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Abstract

We consider the problem of online forecasting of sequences of length n with
total-variation at most (), using observations contaminated by independent o-
subgaussian noise. We design an O(n logn)-time algorithm that achieves a cu-
mulative square error of O(n'/3C2/%54/3 1 C?2) with high probability. We also
prove a lower bound that matches the upper bound in all parameters (up to a log(n)
factor). To the best of our knowledge, this is the first polynomial-time algorithm that
achieves the optimal O(nl/ 3) rate in forecasting total variation bounded sequences
and the first algorithm that adapts to unknown C',. Our proof techniques leverage
the special localized structure of Haar wavelet basis and the adaptivity to unknown
smoothness parameters in the classical wavelet smoothing [Donoho et al., 1998].
We also compare our model to the rich literature of dynamic regret minimization
and nonstationary stochastic optimization, where our problem can be treated as
a special case. We show that the workhorse in those settings — online gradient
descent and its variants with a fixed restarting schedule — are instances of a class
of linear forecasters that require a suboptimal regret of €2(y/n). This implies that
the use of more adaptive algorithms is necessary to obtain the optimal rate.

1 Introduction

Nonparametric regression is a fundamental class of problems that has been studied for more than half
a century in statistics and machine learning [Nadaraya, 1964, De Boor et al., 1978, Wahba, 1990,
Donoho et al., 1998, Mallat, 1999, Scholkopf and Smola, 2001, Rasmussen and Williams, 2006]. It
solves the following problem:

e Lety; = f(u;)+ Noise for i = 1, ...,n. How can we estimate a function f using data points
(u1,y1), ---, (Un, yn) and the knowledge that f belongs to a function class F?

Function class F typically imposes only weak regularity assumptions on the function f such as
boundedness and smoothness, which makes nonparametric regression widely applicable to many
real-life applications especially those with unknown physical processes.

A recent and successful class of nonparametric regression technique called trend filtering [Steidl et al.,
2006, Kim et al., 2009, Tibshirani, 2014, Wang et al., 2014] was shown to have the property of local
adaptivity [Mammen and van de Geer, 1997] in both theory and practice. We say a nonparametric
regression technique is locally adaptive if it can cater to local differences in smoothness, hence
allowing more accurate estimation of functions with varying smoothness and abrupt changes. For
example, for functions with bounded total variation (when F is a total variation class), standard
nonparametric regression techniques such as kernel smoothing and smoothing splines have a mean
square error (MSE) of O(n~'/2) while trend filtering has the optimal O(n~2/3).
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Trend filtering is, however, a batch learning algorithm where one observes the entire dataset ahead
of the time and makes inference about the past. This makes it inapplicable to the many time series
problems that motivate the study of trend filtering in the first place [Kim et al., 2009]. These include
influenza forecasting, inventory planning, economic policy-making, financial market prediction and so
on. In particular, it is unclear whether the advantage of trend filtering methods in estimating functions
with heterogeneous smoothness (e.g., sharp changes) would carry over to the online forecasting
setting. The focus of this work is in developing theory and algorithms for locally adaptive online
forecasting which predicts the immediate future value of a function with heterogeneous smoothness
using only noisy observations from the past.

1.1 Problem Setup

1. Fix action time intervals 1, 2, ...,n
2. The player declares a forecasting strategy A; : R©=1 — Rfori =1,...,n.
3. An adversary chooses a sequence 1., = [01,0a,...,0,]T € R™,
4. For every time point¢ = 1, ..., n:
(@) We play z; = A;i(y1, .., Yi—1)-

(b) We receive a feedback y; = 6; + Z;, where Z; is a zero-mean, independent
subgaussian noise.

5. At the end, the player suffers a cumulative error >~ | (z; — 9i)2.

Figure 1: Nonparametric online forecasting model. The focus of the proposed work is to design
a forecasting strategy that minimizes the expected cumulative square error. Note that the problem
depends a lot on the choice of the sequence 0;. Our primary interest is on sequences with bounded
total variation (TV) so that Y- ,|0; — 0;_1|< C,, but we will also talk about the adaptivity of our
method to easier problems such as forecasting Sobolev and Holder functions.

We propose a model for nonparametric online forecasting as described in Figure 1. This model can
be re-framed in the language of the online convex optimization model with three differences.

1. We consider only quadratic loss functions of the form ¢;(x) = (z — 60;)2.
2. The learner receives independent noisy gradient feedback, rather than the exact gradient.
3. The criterion of interest is redefined as the dynamic regret [Zinkevich, 2003, Besbes et al.,

2015]:
Z gf(l})] — Z lartltfft(mt)
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The new criterion is called a dynamic regret because we are now comparing to a stronger dynamic
baseline that chooses an optimal x in every round. Of course in general, the dynamic regret will
be linear in n [Jadbabaie et al., 2015]. To make the problem non-trivial, we restrict our attention to
sequences of /1, ..., £,, that are regular, which makes it possible to design algorithms with sublinear
dynamic regret. In particular, we borrow ideas from the nonparametric regression literature and con-
sider sequences [61, ..., 8,,] that are discretizations of functions in the continuous domain. Regularity
assumptions emerge naturally as we consider canonical functions classes such as the Holder class,
Sobolev class and Total Variation classes [see, e.g., Tsybakov, 2008, for a review].

1.2 Assumptions

We consolidate all the assumptions used in this work and provide necessary justifications for them.

(A1) The time horizon for the online learner is known to be n.

(A2) The parameter o2 of subgaussian noise in the observations is known.

(A3) The ground truth denoted by 6., = [0, ..., 0, has its total variation bounded by some posi-
tive C,, i.e., we take F to be the total variation class TV (C,,) := {01, € R" : [|DO1.,|[1 <
C,} where D is the discrete difference operator. Here Dy.,, = [02 — 01,...,0, — 0,_1]%.

(Ad) [01|< U.



The knowledge of o2 in assumption (A2) is primarily used to get the optimal dependence of & in
minimax rate. This assumption can be relaxed in practice by using the Median Absolute Deviation
estimator as described in Section 7.5 of Johnstone [2017] to estimate 2 robustly. Assumption (A3)
features a samples from a large class of functions with spatially inhomogeneous degree of smoothness.
The functions residing in this class need not even be continuous. Our goal is to propose a policy
that is locally adaptive whose empirical mean squared error converges at the minimax rate for this
function class. We stress that we do not assume that the learner knows C,,. The problem is open and
nontrivial even when C), is known. Assumption (A4) is very mild as it puts restriction only to the
first value of the sequence. This assumption controls the inevitable prediction error for the first point
in the sequence.

1.3 Our Results

The major contributions of this work are summarized below.

e It is known that the minimax MSE for smoothing sequences in the TV class is Q(n~2/3).
This implies a lowerbound of Q(nl/ 3) for the dynamic regret in our setting. We present a
policy ARROWS (Adaptive Restarting Rule for Online averaging using Wavelet Shrinkage)
with a nearly minimax dynamic regret O(n'/3) and a run-time complexity of O(n logn).

e We show that a class of forecasting strategies — including the popular Online Gradient
Descent (OGD) with fixed restarts [Besbes et al., 2015], moving averages (MA) [Box and

Jenkins, 1970] — are fundamentally limited by Q(+/72) regret.

e We also provide a more refined lower bound that characterized the dependence of U, C,,
and o, which certifies the adaptive optimality of ARROWS in all regimes. The bound also
reveals a subtle price to pay when we move from the smoothing problem to the forecasting
problem, which indicates the separation of the two problems when C, /o >> n'/4, aregime
where the forecasting problem is strictly harder (See Figure 3).

o Lastly, we consider forecasting sequences in Sobolev classes and Holder classes and establish
that ARROWS can automatically adapt to the optimal regret of these simpler function classes
as well, while OGD and MA cannot, unless we change their tuning parameter (to behave
suboptimally on the TV class).

2 Related Work

The topic of this paper sits well in between two amazing bodies of literature: nonparametric regression
and online learning. Our results therefore contribute to both fields and hopefully will inspire more
interplay between the two communities. Throughout this paper when we refer O(n'/?) as the optimal
regret, we assume the parameters of the problem are such that it is acheivable (see Figure 3).

Nonparametric regression. As we mentioned before, our problem — online nonparametric fore-
casting — is motivated by the idea of using locally adaptive nonparametric regression for time
series forecasting [Mammen and van de Geer, 1997, Kim et al., 2009, Tibshirani, 2014]. It is more
challenging than standard nonparametric regression because we do not have access to the data in the
future. While our proof techniques make use of several components (e.g., universal shrinkage) from
the seminal work in wavelet smoothing [Donoho et al., 1990, 1998], the way we use them to construct
and analyze our algorithm is new and more generally applicable for converting non-parametric
regression methods to forecasting methods.

Adaptive Online Learning. Our problem is also connected to a growing literature on adaptive online
learning which aims at matching the performance of a stronger time-varying baseline [Zinkevich,
2003, Hall and Willett, 2013, Besbes et al., 2015, Chen et al., 2018b, Jadbabaie et al., 2015, Hazan
and Seshadhri, 2007, Daniely et al., 2015, Yang et al., 2016, Zhang et al., 2018a,b, Chen et al., 2018a].
Many of these settings are highly general and we can apply their algorithms directly to our problem,
but to the best of our knowledge, none of them achieves the optimal O(nl/ 3) dynamic regret.

In the remainder of this section, we focus our discussion on how to apply the regret bounds in
non-stationary stochastic optimization [Besbes et al., 2015, Chen et al., 2018b] to our problem while
leaving more elaborate discussion with respect to alternative models (e.g. the constrained comparator



approach [Zinkevich, 2003, Hall and Willett, 2013], adaptive regret [Jadbabaie et al., 2015, Zhang
et al., 2018a], competitive ratio [Bansal et al., 2015, Chen et al., 2018a]), as well as the comparison
to the classical time series models to Appendix A.

Regret from Non-Stationary Stochastic Optimization The problem of non-stationary stochastic
optimization is more general than our model because instead of considering only the quadratic
functions, ¢;(x) = (x — 6;)2, they work with the more general class of strongly convex functions and
general convex functions. They also consider both noisy gradient feedbacks (stochastic first order
oracle) and noisy function value feedbacks (stochastic zeroth order oracle).

In particular, Besbes et al. [2015] define a quantity V,, which captures the total amount of “variation”
of the functions /1., using V,, := Z?;ll l€ix1 — Lilloo- ' Chen et al. [2018b] generalize the notion to

1/q
Vap,a) = (05! ir — 6]8) " forany 1< p.g < oo where || [:= (f]-(x) Pda)"/7 is the

standard L,, norm for functions”. Table 1 summarizes the known results under the non-stationary
stochastic optimization setting.

Table 1: Summary of known minimax dynamic regret in the non-stationary stochastic optimization
model. Note that the choice of g does not affect the minimax rate in any way, but the choice of p does.
“-” indicates that the no upper or lower bounds are known for that setting.

Noisy gradient feedback Noisy function value feedback
Assumptions on /1., p =+ 1<p< 400 p=+o0 1<p< 400
Convex & Lipschitz (—)(n2/3Vn1/3) O(ngzzziij Vo(p, q) ﬁ) -

Strongly convex & Smooth | ©(nl/2V,/?) @(n?f*r§ Vo(p,q)%5) | ©n2/3V;1?) @(n% Vo(p, q)55a)

Our assumption on the underlying trend 6;., € F can be used to construct an upper bound of
this quantity of variation V,, or V,,(p, ¢). As a result, the algorithms in non-stationary stochastic
optimization and their dynamic regret bounds in Table 1 will apply to our problem (modulo additional
restrictions on bounded domain). However, our preliminary investigation suggests that this direct
reduction does not, in general, lead to optimal algorithms. We illustrate this observation in the
following example.

Example 1. Let F be the set of all bounded sequences in the total variation class TV (1). It can be
worked out that V,,(p, ¢) = O(1) for all p, q. Therefore the smallest regret from [Besbes et al., 2015,
Chen et al., 2018b] is obtained by taking p — +o0, which gives us a regret of O(n'/?). Note that we
expect the optimal regret to be O(nl/ 3) according to the theory of locally adaptive nonparametric
regression.

In Example 1, we have demonstrated that one cannot achieve the optimal dynamic regret using known
results in non-stationary stochastic optimization. We show in section 3.1 that “Restarting OGD”

algorithm has a fundamental lower bound of Q(\/ﬁ) on dynamic regret in the TV class.

Online nonparametric regression. As we finalize our manuscript, it comes to our attention that our
problem of interest in Figure 1 can be cast as a special case of the “online nonparametric regression”
problem [Rakhlin and Sridharan, 2014, Gaillard and Gerchinovitz, 2015]. The general result of
Rakhlin and Sridharan [2014] implies the existence of an algorithm that enjoys a O(n'/3) regret for
the TV class without explicitly constructing one, which shows that n!/3 is the minimax rate when
C,, = O(1) (see more details in Appendix A). To the best of our knowledge, our proposed algorithm
remains the first polynomial time algorithm with O(nl/ 3) regret and our results reveal more precise
(optimal) upper and lower bounds on all parameters of the problem (see Section 3.4).

3 Main results

We are now ready to present our main results.

"The V;, definition in [Besbes et al., 2015] for strongly convex functions are defined a bit differently, the
|||l is taken over the convex hull of minimizers. This creates some subtle confusions regarding our results
which we explain in details in Appendix I.

2We define V;,(p, ¢) to be a factor of n 1/ times bigger than the original scaling presented in [Chen et al.,
2018b] so the results become comparable to that of [Besbes et al., 2015].



3.1 Limitations of Linear Forecasters

Restarting OGD as discussed in Example 1, fails to achieve the optimal regret in our setting. A
curious question to ask is whether it is the algorithm itself that fails or it is an artifact of a potentially
suboptimal regret analysis. To answer this, let’s consider the class of linear forecasters — estimators
that outputs a fixed linear transformation of the observations y;.,. The following preliminary
result shows that Restarting OGD is a linear forecaster . By the results of Donoho et al. [1998],
linear smoothers are fundamentally limited in their ability to estimate functions with heterogeneous
smoothness. Since forecasting is harder than smoothing, this limitation gets directly translated to the
setting of linear forecasters.

Proposition 2. Online gradient descent with a fixed restart schedule is a linear forecaster. Therefore,
it has a dynamic regret of at least Q(\/n).

Proof. First, observe that the stochastic gradient is of form 2(z; — y;) where x; is what the agent
played at time ¢ and y; is the noisy observation 6; + Independent noise. By the online gradient
descent strategy with the fixed restart interval and an inductive argument, x; is a linear combination of
Y1, ..., Yt—1 for any t. Therefore, the entire vector of predictions x1.; is a fixed linear transformation
of y1.4—1. The fundamental lower bound for linear smoothers from Donoho et al. [1998] implies that

this algorithm will have a regret of at least Q(1/n). O

The proposition implies that we will need fundamentally new nonlinear algorithmic components to
achieve the optimal O(n'/3) regret, if it is achievable at all!

3.2 Policy

In this section, we present our policy ARROWS (Adaptive Restarting Rule for Online averaging using
Wavelet Shrinkage). The following notations are introduced for describing the algorithm.

t5, denotes start time of the current bin and ¢ be the current time point.

e 1, .+ denotes the average of the y values for time steps indexed from ¢, to £.
)T

pado(Yt,, , ---, y+) denotes the vector (y¢, — Gty,:t, -, Yt — Yr,:t)" zero-padded at the end till its
length is a power of 2. i.e, a re-centered and padded version of observations.

T'(x) where x is a sequence of values, denotes the element-wise soft thresholding of the sequence

with threshold o1/ log(n)

H denotes the orthogonal discrete Haar wavelet transform matrix of proper dimensions

Let Hr = a = [ag, ag, ..., o] T where k being a power of 2 is the length of 2. Then the vector
[, ..., ax]T can be viewed as a concatenation of log, k contiguous blocks represented by
all],1 = 0,...,logy (k) — 1. Each block a[l] at level I contains 2! coefficients.

ARROWS: inputs - observed y values, time horizon n, std deviation o, § € (0, 1], a hyper-
parameter 5 > 24
1. Initialize t, = 1, newBin =1,yo =0
2. Fort=1ton:
(a) If newBin == 1, predict ;vih = y;_1, else predict x%h = Yt it—1
(b) set newBin = 0, observe y; and suffer loss (z}"* — 0;)?
(c) Lety = pado(ys,, ..., y¢) and k be the padded length.
(d) Leta(ty : t) =T (HY)
() Restart Rule: Tf —— 571821 91/2) 6, - )[1] |y > <%= then

NS NG
i. set newBin =1

i. sett, =t¢t+1

Our policy is the byproduct of following question: How can one lift a batch estimator that is minimax
over the TV class to a minimax online algorithm?



Restarting OGD when applied to our setting with squared error losses reduces to partitioning the
duration of game into fixed size chunks and outputting online averages. As described in Section 3.1,
this leads to suboptimal regret. However, the notion of averaging is still a good idea to keep. If within
a time interval, the Total Variation (TV) is adequately small, then outputting sample averages is
reasonable for minimizing the cumulative squared error. Once we encounter a bump in the variation,
a good strategy is to restart the averaging procedure. Thus we need to adaptively detect intervals with
low TV. For accomplishing this, we communicate with an oracle estimator whose output can be used
to construct a lowerbound of TV within an interval. The decision to restart online averaging is based
on the estimate of TV computed using this oracle. Such a decision rule introduces non-linearity and
hence breaks free of the suboptimal world of linear forecasters.

The oracle estimator we consider here is a slightly modified version of the soft thresholding estimator
from Donoho [1995]. We capture the high level intuition behind steps (d) and (e) as follows.
Computation of Haar coefficients involves smoothing adjacent regions of a signal and taking difference
between them. So we can expect to construct a lowerbound of the total variation || D1, ||; from these
coeffcients. The extra thresholding step 7°(.) in (d) is done to denoise the Haar coefficients computed
from noisy data. In step (e), a weighted L1 norm of denoised coefficients is used to lowerbound
the total variation of the true signal. The multiplicative factors 2/2 are introduced to make the
lowerbound tighter. We restart online averaging once we detect a large enough variation. The first
coefficient &(ty, : t)1 is zero due to the re-centering caused by pady operation. The hyper-parameter
[ controls the degree to which we shrink the noisy wavelet coefficients. For sufficiently small 3, It is
almost equivalent to the universal soft-thresholding of [Donoho, 1995]. The optimal selection of /3 is
described in Theorem 3.

We refer to the duration between two consecutive restarts inclusive of the first restart but exclusive of
the second as a bin. The policy identifies several bins across time, whose width is adaptively chosen.
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Figure 2: An illustration of ARROWS on a sequence with heterogeneous smoothness. We compare
qualitatively (on the left) and quantitatively (on the right) to two popular baselines: (a) restarting
online gradient descent [Besbes et al., 2015]; (b) the moving averages [Box and Jenkins, 1970] with
optimal parameter choices. As we can see, ARROWS achieves the optimal O(nl/ 3) regret while the
baselines are both suboptimal.

3.3 Dynamic Regret of ARROWS

In this section, we provide bounds for non-stationary regret and run-time of the policy.

Theorem 3. Let the feedback be y; = 0; + Z;, t = 1,...,n and Z; be independent, o-subgaussian

random variables. If § = 24 + 811%((%5), then with probability at least 1 — 0, ARROWS achieves

a dynamic regret 0fé(n1/3\|D01:n||§/304/3 + 1012+ D1 | 3+02) where O hides a logarithmic
factorinn and 1/6.

Proof Sketch. Our policy is similar in spirit to restarting OGD but with an adaptive restart schedule.
The key idea we used is to reduce the dynamic regret of our policy in probability roughly to a sum of
squared error of a soft thresholding estimator and number of restarts. This was accomplished by using
a Follow The Leader (FTL) reduction. For bounding the squared error part of the sum we modified



the threshold value for the estimator in Donoho [1995] and proved high probability guarantees for
the convergence of its empirical mean. To bound the number of times we restart, we first establish a
connection between Haar coefficients and total variation. This is intuitive since computation of Haar
coefficients can be viewed as smoothing the adjacent regions of a signal and taking their difference.
Then we exploit a special condition called “uniform shrinkage” of the soft-thresholding estimator
which helps to optimally bound the number of restarts with high probability. O

Theorem 3 provides an upper bound of the minimax dynamic regret for forecasting the TV class.

Corollary 4. Suppose the ground truth 01.,, € TV (C,) and |61|< U. Then ||D0;.,|1< C,. By
noting that || D61.,,||2< || D61.r |1, under the setup in Theorem 3 ARROWS achieves a dynamic regret

0fO(n1/3C’3/304/3 + U? + C2 + o?) with probability at-least 1 — 6.

Remark 5 (Adaptivity to unknown parameters.). Observe that ARROWS does not require the knowl-
edge of C,,.It adapts optimally to the unknown TV radius C,, := ||D61.,,||1 of the ground truth 6;.,,.
The adaptivity to n can be achieved by a standard doubling trick. o, if unknown, can be robustly
estimated from the first few observations by a Median Absolute Deviation estimator (eg. Section 7.5
of Johnstone [2017]), thanks to the sparsity of wavelet coefficients of TV bounded functions.

3.4 A lower bound on the minimax regret

We now give a matching lower bound of the expected regret, which establishes that ARROWS is
adaptively minimax.

Proposition 6. Assume min{U, C,,} > 27o and n > 3, there is a universal constant c such that

n

inf sup E Z (ze(y1:e—1) — 0,)° | > c(U? + C2 4 62 logn + n'/3C2/354/3).
Tin 01, €TV(Cn) |12

The proof is deferred to the Appendix I. The result shows that our result in Theorem 3 is optimal up
to a logarithmic term in n and 1/4 for almost all regimes (modulo trivial cases of extremely small
min{U, C,,}/o and n)*.

Remark 7 (The price of forecasting). The result also shows that forecasting is strictly harder
than smoothing. Observe that a term with CfL is required even if ¢ = 0, whereas in the case
of a one-step look-ahead oracle (or the smoothing algorithm that sees all n observations) does
not have this term. This implies that the total amount of variation that any algorithm can handle
while producing a sublinear regret has dropped from C,, = o(n) to C,, = o(y/n). Moreover, the

regime where the n!/3C2/354/3 term is meaningful only when C,, = o(n'/%). For the region where

on'/* < C,, < on'/?, the minimax regret is essentially proportional to C?2. This is illustrated in
Figure 3.

We note that in much of the online learning literature, it is conventional to consider a slightly more
restrictive setting with bounded domain, which could reduce the minimax regret. The following
remark summarizes a variant of our results in this setting.

Remark 8 (Minimax regret in bounded domain). If we consider predicting sequences
from a subset of the TV(C,) ball having an extra boundedness condition |[6;|<
B for i« = 1...n, it can be shown that (see Appendix [) minimax regret is

Q (mi]n~{n327 no?,n'/3CY364/3} + B2 + min{nB2, BC,} + 02). In particular, forecasting is

still strictly harder than smoothing due to the min{nB?, BC,,} term in the bound. The discussion in
Appendix I, shows a way of using ARROWS whose regret can match this lower bound.

3When both U and C,, are moderately small relative to ¢, the lower bound will depend on ¢ a little differently
because the estimation error goes to 0 faster than 1/4/n. We know the minimax risk exactly for that case as
well but it is somewhat messy [see e.g. Wasserman, 2006]. When they are both much smaller than o, e.g., when
min{U, C,} < o/+/n, then outputting 0 when we do not have enough information will be better than doing
online averages.
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Figure 3: An illustration of the minimax (dynamic) regret of forecasters and smoothers as a function

of C,. The non-trivial regime for forecasting is when C,, lies between o % and o n'/*

where forecasting is just as hard as smoothing. When C,, > o n'/%, forecasting is harder than

smoothing. The yellow region indicates the extra loss incurred by any minimax forecaster. The
green region marks the extra loss incurred by a linear forecaster compared to minimax forecasting
strategy. The figure demonstrates that linear forecasters are sub-optimal even in the non-trivial
regime. When C,, > o n'/?, it is impossible to design a forecasting strategy with sub-linear regret.

For C,, > o n, identity function is optimal estimator for smoothing and when when C,, < o %,

online averaging is optimal for both problems.

3.5 The adaptivity of ARROWS to Sobolev and Holder classes

It turns out that ARROWS is also adaptively optimal in forecasting sequences in the discrete Sobolev
classes and the discrete Holder classes, which are defined as

S(C’:L) = {91:71 : ||D61:n”2S C':L}’ H(B’;L) = {91:n : ||D6‘1:nHoo§ B’;L}

These classes feature sequences that are more spatially homogeneous than those in the TV
class. The minimax cumulative error of nonparametric estimation in the discrete Sobolev class
is ©(n?/3[C!]2/36*/3) [see e.g., Sadhanala et al., 2016, Theorem 5 and 6].

Corollary 9. Let the feedback be y; = 0; + Z; where Z; is an independent, o-subgaussian random

variable. Let 01.,, € S(C),) and |61|< U. If B = 24 + 811%((%5), then with probability at least 1 — 0,

ARROWS achieves a dynamic regret of O(n?/3[C!|*/3¢*/3 + U? + [C.]? + 02) where O hides a
logarithmic factor inn and 1/5.

Thus despite the fact that ARROWS is designed for total variation class, it adapts to the optimal rates
of forecasting sequences that are spatially regular. To gain some intuition, let’s minimally expand the
Sobolev ball to a TV ball of radius C,, = y/nC,. The chosen scaling of C,, activates the embedding
S(Cl) C TV(C,) (see the illustration in Table 2) with both classes having same minimax rate in
the batch setting. This implies that dynamic regret of ARROWS is simultaneously minimax optimal
over S(C,) and TV (C,,) wrt the term containing n. It can be shown that ARROWS is optimal wrt to
the additive [C),]2, U2, 6 terms as well. Minimaxity in Sobolev class implies minimaxity in Holder
class since it is known that a Holder ball is sandwiched between two Sobolev balls having the same
minimax rate [see e.g., Tibshirani, 2015]. A proof of the Corollary and related experiments are
presented in Appendix F and J.

3.6 Fast computation

Last but not least, we remark that there is a fast implementation of ARROWS that reduces the overall
time-complexity for n step from O(n?) to O(nlogn).
Proposition 10. The run time of ARROWS is O(nlog(n)), where n is the time horizon.

The proof exploits the sequential structure of our policy and sparsity in wavelet transforms, which
allows us to have O(logn) incremental updates in all but O(log n) steps. See Appendix G for details.



Table 2: Minimax rates for cumulative error Z?Zl(éz — 0)2 in various settings and policies that
achieve those rates. ARROWS is adaptively minimax across all of the described function classes
while linear forecasters fail to perform optimally over the TV class. For simplicity, we assume U is
small and hide a log n factors in all the forecasting rates.

Class Minima)f rate for Minima?( rate for Minimax rate fqr
Forecasting Smoothing Linear Forecasting
TV |1D0;. |1 < Cp nB3CH P43 4 C2 4 o2 n/3CH 3543 1 52 n2Cpo + C2 + o2
Sobolev || DOy, [la< C7 | n23[CL12Pa* 3 4 [C1]% + o | n?/P[CL123a*3 + o2 | n2/3[C 220"/ 4 [C!]? + o2
Holder || D6;.,]|co< Ly, an,,/304/3 +nlL? 4 o? 71L?,,/3a4/3 + 02 nL23q4/3 ¢ nlL2 +o?
Mirimes Al R Somne | feoming 06D
Canonical Scaling” Forecasting | Smoothing | Linear Forecasting
TV class vV Cn =1 ’le 3 ’I’L1 3 7L1 2
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“The “canonical scaling” are obtained by discretizing functions in canon-
ical function classes. Under the canonical scaling, Holder class C Sobolev
class C TV class, as shown in the figure on the left. ARROWS is optimal for
the Sobolev and Holder classes inscribed in the TV class. MA and Restarting
OGD on the other hand require different parameters and prior knowledge of
variational budget (i.e C,, or C},) to achieve the minimax linear rates for the
TV class and the Sobolev/Holder class.

Sobolev class

/ (f'(x))%dz <1

D8], <
vn

3.7 Experimental Results

To empirically validate our results, we conducted a number of numerical simulations that compares
the regret of ARROWS, (Restarting) OGD and MA. Figure 2 shows the results on a function with
heterogeneous smoothness (see the exact details and more experiments in Appendix B) with the hyper-
parameters selected according to their theoretical optimal choice for the TV class (See Theorem 11,
12 for OGD and MA in Appendix C). The left panel illustrates that ARROWS is locally adaptive to
heterogeneous smoothness of the ground truth. Red peaks in the figure signifies restarts. During the
initial and final duration, the signal varies smoothly and ARROWS chooses a larger window size for
online averaging. In the middle, signal varies rather abruptly. Consequently ARROWS chooses a
smaller window size. On the other hand, the linear smoothers OGD and MA use a constant width and
cannot adapt to the different regions of the space. This differences are also reflected in the quantitative
evaluation on the right, which clearly shows that OGD and MA has a suboptimal O(+/n) regret while

ARROWS attains the O(n!/?) minimax regret!

4 Concluding Discussion

In this paper, we studied the problem of online nonparametric forecasting of bounded variation
sequences. We proposed a new forecasting policy ARROWS and proved that it achieves a cumulative
square error (or dynamic regret) of O(n'/3 C234/3 462 4 U +C2) with total runtime of O(n log n).
We also derived a lower bound for forecasting sequences with bounded total variation which matches
the upper bound up to a logarithmic term which certifies the optimality of ARROWS in all parameters.
Through connection to linear estimation theory, we assert that no linear forecaster can achieve the
optimal rate. ARROWS is highly adaptive and has essentially no tuning parameters. We show that it is
adaptively minimax (up to a logarithmic factor) simultaneously for all discrete TV classes, Sobolev
classes and Holder classes with unknown radius. Future directions include generalizing to higher
order TV class and other convex loss functions.
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