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Abstract

Aggregated data is commonplace in areas such as epidemiology and demography.
For example, census data for a population is usually given as averages defined over
time periods or spatial resolutions (cities, regions or countries). In this paper, we
present a novel multi-task learning model based on Gaussian processes for joint
learning of variables that have been aggregated at different input scales. Our model
represents each task as the linear combination of the realizations of latent processes
that are integrated at a different scale per task. We are then able to compute the
cross-covariance between the different tasks either analytically or numerically. We
also allow each task to have a potentially different likelihood model and provide a
variational lower bound that can be optimised in a stochastic fashion making our
model suitable for larger datasets. We show examples of the model in a synthetic
example, a fertility dataset and an air pollution prediction application.

1 Introduction

Many datasets in fields like ecology, epidemiology, remote sensing, sensor networks and demography
appear naturally aggregated, that is, variables in these datasets are measured or collected in intervals,
areas or supports of different shapes and sizes. For example, census data are usually sampled or
collected as aggregated at different administrative divisions, e.g. borough, town, postcode or city
levels. In sensor networks, correlated variables are measured at different resolutions or scales. In the
near future, air pollution monitoring across cities and regions could be done using a combination of a
few high-quality low time-resolution sensors and several low-quality (low-cost) high time-resolution
sensors. Joint modelling of the variables registered in the census data or the variables measured using
different sensor configurations at different scales can improve predictions at the point or support
levels.

In this paper, we are interested in providing a general framework for multi-task learning on these
types of datasets. Our motivation is to use multi-task learning to jointly learn models for different
tasks where each task is defined at (potentially) a different support of any shape and size and has a
(potentially) different nature, i.e. it is a continuous, binary, categorical or count variable. We appeal
to the flexibility of Gaussian processes (GPs) for developing a prior over such type of datasets and
we also provide a scalable approach for variational Bayesian inference.

Gaussian processes have been used before for aggregated data [Smith et al., Law et al., 2018, Tanaka
et al., 2019] and also in the context of the related field of multiple instance learning [Kim and De la
Torre, 2010, Kandemir et al., 2016, Haußmann et al., 2017]. In multiple instance learning, each
instance in the dataset consists of a set (or bag) of inputs with only one output (or label) for that
whole set. The aim is to provide predictions at the level of individual inputs. Smith et al. provide
a new kernel function to handle single regression tasks defined at different supports. They use
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cross-validation for hyperparameter selection. Law et al. [2018] use the weighted sum of a latent
function evaluated at different inputs as the prior for the rate of a Poisson likelihood. The latent
function follows a GP prior. The authors use stochastic variational inference (SVI) for approximating
the posterior distributions. Tanaka et al. [2019] mainly use GPs for creating data from different
auxiliary sources. Furthermore, they only consider Gaussian regression and they do not include
inducing variables. While Smith et al. and Law et al. [2018] perform the aggregation at the latent
prior stage, Kim and De la Torre [2010], Kandemir et al. [2016] and Haußmann et al. [2017] perform
the aggregation at the likelihood level. These three approaches target a binary classification problem.
Both Kim and De la Torre [2010] and Haußmann et al. [2017] focus on the case for which the label
of the bag corresponds to the maximum of the (unobserved) individual labels of each input. Kim and
De la Torre [2010] approximate the maximum using a softmax function computed using a latent GP
prior evaluated across the individual elements of the bag. They use the Laplace approximation for
computing the approximated posterior [Rasmussen and Williams, 2006]. Haußmann et al. [2017], on
the other hand, approximate the maximum using the so called bag label likelihood, introduced by the
authors, which is similar to a Bernoulli likelihood with soft labels given by a convex combination
between the bag labels and the maximum of the (latent) individual labels. The latent individual labels
in turn follow Bernoulli likelihoods with parameters given by a GP. The authors provide a variational
bound and include inducing inputs for scalable Bayesian inference. Kandemir et al. [2016] follow
a similar approach to Law et al. [2018] equivalent to setting all the weights in Law et al.’s model
to one. The sum is then used to modulate the parameter of a Bernoulli likelihood that models the
bag labels. They use a Fully Independent Training Conditional approximation for the latent GP
prior [Snelson and Ghahramani, 2006]. In contrast to these previous works, we provide a multi-task
learning model for aggregated data that scales to large datasets and allows for heterogeneous outputs.
At the time of submission of this paper, the idea of using multi-task learning for aggregated datasets
was simultaneously proposed by Hamelijnck et al. and Tanaka et al., two additional models to the
one we propose in this paper. In our work, we allow heterogenous likelihoods which is different to
both Hamelijnck et al. and Tanaka et al.. We also allow an exact solution to the integration of the
latent function through the kernel in Smith et al., which is different to Hamelijnck et al.. Also, for
computational complexity, inducing inputs are used, another difference from the work in Tanaka
et al.. Other relevant work is described in Section 3.

For building the multi-task learning model we appeal to the linear model of coregionalisation [Journel
and Huijbregts, 1978, Goovaerts, 1997] that has gained popularity in the multi-task GP literature in
recent years [Bonilla et al., 2008, Alvarez et al., 2012]. We also allow different likelihood functions
[Moreno-Muñoz et al., 2018] and different input supports per individual task. Moreover, we introduce
inducing inputs at the level of the underlying common set of latent functions, an idea initially
proposed in Alvarez and Lawrence [2009]. We then use stochastic variational inference for GPs
[Hensman et al., 2013] leading to an approximation similar to the one obtained in Moreno-Muñoz
et al. [2018]. Empirical results show that the multi-task learning approach developed here provides
accurate predictions in different challenging datasets where tasks have different supports.

2 Multi-task learning for aggregated data at different scales

In this section we first define the basic model in the single-task setting. We then extend the model
to the multi-task setting and finally provide details for the stochastic variational formulation for
approximate Bayesian inference.

2.1 Change of support using Gaussian processes

Change of support has been studied in geostatistics before [Gotway and Young, 2002]. In this paper,
we use a formulation similar to Kyriakidis [2004]. We start by defining a stochastic process over the
input interval (xa, xb) using

f(xa, xb) =
1

∆x

∫ xb

xa

u(z)dz,

where u(z) is a latent stochastic process that we assume follows a Gaussian process with zero
mean and covariance k(z, z′) and ∆x = |xb − xa|. Dividing by ∆x helps to keep the proportion-
ality between the length of the interval and the area under u(z) in the interval. In other words,
the process f(·) is modeled as a density meaning that inputs with widely differing supports will
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behave in a similar way. The first two moments for f(xa, xb) are given as E[f(xa, xb)] = 0 and
E[f(xa, xb), f(x′a, x

′
b)] = 1

∆x∆x′

∫ xb

xa

∫ x′b
x′a

E[u(z)u(z′)]dz′dz. The covariance for f(xa, xb) fol-

lows as cov[f(xa, xb), f(x′a, x
′
b)] = 1

∆x∆x′

∫ xb

xa

∫ x′b
x′a
k(z, z′)dz′dz since E[u(z)] = 0. Let us use

k(xa, xb, x
′
a, x
′
b) to refer to cov[f(xa, xb), f(x′a, x

′
b)]. We can now use these mean and covariance

functions for representing the Gaussian process prior for f(xa, xb) ∼ GP(0, k(xa, xb, x
′
a, x
′
b)).

For some forms of k(z, z′) it is possible to obtain an analytical expression for k(xa, xb, x
′
a, x
′
b).

For example, if k(z, z′) follows an Exponentiated-Quadratic (EQ) covariance form, k(z, z′) =

σ2 exp{− (z−z′)2
`2 }, where σ2 is the variance of the kernel and ` is the length-scale, it can be shown

that k(xa, xb, x
′
a, x
′
b) follows as

k(xa, xb, x
′
a, x
′
b) =

σ2`2

2∆x∆x′

[
h

(
xb − x′a

`

)
+ h

(
xa − x′b

`

)
− h

(
xa − x′a

`

)
− h

(
xb − x′b

`

)]
,

where h(z) =
√
πz erf(z) + e−z

2

with erf(z), the error function defined as erf(z) = 2√
π

∫ z
0
e−r

2

dr.
Other kernels for k(z, z′) also lead to analytical expressions for k(xa, xb, x

′
a, x
′
b). See for example

Smith et al..

So far, we have restricted the exposition to one-dimensional intervals. However, we can define the
stochastic process f over a general support υ, with measure |υ|, using

f(υ) =
1

|υ|

∫
z∈v

u(z)dz.

The support υ generally refers to an area or volume of any shape or size. Following similar assump-
tions to the ones we used for f(xa, xb), we can build a GP prior to represent f(υ) with covariance
k(υ, υ′) defined as k(υ, υ′) = 1

|υ||υ′|
∫
z∈υ

∫
z′∈υ′ k(z, z′)dz′dz. Let z ∈ Rp. If the support υ has

a regular shape, e.g. a hyperrectangle, then assumptions on u(z) such as additivity or factoriza-
tion across input dimensions will lead to kernels that can be expressed as addition of kernels or
product of kernels acting over a single dimension. For example, let u(z) =

∏p
i=1 ui(zi), where

z = [z1, · · · , zp]>, and a GP over each ui(zi) ∼ GP(0, k(zi, z
′
i)). If each k(zi, z

′
i) is an EQ ker-

nel, then k(υ, υ′) =
∏p
i=1 k(xi,a, xi,b, x

′
i,a, x

′
i,b), where (xi,a, xi,b) and (x′i,a, x

′
i,b) are the intervals

across each input dimension. If the support υ does not follow a regular shape, i.e it is a polytope,
then we can approximate the double integration by numerical integration inside the support.

2.2 Multi-task learning setting

Our inspiration for multi-task learning is the linear model of coregionalisation (LMC) [Journel and
Huijbregts, 1978]. This model has connections with other multi-task learning approaches that use
kernel methods. For example, Teh et al. [2005] and Bonilla et al. [2008] are particular cases of
LMC. A detailed review is available in Alvarez et al. [2012]. In the LMC, each output (or task in
our case) is represented as a linear combination of a common set of latent Gaussian processes. Let
{uq(z)}Qq=1 be a set of Q GPs with zero means and covariance functions kq(z, z′). Each GP uq(z) is

sampled independently and identically Rq times to produce {uiq(z)}Rq,Q
i=1,q=1 realizations that are used

to represent the outputs. Let {fd(υ)}Dd=1 be a set of tasks where each task is defined at a different
support υ. We use the set of realizations uiq(z) to represent each task fd(υ) as

fd(υ) =

Q∑
q=1

Rq∑
i=1

aid,q
|υ|

∫
z∈v

uiq(z)dz, (1)

where the coefficients aid,q weight the contribution of each integral term to fd(υ). Since
cov[uiq(z), ui

′

q′(z
′)] = kq(z, z

′)δq,q′δi,i′ , with δα,β the Kronecker delta between α and β, the cross-
covariance kfd,fd′ (υ, υ

′) between fd(υ) and fd′(υ′) is then given as

kfd,fd′ (υ, υ
′) =

Q∑
q=1

bqd,d′

|υ||υ′|

∫
z∈υ

∫
z′∈υ′

kq(z, z
′)dz′dz,
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where bqd,d′ =
∑Rq

i=1 a
i
d,qa

i
d′,q. Following the discussion in Section 2.1, the double integral can be

solved analytically for some options of υ, υ′ and kq(z, z′). Generally, a numerical approximation
can be obtained.

It is also worth mentioning at this point that the model does not require all the tasks to be defined at the
area level. Some of the tasks could also be defined at the point level. Say for example that fd is defined
at the support level υ, fd(υ), whereas fd′ is defined at the point level, say x ∈ Rp, fd′(x). In this case,
fd′(x) =

∑Q
q=1

∑Rq

i=1 a
i
d′,qu

i
q(x). We can still compute the cross-covariance between fd(υ) and

fd′(x), kfd,fd′ (υ,x), leading to, kfd,fd′ (υ,x) =
∑Q
q=1

bq
d,d′

|υ|
∫
z∈v kq(z,x)dz. For the case Q = 1

and p = 1 (i.e. dimensionality of the input space), this is, z, z′, x ∈ R, υ = (xa, xb) and an EQ
kernel for k(z, z′), we get kfd,fd′ (υ, x) =

bd,d′

∆x

∫ xb

xa
k(z, x)dz =

bd,d′`

2∆x

[
erf
(
xb−x
`

)
+ erf

(
x−xa

`

)]
(we used σ2 = 1 to avoid an overparameterization for the variance). Again, if υ does not have a
regular shape, we can approximate the integral numerically.

Let us define the vector-valued function f(υ) = [f1(υ), · · · , fD(υ)]>. A GP prior over f(υ) can use
the kernel defined above so that

f(υ) ∼ GP

(
0,

Q∑
q=1

1

|υ||υ′|
Bq

∫
z∈v

∫
z′∈v′

kq(z, z
′)dz′dz

)
,

where each Bq ∈ RD×D is known as a coregionalisation matrix. The scalar term∫
z∈v

∫
z′∈v′ kq(z, z

′)dz′dz modulates Bq as a function of υ and υ′.

The prior above can be used for modulating the parameters of likelihood functions that model the
observed data. The most simple case corresponds to the multi-task regression problem that can be
modeled using a multivariate Gaussian distribution. Let y(υ) = [y1(υ), · · · , yD(υ)]> be a random
vector modeling the observed data as a function of υ. In the multi-task regression problem y(υ) ∼
N (µ(υ),Σ), where µ(υ) = [µ1(υ), · · · , µD(υ)]> is the mean vector and Σ is a diagonal matrix
with entries {σ2

yd
}Dd=1. We can use the GP prior f(υ) as the prior over the mean vector µ(υ) ∼ f(υ).

Since both the likelihood and the prior are Gaussian, both the marginal distribution for y(υ) and the
posterior distribution of f(υ) given y(υ) can be computed analytically. For example, the marginal
distribution for y(υ) is given as y(υ) ∼ N (0,

∑Q
q=1

1
|υ||υ′|Bq

∫
z∈v

∫
z′∈v′ kq(z, z

′)dz′dz + Σ).
Moreno-Muñoz et al. [2018] introduced the idea of allowing each task to have a different likelihood
function and modulated the parameters of that likelihood function using one or more elements in the
vector-valued GP prior. For that general case, the marginal likelihood and the posterior distribution
cannot be computed in closed form.

2.3 Stochastic variational inference

LetD = {Υ,y} be a dataset of multiple tasks with potentially different supports per task, where Υ =
{υd}Dd=1, with υd = [υd,1, · · · , υd,Nd

]>, and y = [y1, · · · ,yD]>, with yd = [yd,1, · · · , yd,Nd
]>

and yd,j = yd(υd,j). Notice that y without υ refers to the output vector for the dataset. We are inter-
ested in computing the posterior distribution p(f |y) = p(y|f)p(f)/p(y), where f = [f1, · · · , fD]>,
with fd = [fd,1, · · · , fd,Nd

]> and fd,j = fd(υd,j). In this paper, we will use stochastic variational
inference to compute a deterministic approximation of the posterior distribution p(f |y) ≈ q(f), by
means of the the well known idea of inducing variables. In contrast to the use of SVI for traditional
Gaussian processes, where the inducing variables are defined at the level of the process f , we follow
Álvarez et al. [2010] and Moreno-Muñoz et al. [2018], and define the inducing variables at the level
of the latent processes uq(z). For simplicity in the notation, we assumeRq = 1. Let u = {uq}Qq=1 be
the set of inducing variables, where uq = [uq(z1), · · · , uq(zM )]>, with Z = {zm}Mm=1 the inducing
inputs. Notice also that we have used a common set of inducing inputs Z for all latent functions but
we can easily define a set Zq per inducing vector uq .

For the multi-task regression case, it is possible to compute an analytical expression for the Gaussian
posterior distribution over the inducing variables u, q(u), following a similar approach to Álvarez
et al. [2010]. However, such approximation is only valid for the case in which the likelihood model
p(y|f) is Gaussian and the variational bound obtained is not amenable for stochastic optimisation. An
alternative for finding q(u) also establishes a lower-bound for the log-marginal likelihood log p(y),
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but uses numerical optimisation for maximising the bound with respect to the mean parameters, µ, and
the covariance parameters, S, for the Gaussian distribution q(u) ∼ N (µ,S) [Moreno-Muñoz et al.,
2018]. Such numerical procedure can be used for any likelihood model p(y|f) and the optimisation
can be performed using mini-batches. We follow this approach.

Lower-bound The lower bound for the log-marginal likelihood follows as

log p(y) ≥
∫ ∫

q(f ,u) log
p(y|f)p(f |u)p(u)

q(f ,u)
dfdu = L,

where q(f ,u) = p(f |u)q(u), p(f |u) ∼ N (KfuK−1
uuu,Kff − KfuK−1

uuK>fu), and p(u) ∼
N (0,Kuu) is the prior over the inducing variables. Here Kfu is a blockwise matrix with matrices
Kfd,uq . In turn each of these matrices have entries given by kfd,uq (υ, z′) =

ad,q
|υ|
∫
z∈υ kq(z, z

′)dz.
Similarly, Kuu is a block-diagonal matrix with blocks given by Kq with entries computed using
kq(z, z

′). The optimal q(u) is chosen by numerically maximizing L with respect to the parameters
µ and S. To ensure a valid covariance matrix S we optimise the Cholesky factor L for S = LL>.
See Appendix A.1 for more details on the lower bound. The computational complexity is similar to
the one for the model in Moreno-Muñoz et al. [2018], O(QM3 + JNQM2), where J depends on
the types of likelihoods used for the different tasks. For example, if we model all the outputs using
Gaussian likelihoods, then J = D. For details, see Moreno-Muñoz et al. [2018].

Hyperparameter learning When using the multi-task learning method, we need to optimise
the hyperparameters associated with the LMC, these are: the coregionalisation matrices Bq, the
hyperparameters of the kernels kq(z, z′), and any other hyperparameter associated to the likelihood
functions p(y|f) that has not been considered as a member of the latent vector f(υ). Hyperparameter
optimisation is done using the lower bound L as the objective function. First L is maximised with
respect to the variational distribution q(u) and then with respect to the hyperparameters. The two-
steps are repeated one after the other until reaching convergence. Such style of optimisation is known
as variational EM (Expectation-Maximization) when using the full dataset [Beal, 2003] or stochastic
version, when employing mini-batches [Hoffman et al., 2013]. In the Expectation step we compute a
variational posterior distribution and in the Maximization step we use a variational lower bound to
find point estimates of any hyperparameters. For optimising the hyperparameters in Bq , we also use
a Cholesky decomposition for each matrix to ensure positive definiteness. So instead of optimising
Bq directly, we optimise Lq , where Bq = LqL

>
q . For the experimental section, we use the EQ kernel

for kq(z, z), so we fix the variance for kq(z, z) to one (the variance per output is already contained in
the matrices Bq) and optimise the length-scales `q .

Predictive distribution Given a new set of test inputs Υ∗, the predictive distribution for
p(y∗|y,Υ∗) is computed using p(y∗|y,Υ∗) =

∫
f∗
p(y∗|f∗)q(f∗)df∗, where y∗ and f∗ refer to

the vector-valued functions y and f evaluated at Υ∗. Notice that q(f∗) ≈ p(f∗|y). Even though
y does not appear explicitly in the expression for q(f∗), it has been used to compute the posterior
for q(u) through the optimisation of L where y is explicitly taken into account. We are usually
interested in the mean prediction E[y∗] and the predictive variance var[y∗]. Both can be computed
by exchanging integrals in the double integration over y∗ and f∗. See Appendix A.1 for more details
on this.

3 Related work

Machine learning methods for different forms of aggregated datasets are also known under the names
of multiple instance learning, learning from label proportions or weakly supervised learning on
aggregate outputs [Kück and de Freitas, 2005, Musicant et al., 2007, Quadrianto et al., 2009, Patrini
et al., 2014, Kotzias et al., 2015, Bhowmik et al., 2015]. Law et al. [2018] provided a summary of
these different approaches. Typically these methods start with the following setting: each instance in
the dataset is in the form of a set of inputs for which there is only one corresponding output (e.g. the
proportion of class labels, an average or a sample statistic). The prediction problem usually consists
then in predicting the individual outputs for the individual inputs in the set. The setting we present in
this paper is slightly different in the sense that, in general, for each instance, the input corresponds to
a support of any shape and size and the output corresponds to a vector-valued output. Moreover, each
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task can have its own support. Similarly, while most of these ML approaches have been developed for
either regression or classification, our model is built on top of Moreno-Muñoz et al. [2018], allowing
each task to have a potentially different likelihood.

As mentioned in the introduction, Gaussian processes have also been used for multiple instance
learning or aggregated data [Kim and De la Torre, 2010, Kandemir et al., 2016, Haußmann et al.,
2017, Smith et al., Law et al., 2018, Tanaka et al., 2019, Hamelijnck et al., Tanaka et al.]. Compared
to most of these previous approaches, our model goes beyond the single task problem and allows
learning multiple tasks simultaneously. Each task can have its own support at training and test time.
Compared to other multi-task approaches, we allow for heterogeneous outputs. Although our model
was formulated for a continuous support x ∈ υd,j , we can also define it in terms of a finite set of
(previously defined) inputs in the support, e.g. a set {xd,j,1, · · · ,xd,j,Kd,j

} ∈ υd,j which is more
akin to the bag formulations in these previous works. This would require changing the integral

1
|υd,j |

∫
z∈υd,j u

i
q(z)dz in (1) for the sum 1

Kd,j

∑
∀x∈υd,j u

i
q(xd,j,k).

In geostatistics, a similar problem has been studied under the names of downscaling or spatial
disaggregation [Zhang et al., 2014], particularly using different forms of kriging [Goovaerts, 1997].
It is also closely related to the problem of change of support described with detail in Gotway and
Young [2002]. Block-to-point kriging (or area-to-point kriging if the support is defined in a surface)
is a common method for downscaling, this is, provide predictions at the point level provided data at
the block level [Kyriakidis, 2004, Goovaerts, 2010]. We extend the approach introduced in Kyriakidis
[2004] later revisited by Goovaerts [2010] for count data, to the multi-task setting, including also a
stochastic variational EM algorithm for scalable inference.

If we consider the high-resolution outputs as high-fidelity outputs and low-resolution outputs as
low-fidelity outputs, our work also falls under the umbrella of multi-fidelity models where co-kriging
using the linear model of coregionalisation has also been used as an alternative [Peherstorfer et al.,
2018, Fernández-Godino et al.].

4 Experiments

In this section, we apply the multi-task learning model for prediction in three different datasets:
a synthetic example for two tasks that each have a Poisson likelihood, a two-dimensional input
dataset of fertility rates aggregated by year of conception and ages in Canada, and an air-pollution
sensor network where one task corresponds to a high-accuracy, low-frequency particulate matter
sensor and another task corresponds to a low-cost, low-accuracy, high resolution sensor. In these
examples, we use k-means clustering over the input data, with k = M , to initialise the values of the
inducing inputs, Z, which are also kept fixed during optimisation. We assume the inducing inputs
are points, but they could be defined as intervals or supports. For standard optimisation we used the
LBFGS-B algorithm and when SVI was needed, the Adam optimiser, included in climin library, was
used for the optimisation of the variational distribution (variational E-step) and the hyperparameters
(variational M-step). The implementation is based on the GPy framework and is available on Github:
https://github.com/frb-yousefi/aggregated-multitask-gp.

Synthetic data In this section we evaluated our model with a synthetic dataset. For all of the
experiments we use Q = 1 with an EQ covariance for the latent function u1(z). We set up a toy
problem with D = 2 tasks, where both likelihood functions are Poisson. We sample from the latent
vector-valued GP and use those samples to modulate the Poisson likelihoods using exp(f1(·)) and
exp(f2(·)) as the respective rates. The first task is generated using intervals of υ1 = 1 units, whereas
the second task is generated using intervals of υ2 = 2 units. All the inputs are uniformly distributed
in the range [0, 250]. We generated 250 observations for task 1 and 125 for task 2. For training the
multi-task model, we select N1 = 200 from the 250 observations for task 1 and use all N2 = 125 for
the second task. The other 50 data points for task 1 correspond to a gap in the interval [130, 180] that
we use as the test set. In this experiment, we evaluated our model’s capability in predicting one task,
sampled more frequently, using the training information from a second task with a larger support.

In Figure 1 we show that the data in the second task, with a larger support, helps predicting the test
data in the gap present in the first task, with a smaller support (right panel). However, this is not the
case in the single task learning scenario where the predictions are basically constant and equal to 1
(left panel). Both models predict the training data equally well. SMSE (Standardized Mean Squared
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(b) Multi-task learning

Figure 1: Counts for the Poisson likelihoods and predictions using the single-task vs multi-task
models. Predictions are shown only for the first task (the one with support of υ1 = 1). The blue bars
are the original one-unit support data, the green bars are the predicted training count data and the red
bars are the predicted test results in the gap [130, 180]. We did not include the two-unit support data
(the second task) for clarity in the visualisation. The multi-task figure on the right (b) is illustrated
again in Appendix A.4, Figure 7 for better visualisation.

Error) and SNLP (standardized negative log probability density) are calculated for five independent
runs. For the multi-task scenario they are 0.464± 0.136 and −0.822± 0.109 and for the single task
case they are 0.9699± 0.016 and −0.095± 0.036, respectively.

Fertility rates from a Canadian census In this experiment, a subset of the Canadian fertility
dataset is used from the Human Fertility Database (HFD) 1. The dataset consists of live births’
statistics by year, age of mother and birth order. The ages of the mother are between [15, 54] and the
years are between [1944, 2009]. It contains 2640 data points of fertility rate per birth order (the output
variable) and there are four birth orders. We used the 2640 data points of the 1st birth only. The
dataset was randomly split into 1640 training points and 1000 test points. We consider two tasks: the
first task consists of a different number of data observations randomly taken from the 1640 training
points. The second task consists of all the training data aggregated at two different resolutions, 5× 5
and 2× 2 (we wanted to test the predictive performance when the relation of high-resolution data to
low-resolution data was 12 to 52 and another for 12 to 22). The aggregated data for the 5× 5 case
(a squared support of 5 years for the input age times 5 years for the input years of the study) is
reduced to 104 data points and the aggregated data for 2× 2 case is reduced to 660 points.
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Figure 2: SMSE plots for the fertility dataset for 5× 5 (left panel) and 2× 2 (right panel) aggregated
data. The Figure shows the performance in terms of the number of training instances used for the
data sampled at a higher resolution. The test set always contains 1000 instances. We plot the mean
and standard deviation for five repetitions of the experiment with different sets of training and test
data. Appendix A.2 shows the same plots for SNLP. Appendix A.3 illustrates other experimental
baselines that are compared to eachother for the same metrics. Further experiments considering more
tasks are also included in Appendix A.4.

In the experiments, we train this multi-task model by slowly increasing the original resolution training
data, while maintaining a fixed amount of training points mentioned before for the aggregated second
task. The output variable (fertility rate for the first birth) was assumed to be Gaussian, so both
tasks follow a Gaussian likelihood. We use Q = 1 with an EQ kernel k1(z, z′) with z ∈ R2 where

1https://www.humanfertility.org
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the two input variables are age of mother and birth year. We used 100 fixed inducing variables
and mini-batches of size 50 samples. The prediction task consists of predicting the 1000 original
resolution test data with the help of the second task which consists of the aggregated data (5× 5 or
2× 2 for two separate experiments).

Figure 2 shows SMSE for five random selections of data points in the training and test sets. We notice
that the multi-task learning model outperforms the single-task GP when there are few observations
in the task with the original resolution data. This pattern holds below 500 observations. At that
point, both models perform equally well since the single-task GP now has enough training data. With
respect to the two different resolutions, the performance of the multi-task model is better when the
second task has a 2× 2 resolution rather than 5× 5 resolution, as one might also expect.

Air pollution monitoring network Particulate air pollution can be measured accurately with high
temporal precision by using a β attenuation (BAM) sensor or similar. Unfortunately these are often
prohibitively expensive. We propose instead that one can combine the measurements from a low-cost
optical particle counter (OPC) which gives good temporal resolution but is often badly biased, with
the results of a Cascade Impactors (CIs), which are a cheaper method for assessing the mass of
particulate species but integrate over many hours (e.g. 6 or 24 hours).
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Figure 3: Upper plot: a (biased) OPC low-accuracy high-frequency measurement of PM2.5 air
pollution. Lower plot: the high-precision low-frequency training data (black rectangles) the test data
from the same instrument (red) and the posterior prediction for this output variable, predicting over
the same 15-minute periods as the test data (blue, with pale blue indicating 95% confidence intervals).
The ticks in the bottom of the lower plot indicate the position of the inducing inputs. Also, we have
deliberately cut the higher peaks of the samples in the upper plot that can go as high as 500 µg/m3,
just to be able to visualise better the samples in other parts of the plot.

One can formulate the problem as observations of integrals of a latent function. The CI integrating
over 6 hour periods while the OPC sensor integrating over short 5 minute periods. We used data from
two fine particulate matter (PM) sensors. The sensors are less than 2.5 micrometer diameter (PM2.5)
and are colocated in Kampala, Uganda at 0.3073◦N 32.6205◦E. The data is taken between 2019-03-13
and 2019-03-22. We used the average of six-hour periods from a calibrated mcerts-verified Osiris
(Turnkey) particulate air pollution monitoring system as the low-resolution data, and then compared
the prediction results to the original measurements (available at a 15 minute resolution). We used a
PMS 5003 (Plantower) low-cost OPC to provide the high-resolution data. Typically we found these
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values would often be biased. We simply normalised (scaled) the data to emphasise that the absolute
values of these variables are not of interest in this model.

Our multi-task model consists of a single latent function, Q = 1, with covariance k1(z, z′) that
follows an EQ form. We assume both outputs follow Gaussian likelihoods. In our model, one
task represents the high accuracy low-resolution samples and the second task represents the low-
accuracy high-resolution samples. The posterior GP both aims to fulfil the 6-hour long integrals of the
high-accuracy data (from the Osiris instrument) while remaining correlated with the high-frequency
bias data from the OPC. We used 2000 iterations of the variational EM algorithm, with 200 evenly
spaced inducing points and a fixed lengthscale of 0.75 hours. We only optimise the parameters of the
coregionalisation matrix B1 ∈ R2×2 and the variance of the noise of each Gaussian likelihood.

Figure 3 illustrates the results for a 24 hour period. The training data consists of the high-resolution
low-accuracy sensor and a low-frequency high accuracy sensor. The aim is to reconstruct the
underlying level of pollution both sensors are measuring. To test whether the additional high-
frequency data improves the accuracy we ran the coregionalisation both with and without this
additional training data.

We found that the SMSE for the predictions over the 9 days tested were substantially smaller
with multi-task learning compared to using only the low-resolution samples, 0.439 ± 0.114 and
0.657± 0.100 respectively (the difference is statistical significant using a paired t-test with a p value
of 0.0008). In summary, the model was able to incorporate this additional data and use it to improve
the estimates while still ensuring the long integrals were largely satisfied.

5 Conclusion

In this paper, we have introduced a powerful framework for working with aggregated datasets that
allows the user to combine observations from disparate data types, with varied support. This allows
us to produce both finely resolved and accurate predictions by using the accuracy of low-resolution
data and the fidelity of high-resolution side-information. We chose our inducing points to lie in the
latent space, a distinction which allows us to estimate multiple tasks with different likelihoods. SVI
and variational-EM with mini-batches make the framework scalable and tractable for potentially
very large problems. A potential extension would be to consider how the “mixing” achieved through
coregionalisation could vary across the domain by extending, for example, the Gaussian Process
Regression Network model [Wilson et al., 2012] to be able to deal with aggregated data. Such
model would allow latent functions of different lengthscales to be relevant at different locations in
the domain. In summary, this framework provides a vital toolkit, allowing a mixture of likelihoods,
kernels and tasks and paves the way to the analysis of a very common and widely used data structure
- that of values over a variety of supports on the domain.
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