.

For baselines, we will consider: 1) manualBO with  (D) as the selection of 13 handcrafted meta-
features; 2) multiBO, i.e. multiGP [38] and multiBLR [26] where no meta-information is used, i.e.
task is simply encoded by its index (they are initialised with 1 random iteration); 3) initBO [8] with
plain Bayesian optimisation, but warm-started with the top 3 hyperparameters, from the three most
similar source tasks, computing the similarity with the `2 distance on handcrafted meta-features; 4)
noneBO denoting the plain Bayesian optimisation [34], with no previous task information; 5) RS
denoting the random search. In all cases, both GP and BLR versions are considered.

We use TensorFlow [1] for implementation, repeating each experiment 30 times, either through
re-sampling (toy) or re-splitting the train/test partition (real life data). For testing, we use the same
number of samples si for toy data, while using a 60-40 train-test split for real data. We take the
embedding batch-size8

b = 1000, and learning rate for ADAM to be 0.005. To obtain {✓ik, zik}
Ni
k=1

for source task i, we use noneGP to simulate a realistic scenario. Additional details on these baselines
7This is similar to [18] who embeds distribution of images using a pre-trained CNN for distribution regression.
8Training time is less than 2 minutes on a standard 2.60GHz single-core CPU in all experiments.

6



Figure 2: Mean of the similarity measure kp( (Di), (Dtarget)) over 30 runs versus number of
iterations for the unsupervised toy task. For clarity purposes, the legend only shows the µ

i for the 3
source tasks that are similar to the target task with µ

i = �0.25. It is noted the rest of the source task
have µ

i ⇡ 4. Left: distGP Middle: manualGP Right: multiGP

and implementation can be found in Appendix B and C, with additional toy (non-similar source tasks

scenario) and real life (Parkinson’s dataset) experiments to be found in Appendix C.4 and C.5.

5.1 Toy example.

To understand the various characteristics of the different methodologies, we first consider an "un-
supervised" toy 1-dimensional example, where the dataset Di follows the generative process for
some fixed �i: µi ⇠ N (�i, 1); xi

`|µi i.i.d.⇠ N (µi
, 1). We can think of µi as the (unobserved) relevant

property varying across tasks, and the unlabelled dataset as Di = {xi
`}

si
`=1. Here, we will consider

the objective f given by:

f(✓;Di) = exp

 
�
(✓ � 1

si

Psi
`=1 x

i
`)

2

2

!
,

where ✓ 2 [�8, 8] plays the role of a ‘hyperparameter’ that we would like to select. Here, the optimal
choice for task i is ✓ = 1

si

Psi
`=1 x

i
` and hence it is varying together with the underlying mean µ

i of
the sampling distribution. An illustration of this experiment can be found in Figure 7 in Appendix
C.2.

We now perform an experiment with n = 15, and si = 500, for all i, and generate 3 source tasks
with �i = 0, and 12 source task with �i = 4. In addition, we generate an additional target dataset
with �target = 0 and let the number of source evaluations per task be Ni = 30.

The results can be found in Figure 1. Here, we observe that distBO has correctly learnt to utilise the
appropriate source tasks, and it is able to few-shot the optimum. This is also evident on the right of
Figure 1, which shows the similarity measure kp( (Di), (Dtarget)) 2 [0, 1] for distGP. The feature
representation has correctly learned to place high similarity on the three source datasets sharing the
same �i and hence having similar values of µi, while placing low similarity on the other source
datasets. As expected, manualBO also few-shots the optimum here since the mean meta-feature
which directly reveals the optimal hyperparameter was explicitly encoded in the hand-crafted ones.
initBO starts reasonably well, but converges slowly, since the optimal hyperparameters even in the
similar source tasks are not the same as that of the target task. It is also notable that multiBO is
unable to few-shot the optimum, as it does not make use of any meta-information, hence needing
initialisations from the target task to even begin learning the similarity across tasks. This is especially
highlighted in Figure 2, which shows an incorrect similarity in the first few iterations. Significance is
shown in the mean rank graph found in Figure 8 in Appendix C.2.

5.2 When handcrafted meta-features fail.

We now demonstrate an example in which using handcrafted meta-features does not capture any
information about the optimal hyperparameters of the target task. Consider the following process for
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Figure 3: Handcrafted meta-features counterexample over 30 runs, with 50 iterations Left: Mean of
the maximum observed f

target so far (including any initialisation). Right: Mean of the similarity
measure kp( (Di), (Dtarget)) for distGP, the target task uses the same generative process as i = 2.

dataset i with xi
` 2 R6 and y

i
` 2 R, given by:

⇥
xi
`

⇤
j

i.i.d.⇠ N (0, 22), j = 1, . . . , 6,
⇥
xi
`

⇤
i+2

= sign([xi
`]1[x

i
`]2)

��[xi
`]i+2

�� , (1)

y
i
` = log

0

B@1 +

0

@
Y

j2{1,2,i+2}

[xi
`]j

1

A
3
1

CA+ ✏
i
`.

where ✏i`
iid⇠ N (0, 0.52), with index i, `, j denoting task, sample and dimension, respectively: i =

1, . . . , 4 and ` = 1, . . . , si with sample size si = 5000. Thus across n = 4 source tasks, we have
constructed regression problems, where the dimensions which are relevant (namely 1, 2 and i+ 2)
are varying. Note that (1) introduces a three-variable interaction in the relevant dimensions, but that
all dimensions remain pairwise independent and identically distributed. Thus, while these tasks are
inherently different, this difference is invisible by considering marginal distribution of covariates and
their pairwise relationships such as covariances. As the handcrafted meta-features for manualBO
only consider statistics which process one or two dimensions at the time or landmarkers [27], their
corresponding  (Di) are invariant to tasks up to sampling variations. For an in-depth discussion, see
Appendix C.3. We now generate an additional target dataset, using the same generative process as
i = 2, and let f be the coefficient of determinant (R2) on the test set resulting from an automatic
relevance determination (ARD) kernel ridge regression with hyperparameters ↵ and �1, . . . , �6. Here
↵ denotes the regularisation parameter, while �j denotes the kernel bandwidth for dimension j.

Setting Ni = 125, the results can be found in Figure 3 (GP) and Figure 9 in Appendix C.3 (BLR). It
is clear that while distBO is able to learn a high similarity to the correct source task (as shown in
Figure 3), and one-shot the optimum, this is not the case for any of the other baselines (Figure 10 in
Appendix C.3) . In fact, as manualBO’s meta-features do not include any useful meta-information,
they essentially encode the task index, and hence perform similarly to multiBO. Further, we observe
that initBO has slow convergence after warm-starting. This is not surprising as initBO has to ‘re-
explore’ the hyperparameter space as it only uses a subset of previous evaluations. This highlights the
importance of using all evaluations from all source tasks, even if they are sub-optimal. In Figure 9 in
Appendix C.3, we show significance using a mean rank graph and that the BLR methods performs
similarly to their GP counterparts.
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Figure 4: Each evaluation is the maximum observed accuracy rate averaged over 140 runs, with 20
runs on each of the protein as target. Left: Jaccard kernel C-SVM. Right: Random forest

5.3 Classification: Protein dataset.

We now apply the methodologies to a real life protein-ligand binding problem in the area of drug
design. In particular, the Protein dataset consists of 7 different proteins extracted from [9]: ADAM17,
AKT1, BRAF, COX1, FXA, GR, VEGFR2. Each protein dataset contains 1037� 4434 molecules
(data-points si), where each molecule has binary features xi

` 2 R166 computed using a chemical
fingerprint (MACCs Keys9). The label per molecule is whether the molecule can bind to the protein
target 2 {0, 1}. In this experiment, we can treat each protein as a separate classification task. We
consider two classification methods: Jaccard kernel C-SVM [5, 30] (commonly used for binary
data, with hyperparameter C), and random forest (with hyperparameters n_trees, max_depth,
min_samples_split, min_samples_leaf ), with the corresponding objective f given by accuracy
rate on the test set. In this experiment, we will designate each protein as the target task, while using
the other n = 6 proteins as source tasks. In particular, we will take Ni = 20 and hence N = 120.
The results obtained by averaging over different proteins as the target task (20 runs per task) are
shown in Figure 4 (with mean rank graphs and BLR version to be found in Figure 14 and 15 in
Appendix C.6). On this dataset, we observe that distGP outperforms its counterpart baselines and
few-shots the optimum for both algorithms. In addition, we can see a slower convergence for the
multiGP and initGP, demonstrating the usefulness of meta information in this context.

6 Conclusion

We demonstrated that it is possible to borrow strength between multiple hyperparameter learning
tasks by making use of the similarity between training datasets used in those tasks. This helped us
to develop a method which finds a favourable setting of hyperparameters in only a few evaluations
of the target objective. We argue that the model performance should not be treated as a black box
function as it corresponds to specific known models and specific datasets. We demonstrate that its
careful consideration as a function of all its inputs, and not just of its hyperparameters, can lead to
useful algorithms.
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