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Abstract

We determine the sample complexity of pure exploration bandit problems with
multiple good answers. We derive a lower bound using a new game equilibrium
argument. We show how continuity and convexity properties of single-answer
problems ensure that the existing Track-and-Stop algorithm has asymptotically
optimal sample complexity. However, that convexity is lost when going to the
multiple-answer setting. We present a new algorithm which extends Track-and-
Stop to the multiple-answer case and has asymptotic sample complexity matching
the lower bound.

1 Introduction

In pure exploration aka active testing problems the learning system interacts with its environment
by sequentially performing experiments to quickly and reliably identify the answer to a particular
pre-specified question. Practical applications range from simple queries for cost-constrained physical
regimes, i.e. clinical drug testing, to complex queries in structured environments bottlenecked
by computation, i.e. simulation-based planning. The theory of pure exploration is studied in the
multi-armed bandit framework. The scientific challenge is to develop tools for characterising the
sample complexity of new pure exploration problems, and methodologies for developing (matching)
algorithms. With the aim of understanding power and limits of existing methodology, we study an
extended problem formulation where each instance may have multiple correct answers. We find
that multiple-answer problems present a phase transition in complexity, and require a change in our
thinking about algorithms.

The existing methodology for developing asymptotically instance-optimal algorithms, Track-and-
Stop by Garivier and Kaufmann [2016], exploits the so-called oracle weights. These probability
distributions on arms naturally arise in sample complexity lower bounds, and dictate the optimal
sampling proportions for an “oracle” algorithm that needs to be sample efficient only on exactly the
current problem instance. The main idea is to track the oracle weights computed at a converging
estimate of the instance. The analysis of Track-and-Stop requires continuity of the oracle weights as a
function of the bandit model. For the core Best Arm Identification problem, discontinuity only occurs
at degenerate instances where the sample complexity explodes. So this assumption seemed harmless.

Our contribution We show that the oracle weights may be non-unique, even for single-answer
problems, and hence need to be regarded as a set-valued mapping. We show this mapping is always
(upper hemi-)continuous. We show that each instance maps to a convex set for single-answer
problems, and this allows us to extend the Track-and-Stop methodology to all such problems. At
instances with non-singleton set-valued oracle weights more care is needed: of the two classical
tracking schemes “C” converges to the convex set, while “D” may fail entirely.

We show that for multiple-answer problems convexity is violated. There are instances where two
distinct oracle weights are optimal, while no mixture is. Unmodified tracking converges in law
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(experimentally) to a distribution on the full convex hull, and suffers as a result. We propose a “sticky”
modification to stabilise the approach, and show that now it converges to only the corners. We prove
that Sticky Track-and-Stop is asymptotically optimal.

Related work Multi-armed bandits have been the subject of intense study in their role as a model
for medical testing and reinforcement learning. For the objective of reward maximisation [Berry and
Fristedt, 1985, Lai and Robbins, 1985, Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012] the main
challenge is balancing exploration and exploitation. The field of pure exploration (active testing)
focuses on generalisation vs sample complexity, in the fixed confidence, fixed budget and simple regret
scalarisations. It took off in machine learning with the multiple-answer problem of (ε, δ)-Best Arm
Identification (BAI) [Even-Dar et al., 2002]. Early results focused on worst-case sample complexity
guarantees in sub-Gaussian bandits. Successful approaches include Upper and Lower confidence
bounds [Bubeck et al., 2011, Kalyanakrishnan et al., 2012, Gabillon et al., 2012, Kaufmann and
Kalyanakrishnan, 2013, Jamieson et al., 2014], Racing or Successive Rejects/Eliminations [Maron
and Moore, 1997, Even-Dar et al., 2006, Audibert et al., 2010, Kaufmann and Kalyanakrishnan, 2013,
Karnin et al., 2013].

Fundamental information-theoretic barriers [Castro, 2014, Kaufmann et al., 2016, Garivier and
Kaufmann, 2016] for each specific problem instance refined the worst-case picture, and sparked
the development of instance-optimal algorithms for single-answer problems based on Track-and-
Stop [Garivier and Kaufmann, 2016] and Thompson Sampling [Russo, 2016]. For multiple-answer
problems the elegant KL-contraction-based lower bound is not sharp, and new techniques were
developed by Garivier and Kaufmann [2019].

Recent years also saw a surge of interest in pure exploration with complex queries and structured
environments. Kalyanakrishnan and Stone [2010] identify the top-M set, Locatelli et al. [2016]
the arm closest to a threshold, and Chen et al. [2014], Gabillon et al. [2016] the optimiser over an
arbitrary combinatorial class. For arms arranged in a matrix Katariya et al. [2017] study BAI under a
rank-one assumption, while Zhou et al. [2017] seek to identify a Nash equilibrium. For arms arranged
in a minimax tree there is significant interest in finding the optimal move at the root Teraoka et al.
[2014], Garivier et al. [2016], Huang et al. [2017], Kaufmann and Koolen [2017], Kaufmann et al.
[2018], as a theoretical model for studying Monte Carlo Tree search (which is a planning sub-module
of many advanced reinforcement learning systems).

2 Notations

We work in a given one-parameter one-dimensional canonical exponential family, with mean pa-
rameter in an open interval O ⊆ R. We denote by d(µ, λ) the KL divergence from the distribution
with mean µ to that with mean λ. A K-armed bandit model is identified by its vector µ ∈ OK of
mean parameters. We denote byM⊆ OK the set of possible mean parameters in a specific bandit
problem. Excluding parts of OK fromM may be used to encode a known structure of the problem.
We assume that there is a finite domain I of answers, and that the correct answer for each bandit
model is specified by a set-valued function i∗ :M→ 2I .
Example 1. As our running example, we will use the Any Low Arm multiple-answer problem. Given
a threshold γ ∈ O, the goal is return the index k of any arm with µk < γ if such an arm exists, or to
return “no” otherwise. Formally, we have possible answers I = [K] ∪ {no}, and correct answers

i∗(µ) =

{
{k | µk ≤ γ} if mink µk < γ,

{no} if mink µk > γ.

We exclude the case mink µk = γ fromM (as such instances require infinite sample complexity).

Additional examples of multiple-answer identification problems are visualised in Table 1 in Ap-
pendix B.

Algorithms. A learning strategy is parametrised by a stopping rule τδ ∈ N depending on a
parameter δ ∈ [0, 1], a sampling rule A1, A2, . . . ∈ [K], and a recommendation rule ı̂ ∈ I. When a
learning strategy meets a bandit model µ, they interactively generate a history A1, X1, . . . , Aτ , Xτ , ı̂,
where Xt ∼ µAt . We allow the possibility of non-termination τδ = ∞, in which case there is no
recommendation ı̂. At stage t ∈ N, we denote by Nt = (Nt,1, . . . , Nt,K) the number of samples (or
“pulls”) of the arms, and by µ̂t the vector of empirical means of the samples of each arm.
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Confidence and sample complexity. For confidence parameter δ ∈ (0, 1), we say that a strategy
is δ-correct (or δ-PAC) for bandit model µ if it recommends a correct answer with high probability,
i.e. Pµ

(
τδ <∞ and ı̂ ∈ i∗(µ)

)
≥ 1 − δ. We call a given strategy δ-correct if it is δ-correct for

every µ ∈M. We measure the statistical efficiency of a strategy on a bandit model µ by its sample
complexity Eµ[τδ]. We are interested in δ-correct algorithms minimizing sample complexity.

Divergences. For any answer i ∈ I, we define the alternative to i, denoted ¬i, to be the set of
bandit models on which answer i is incorrect, i.e.

¬i := {µ ∈M|i /∈ i∗(µ)} .

We define the (w-weighted) divergence from µ ∈M to λ ∈M or Λ ⊆M by

D(w,µ,λ) =
∑
k

wkd(µk, λk) D(w,µ,Λ) = inf
λ∈Λ

D(w,µ,λ)

D(µ,Λ) = sup
w∈4K

D(w,µ,Λ) D(µ) = max
i∈I

D(µ,¬i)

Note that D(w,µ,Λ) = 0 whenever µ ∈ Λ. We denote by iF (µ) the argmax (set of maximisers) of
i 7→ D(µ,¬i), and we call iF (µ) the oracle answer(s) at µ. We writew∗(µ,¬i) for the maximisers
of w 7→ D(w,µ,¬i), and call these the oracle weights for answer i at µ. We write w∗(µ) =⋃
i∈iF (µ)w

∗(µ,¬i) for the set of oracle weights among all oracle answers. We include expressions
for the divergence when i∗ is generated by half-spaces, minima and spheres in Appendix H.
Example 1 (Continued). Consider an Any Low Arm instance µ with mink µk < γ. For any arm i ∈
i∗(µ), we have D(w,µ,¬i) = wid(µi, γ) and D(µ,¬i) = d(µi, γ). Hence D(µ) = d(mini µi, γ),
and iF (µ) = argmini µi. On the other hand, when mink µk > γ, we have i∗(µ) = {no}, so that
D(w,µ,¬no) = mink wkd(µk, γ) and D(µ,¬no) = D(µ) = 1

/∑K
k=1

1
d(µk,γ) .

The function iF (µ) = {i ∈ I : D(µ,¬i) = D(µ)} is set valued, as is w∗. They are singletons with
continuous value over some connected subsets ofM, and are multi-valued on common boudaries of
two or more such sets. Both iF and w∗ can be thought of as having single values, unless µ sits on
such a boundary, in which case we will prove that they are equal to the union (or convex hull of the
union) of their values in the neighbouring regions.

3 Lower Bound

We show a lower bound for any algorithm for multiple-answer problems. Our lower bound extends
the single-answer result of Garivier and Kaufmann [2016]. We are further inspired by Garivier
and Kaufmann [2019], who analyse the ε-BAI problem. They prove lower bounds for algorithms
with a sampling rule independent of δ, imposing the further restriction that either K = 2 or that
the algorithm ensures that Nt,k/t converges as t → ∞. The new ingredient in this section is a
game-theoretic equilibrium argument, which allows us to analyse any δ-correct algorithm in any
multiple answer problem. Our main lower bound is the following.
Theorem 1. Any δ-correct algorithm verifies

lim inf
δ→0

Eµ[τδ]

log(1/δ)
≥ T ∗(µ) := D(µ)−1 where D(µ) = max

i∈i∗(µ)

max
w∈4K

inf
λ∈¬i

K∑
k=1

wkd(µk, λk)

for any multiple answer instance µ with sub-Gaussian arm distributions.

The proof is in Appendix C, where we also discuss how the convenient sub-Gaussian assumption can
be relaxed. We would like to point out one salient feature here. To show sample complexity lower
bounds at µ, one needs to find problems that are hard to distinguish from it statistically, yet require a
different answer. We obtain these problems by means of a minimax result.
Lemma 2. For any answer i ∈ I, the divergence from µ to ¬i equals

D(µ,¬i) = inf
P

max
k∈[K]

Eλ∼P [d(µk, λk)] .

where the infimum ranges over probability distributions on ¬i supported on (at most) K points.
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The proof of Theorem 1 then challenges any algorithm for µ by obtaining a witness P for D(µ) =
maxiD(µ,¬i) from Lemma 2, sampling a model λ ∼ P, and showing that if the algorithm stops
early, it must make a mistake w.h.p. on at least one model from the support. The equilibrium property
of P allows us to control a certain likelihood ratio martingale regardless of the sampling strategy
employed by the algorithm.

We discuss the novel aspect of Theorem 1 and its lessons for the design of optimal algorithms. First
of all, for single-answer instances |i∗(µ)|=1 we recover the known asymptotic lower bound [Garivier
and Kaufmann, 2016, Remark 2]. For multiple-answer instances the bound says the following.
The optimal sample complexity hinges on the oracle answers iF (µ). That is, for if ∈ iF (µ), the
complexity of problem µ is governed by the difficulty of discriminating µ from the set of models on
which answer if is incorrect.

Is the bound tight? We argue yes. Consider the following oracle strategy, which is specifically
designed to be very good at µ. First, it computes a pair (i,w) witnessing the two outer maxima in
D(µ). The algorithm samples according to w. It stops when it can statistically discriminate µ̂t from
¬i, and outputs ı̂ = i. This algorithm will indeed have expected sample complexity equal to D(µ)−1

at µ, and it will be correct.

The above oracle viewpoint presents an idea for designing algorithms, following Garivier and
Kaufmann [2016] and Chen et al. [2017]. Perform a lower-order amount of forced exploration of all
arms to ensure µ̂t → µ. Then at each time point compute the empirical mean vector µ̂t and oracle
weightswt ∈ w∗(µ̂t). Then sample according towt. This approach is successful for single-answer
bandits with unique and continuous oracle weights. We argue in Section 4.3 below that it extends to
points of discontinuity by exploiting upper hemicontinuity and convexity of w∗.

For multiple-answer bandits, we argue that the set of maximisers w∗(µ) is no longer convex when
iF (µ) is not a singleton. It can then happen that µ̂t → µ, while at the same time w∗(µ̂t) keeps
oscillating. If the algorithm tracksw∗(µ̂t), its sampling proportions will end up in the convex hull of
w∗(µ). However, as w∗(µ) is not convex itself, these proportions will not be optimal. We present
empirical evidence for that effect in Appendix D. The lesson here is that the oracle needs to pick an
answer and “stick with it”. This will be the basis of our algorithm design in Section 5.

4 Properties of the Optimal Allocation Sets

The Track-and-Stop sampling strategy aims at ensuring that the sampling proportions converge to
oracle weights. In the case of a singleton-valued oracle weights setw∗(µ) for single answer problems,
that convergence was proven in [Garivier and Kaufmann, 2016]. We study properties of that set
with the double aim of extending Track-and-Stop to points µ where w∗(µ) is not a singleton and of
highlighting what properties hold only for the single-answer case, but not in general.

4.1 Continuity

We first prove continuity properties of D andw∗. We show how the convergence of µ̂t to µ translates
into properties of the divergences from µ̂t to the alternative sets.

For a set B, let S(B) = 2B \ {∅} be the set of all non-empty subsets of B.
Definition 3 (Upper hemicontinuity). A set-valued function Γ : A→ S(B) is upper hemicontinuous
at a ∈ A if for any open neighbourhood V of Γ(a) there exists a neighbourhood U of a such that for
all x ∈ U , Γ(x) is a subset of V .
Theorem 4. For all i ∈ I,

1. the function (w,µ) 7→ D(w,µ,¬i) is continuous on4K ×M,

2. µ 7→ D(µ,¬i) and µ 7→ D(µ) are continuous onM,

3. µ 7→ w∗(µ,¬i), µ 7→ w∗(µ) and µ 7→ iF (µ) are upper hemicontinuous on M with
non-empty and compact values,

The proof is in Appendix F. It uses Berge’s maximum theorem and a modification thereof due to
[Feinberg et al., 2014]. Related continuity results using this type of arguments, but restricted to
single-valued functions, appeared for the regret minimization problem in [Combes et al., 2017].
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4.2 Convexity

Next we establish convexity.

Proposition 5. For each i ∈ I, for all µ ∈M the set w∗(µ,¬i) is convex.

This is a consequence of the concavity ofw 7→ D(w,µ,¬i) (which is an infimum of linear functions).
In single-answer problems, we obtain that the oracle weights set w∗(µ) is convex everywhere. This
is however not the case in general for multiple-answer problems, as illustrated by the next example.

Example 1 (Continued). Consider a K = 2-arm Any Low Arm instance µ with µ1 < γ and
µ2 < γ, so that both answers 1 and 2 are correct. Recall that D(µ) = maxk=1,2 d(µk, γ). Now for
µ1 < µ2 < γ, w∗(µ) = {(1, 0)} and symmetrically for µ2 < µ1 < γ, w∗(µ) = {(0, 1)}. However,
for µ1 = µ2 < γ, w∗(µ) = {(1, 0), (0, 1)}, which is not convex. Playing intermediate weights w =
(α, 1− α) results in strictly sub-optimal D(µ,w) = max {α, 1− α} d(µ, γ) < d(µ, γ) = D(µ).

This example also illustrates the upper hemicontinuity of w∗(µ): since µ of the form (µ, µ) is the
limit of a sequence (µt)t∈N with µt,1<µt,2, we obtain that {(1, 0)} ⊆ w∗(µ). Similarly, using a
sequence with µt,1>µt,2, {(0, 1)} ⊆ w∗(µ).

The example scales up to K arms, and shows that the sample complexity guarantee for vanilla TaS
(Theorem 9) may exceeds by a factorK the optimal complexity, which is matched by our new method
(Theorem 11).

4.3 Consequences for Track-and-Stop

The original analysis of Track-and-Stop excludes the mean vectors µ ∈M for whichw∗(µ) is not
a singleton. We show that the upper hemicontinuity and convexity properties of w∗(µ) allow us
to extend that analysis to all µ with a single oracle answer (in particular all single-answer bandit
problems), at least for one of the two Track-and-Stop variants. Indeed, that algorithm was introduced
with two possible subroutines, dubbed C-tracking and D-tracking [Garivier and Kaufmann, 2016].
Both variants compute oracle weights wt at the point µ̂t, but the arm pulled differs.

C-tracking: compute the projection wεt
t of wt on4εtK = {w ∈ 4K : ∀k ∈ [K], wk ≥ εt}, where

εt > 0. Pull the arm with index kt = arg mink∈[K]Nt,k −
∑t
s=1 w

εs
s,k.

D-tracking: if there is an arm j with Nt,j ≤
√
t−K/2, then pull kt = j. Otherwise, pull the arm

kt = arg mink∈[K]Nt,k − twt,k .

The proof of the optimal sample complexity of Track-and-Stop for C-tracking remains essentially
unchanged but we replace Proposition 9 of [Garivier and Kaufmann, 2016] by the following lemma,
proved in Appendix G.3.

Lemma 6. Let a sequence (µ̂t)t∈N verify limt→+∞ µ̂t = µ . For all t ≥ 0, let wt ∈ w∗(µ̂t) be
arbitrary oracle weights for µ̂t . If w∗(µ) is convex, then

lim
t→+∞

inf
w∈w∗(µ)

∥∥∥∥∥1

t

t∑
s=1

ws −w

∥∥∥∥∥
∞

= 0 .

The average of oracle weights for µ̂t converges to the set of oracle weights for µ. C-tracking then
ensures that the proportion of pulls Nt/t is close to that average by Lemma 7 of [Garivier and
Kaufmann, 2016], hence Nt/t gets close to oracle weights.

Theorem 7. For all µ ∈M such that iF (µ) is a singleton (in particular all single-answer problems),
Track-and-Stop with C-tracking is δ-correct with asymptotically optimal sample complexity.

Proof in Appendix G.6. We encourage the reader to first proceed to Section 5, since the proof
considers the result as a special case of the multiple-answers setting.

Remark 8. If w∗(µ) is not a singleton, Track-and-Stop using D-tracking may fail to converge to
w∗(µ), even when it is convex.

While we do not prove that D-tracking fails to converge to w∗(µ) on a specific example of a
bandit, we provide empirical evidence in Appendix E. The reason for the failure of D-tracking
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µ̂t

Dt i∗(µ)

{1}
{2}
{no}
{1, 2}

(a) Stopping rule: does the conservative confidence
region Dt exclude the alternative ¬i to any answer i?

µ̂t

Ct

< <

(b) Sampling rule: find least (in sticky order) ora-
cle answer in the aggressive confidence region Ct.
Track its oracle weights at µ̂t.

Figure 1: Sticky Track-and-Stop: The two main ideas, illustrated on the Any Low Arm problem.

is that it does not in general converge to the convex hull of the points it tracks. Suppose that
wt = w(1) = (1/2, 1/2, 0) for t odd and wt = w(2) = (1/2, 0, 1/2) for t even. Then D-tracking
verifies limt→+∞Nt/t = (1/3, 1/3, 1/3). This limit is outside of the convex hull of {w(1),w(2)}.

5 Algorithms for the Multiple-Answers Setting

We can prove for Track-and-Stop the following suboptimal upper bound on the sample complexity,
based on the fact that it ensures convergence of Nt/t to the convex hull of the oracle weight set.
Theorem 9. Let conv(A) be the convex hull of a set A. For all µ ∈M in a multi-answer problem,
Track-and-Stop with C-tracking is δ-correct and verifies

lim
δ→0

Eµ[τδ]

log(1/δ)
≤ max
w∈conv(w∗(µ))

1

D(w,µ)
.

5.1 Sticky Track-and-Stop

The cases of multiple-answers problems for which Track-and-Stop is inadequate are µ ∈ M with
iF (µ) of cardinality greater than 1. When convexity does not hold,w∗(µ) is the union of the convex
sets (w∗(µ,¬i))i∈iF (µ). If an algorithm can a priori select if ∈ iF (µ) and track allocationswt in
w∗(µ̂t,¬if ), then using Track-and-Stop on that restricted problem will ensure thatNt/t converges to
the oracle weights. Our proposed algorithm, Sticky Track-and-Stop, which we display in Algorithm 1,
uses a confidence region around the current estimate µ̂t to determine what i ∈ I can be the oracle
answer for µ. It selects one of these answers according to an arbitrary total order on I and does not
change it (sticks to it) until no point in the confidence region has the chosen answer in its set of oracle
answers.

Algorithm 1 Sticky Track-and-Stop.
Input: δ > 0, strict total order on I. Set t = 1 , µ̂0 = 0 , N0 = 0 .
while not stopped do

Let Ct = {µ′ ∈M : D(Nt−1, µ̂t−1,µ
′) ≤ log(f(t− 1))} . // small conf. reg.

Compute It =
⋃
µ′∈Ct iF (µ′) .

Pick the first alternative it ∈ It in the order on I.
Compute wt ∈ w∗(µ̂t−1,¬it).
Pull an arm at according to the C-tracking rule and receive Xt ∼ νat .
Set Nt = Nt−1 + eat and µ̂t = µ̂t−1 + 1

Nt,at
(Xt − µ̂t−1,at)eat .

Let Dt = {µ′ ∈M : D(Nt, µ̂t,µ
′) ≤ β(t, δ)} . // large conf. reg.

if there exists i ∈ I such that Dt ∩ ¬i = ∅ then
stop and return i.

end
t← t+ 1 .

end

Theorem 10. For β(t, δ) = log(Ct2/δ), with C such that C ≥ e
∑+∞
t=1 ( eK )K (log2(Ct2) log(t))K

t2 ,
Sticky Track-and-Stop is δ-correct.
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That result is a consequence of Proposition 12 of [Garivier and Kaufmann, 2016].

5.2 Sample Complexity

Theorem 11. Sticky Track-and-Stop is asymptotically optimal, i.e. it verifies for all µ ∈M,

lim
δ→0

Eµ[τδ]

log(1/δ)
→ 1

D(µ)
.

Let iµ = min iF (µ) in the arbitrary order on answers. For ε, ξ > 0, we define C∗ε,ξ(µ), the minimal
value of D(w′,µ′,¬iµ) for w′ and µ′ in ε and ξ-neighbourhoods of w∗(µ) and µ.

C∗ε,ξ(µ) = inf
µ′:‖µ′−µ‖∞≤ξ

w′:infw∈w∗(µ,¬iµ) ‖w
′−w‖∞≤3ε

D(w′,µ′,¬iµ) .

Our proof strategy is to show that under a concentration event defined below, for t big enough,
(µ̂t, Nt/t) belongs to that (ξ, ε) neighbourhood of (µ,w∗(µ,¬iµ)). From that fact, we obtain
D(Nt, µ̂t,¬iµ) ≥ tC∗ε,ξ(µ). Furthermore, if the algorithm does not stop at stage t, we also get
an upper bound on D(Nt, µ̂t,¬iµ) from the stopping condition. We obtain an upper bound on
the stopping time, function of δ and C∗ε,ξ(µ). By continuity of (w,µ) 7→ D(w,µ,¬iµ) (from
Theorem 4), we have limε→0,ξ→0 C

∗
ε,ξ(µ) = D(µ,¬iµ) = D(µ).

Two concentration events. Let ET =
⋂T
t=h(T ){µ ∈ Ct} be the event that the small confidence

region contains the true parameter vector µ for t ≥ h(T ). The function h : N → R, positive,
increasing and going to +∞, makes sure that each event {µ ∈ Ct} appears in finitely many ET ,
which will be essential in the concentration results. We will eventually use h(T ) =

√
T .

In order to define the second event, we first highlight a consequence of Theorem 4.
Corollary 12. For all ε > 0, for all µ ∈M, for all i ∈ I, there exists ξ > 0 such that

‖µ′ − µ‖∞ ≤ ξ ⇒ ∀w′ ∈ w∗(µ′,¬i) ∃w ∈ w∗(µ,¬i), ‖w′ −w‖∞ ≤ ε .

Let E ′T =
⋂T
t=h(T ){‖µ̂t − µ‖∞ ≤ ξ} be the event that the empirical parameter vector is close to µ,

where ξ is chosen as in the previous corollary for i = iµ. The analysis of Sticky Track-and-Stop
consists of two parts: first show that EcT and E ′T

c happen rarely enough to lead only to a finite term in
Eµ[τδ]; then show than under ET ∩ E ′T there is an upper bound on τδ .
Lemma 13. Suppose that there exists T0 such that for T ≥ T0, ET ∩ E ′T ⊂ {τδ ≤ T}. Then

Eµ[τδ] ≤ T0 +

+∞∑
T=T0

Pµ(EcT ) +

+∞∑
T=T0

Pµ(E ′T
c
) . (1)

Proof. Since τδ is a non-negative integer-valued random variable, Eµ[τδ] =
∑+∞
T=0 Pµ{τδ > T}.

For T ≥ T0, Pµ{τδ > T} ≤ Pµ(EcT ∪ E ′T
c
) ≤ Pµ(EcT ) + Pµ(E ′T

c
).

The sums depending on the events ET and E ′T in (1) are finite for well chosen h(T ) and C(t).

Lemma 14. For h(T ) =
√
T and f(t) = exp(β(t, 1/t5)) = Ct10 in the definition of the confidence

region Ct, the sum
∑+∞
T=T0

Pµ(EcT ) +
∑+∞
T=T0

Pµ(E ′T
c
) is finite.

The proof of the Lemma can be found in Appendix G.1. The remainder of the proof is concerned
with finding a suitable T0. First, we show that if µ̂t and Nt/t are in an (ξ, ε) neighbourhood of µ
and w∗(µ,¬iµ), then such an upper bound T0 on τδ can be obtained.
Lemma 15. Let t1 be an integer and suppose that for all t ≥ t1, D(Nt, µ̂t,¬iµ) ≥ tC∗ε,ξ(µ). Let
Tβ = inf{t : t > β(t, δ)/C∗ε,ξ(µ)}. Then τδ ≤ max(t1, Tβ).

Proof. Take t ≥ t1. If τδ > t then by hypothesis and the stopping condition, t ≤
D(Nt, µ̂t,¬iµ)/C∗ε,ξ(µ) ≤ β(t, δ)/C∗ε,ξ(µ) . Conversely, for t ≥ t1, if t > β(t, δ)/C∗ε,ξ(µ)

then τδ ≤ t. We obtain that τδ ≤ max(t1, inf{t : t > β(t, δ)/C∗ε,ξ(µ)}).
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The oracle answer it becomes constant. Due to the forced exploration present in the C-tracking
procedure, the confidence region Ct shrinks. After some time, when concentration holds, the set of
possible oracle answers It becomes constant over t and equal to iF (µ).
Lemma 16. If an algorithm guaranties that for all k ∈ [K] and all t ≥ 1, Nt,k ≥ n(t) > 0
with limt→+∞ n(t)/ log(f(t)) = +∞, then there exists T∆ such that under the event ET , for
t ≥ max(h(T ), T∆), It = iF (µ) and min It = iµ = min iF (µ).

Proof in Appendix G.4. Note that Lemma 16 depends only on the amount of forced exploration and
not on other details of the algorithm. Any algorithm using C-tracking verifies the hypothesis with
n(t) =

√
t+K2 − 2K by Lemma 34 [Garivier and Kaufmann, 2016, Lemma 7].

Convergence to the neighbourhood of (µ,w∗(µ,¬iµ)). Once it = iµ, we fall back to tracking
points from a convex set of oracle weights. The estimate µ̂t and Nt/t both converge, to µ and to the
set w∗(µ,¬iµ). The Lemma below is proved in Appendix G.5.
Lemma 17. Let T∆ be defined as in Lemma 16. For T such that h(T ) ≥ T∆, it holds that on ET ∩E ′T
Sticky Track-and-Stop with C-Tracking verifies

∀t ≥ h(T ), ‖µ̂t − µ‖∞ ≤ ξ , and ∀t ≥ 4
K2

ε2
+ 3

h(T )

ε
, inf
w∈w∗(µ,¬iµ)

‖Nt

t
−w‖∞ ≤ 3ε .

Remainder of the proof. Suppose that the event ET ∩E ′T holds. Let T∆ be defined as in Lemma 16
and T be such that h(T ) ≥ T∆. Let η(T ) = 4K2/ε2 + 3h(T )/ε. For all t ≥ η(T ) we have
D(Nt, µ̂t,¬iµ) ≥ tC∗ε,ξ(µ) by Lemma 17. For h(T ) bigger than some Tη we have η(T ) ≤ T .
We suppose h(T ) ≥ max(T∆, Tη). We apply Lemma 15 with t1 = η(T ). We obtain that τδ ≤
max(η(T ), Tβ) ≤ max(T, Tβ). Conclusion: for T ≥ T0 = max(h−1(T∆), h−1(Tη), Tβ), under
the concentration event, τδ ≤ T and we can apply Lemma 13.

Note that limδ→0
T0

log(1/δ) = 1
C∗ε,ξ(µ) . Taking ε → 0 (hence ξ → 0 as well), we obtain

limδ→0
Eµ[τδ]

log(1/δ) = 1
limε→0 C∗ε,ξ(µ) = 1

D(µ) . We proved Theorem 11.

6 Conclusion

We characterized the complexity of multiple-answers pure exploration bandit problems, showing a
lower bound and exhibiting an algorithm with asymptotically matching sample complexity on all
such problems. That study could be extended in several interesting directions and we now list a few.

• The computational complexity of Track-and-Stop is an important issue: it would be desirable to
design a pure exploration algorithm with optimal sample complexity which does not need to solve a
min-max problem at each step. Furthermore, the same would need to be done for the sticky selection
of an answer for the multiple-answers setting.
• Both lower bounds and upper bounds in this paper are asymptotic. In the upper bound case, only
the forced exploration rounds are considered when evaluating the convergence of µ̂t to µ, giving rise
to potentially sub-optimal lower order terms. A finite time analysis with reasonably small o(log(1/δ))
terms for an optimal algorithm is desirable. In addition, while selecting one of the oracle answers
to stick to has no asymptotic cost, it could have a lower order effect on the sample complexity and
appear in a refined lower bound.
• Current tools in the theory of Brownian motion are insufficient to characterise the asymptotic
distribution of proportions induced by tracking, even for two arms. Without tracking the Arcsine law
arises, so this slightly more challenging problem holds the promise of similarly elegant results.
• Finally, the multiple answer pure exploration setting can be extended in various ways. Making
I continuous leads to regression problems. The parametric assumption that the arms are in one-
parameter exponential families could also be relaxed.
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A Notations

Concept Symbol
Exponential family mean parameter µ ∈ O
Bandit model µ ∈M ⊆ OK
Possible answers I
Correct answer for bandit model µ i∗(µ) :M→ 2I

Alternative to i ∈ I ¬i = {µ ∈M : i /∈ i∗(µ)}
K-Simplex 4K
Non-negative orthant Q+

interior, closure, convex hull of set A Å, cl(A), conv(A)
Oracle answers and weights iF (µ) :M→ 2I , w∗(µ) :M→ P(4K)
Bandit arm k ∈ [K]
Number of samples of arm k at time t Nt,k
mean of samples of arm k at time t µ̂t,k

B Visualisation of Multiple-Answer Pure Exploration Problems

Identification
Problem

Possible
answers I

Correct answers i∗(µ) ⊆ I Correct
i∗(µ)

Oracle
iF (µ)

ε Best Arm [K] {k | µk ≥ maxj µj − ε}

Thresholding
Bandit

2K {{k|µk ≤ γ}}

ε Minimum
Threshold

{lo, hi} {lo} if mink µk < γ − ε
{hi} if mink µk > γ + ε
{lo, hi} o.w.

Any Low
Arm

[K] ∪ {no} {k|µk ≤ γ} if mink µk < γ
{no} if mink µk > γ

Any Sign [K]× {lo, hi} {(k, lo)|µk ≤ γ} ∪ {(k, hi)|µk ≥ γ}

Table 1: Collection of Identification Problems. The diagrams depict 2-arm instances, parameterised
by the two means, with colours showing the set of correct answers: one correct answer: {1},
{2}, {{1}}, {{2}}, {{1, 2}}, {lo}, {∅}/{hi}/{no}, {(1, lo)}, {(1, hi)},
{(2, lo)}, {(2, hi)}, and two correct answers: {1, 2}, {lo, hi}, {(1, lo), (2, lo)},
{(1, lo), (2, hi)}, {(1, hi), (2, lo)}, {(1, hi), (2, hi)} .

C Lower bound Proofs

In this section we build up to the proof of the lower bound Theorem 1. We start with the minimax
result Lemma 2.

C.1 Lemma 2: Characteristic time as the value of a game

Let ¬j be the set of bandit problems for which j is not a valid answer. Let us define the characteristic
time by

1

T ∗j (µ)
= D(µ,¬j) = sup

w
inf
λ∈¬j

∑
k

wkd(µk, λk).
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We now view the characteristic time problem as defining a two-player zero-sum game, with the
purpose of obtaining a minimax optimal mixed strategy for the inf player. We will use such a mixed
strategy to construct hard learning problems for proving sample complexity lower bounds in the next
section. In this section we focus on the existence of the minimax strategy. We define the bandit
complexity game to be the semi-infinite two-player zero-sum simultaneous game where:

• MAX’s pure strategies are arms i ∈ [K] = {1, . . . ,K},
• MIN’s pure strategies are bandit models λ ∈ ¬j ⊆ M (we may equivalently have MIN

play a point s ∈ S :=
{(
d(µ1, λ1), . . . , d(µK , λK)

)∣∣λ ∈ ¬j} ⊆ [0,∞)K),

• the payoff function is (i,λ) 7→ d(µi, λi) (or, equivalently, (i, s) 7→ si).

By definition, D(µ,¬j) is the optimal payoff when MAX randomises and plays first. We aim to show
that a matching randomised strategy exists for when MIN plays first. That is, we want to establish a
min-max theorem.

of Lemma 2. Combining (a) a standard application of Sion’s minimax theorem to the bilinear function
f : 4× conv(S) → R defined by f(w, s) = 〈w, s〉 and (b) the support size insight of Blackwell
and Girshick [1954, Theorem 2.4.2] yields the Lemma.

For convenience, we will assume in the remainder that the infimum above is attained (e.g. when
the convex hull of S is compact), possibly on the closure of ¬j. If it is not, we need to apply the
below arguments to a sequence of ε-suboptimal P and let ε→ 0. At any rate, we assume there exist
λ1, . . . ,λK ∈ ¬j (or its closure) and q ∈ 4K such that

∀i :
∑
k

qkd(µi, λ
k
i ) ≤ D(µ,¬j). (2)

C.2 Consequences of the Minimax result

In this section we build up lower bounds by relating the probability of any event between two or
more bandit problem. We start with a useful change of measures observation, used in [Garivier and
Kaufmann, 2019] to derive a lower bound on the sample complexity of ε-Best Arm Identification
problems.
Proposition 18. Consider two distributions P and Q. Let us denote the log-likelihood ratio after n
rounds by Ln = ln d P

d Q . Then for any measurable event A ∈ Fn and threshold γ ∈ R,

Q(A) ≥ e−γ (P(A)− P {Ln > γ}) . (3)

Proof.
Q(A) = EP[IAe−Ln ] ≥ EP[IA∩{Ln≤γ}e

−Ln ]

≥ P(A ∩ {Ln ≤ γ})e−γ ≥ e−γ(P(A)− P{Ln > γ}) .

C.3 Likelihood ratio Martingales

Next we investigate the specific form of the likelihood ratio between two bandit models. Fix bandit
models µ and λ, and any sampling strategy. Then after n rounds,

ln
dPµ
dPλ

=
∑
i

Nn,i KL(νµi,i, νλi,i) +Mn(µ,λ)

where Mn(µ,λ) is a martingale. To see this, we write KL(νµ,i, νλ,i) = d(µ, λ) = φ(µ)− φ(λ)−
(µ− λ)φ′(λ), where we write φ for the convex generator of the Bregman divergence d(·, ·). Then

ln
dPµ
dPλ

=
∑
i

Nn,i (d(µ̂n,i, λi)− d(µ̂n,i, µi))

=
∑
i

Nn,i

(
d(µi, λi) +

(
φ′(µi)− φ′(λi)

)(
µ̂n,i − µi

))
hence Mn(µ,λ) =

∑
iNn,i

(
φ′(µi)− φ′(λi)

)(
µ̂n,i − µi

)
.
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C.4 Exploiting the Minimax Distribution

We now bound the probability of any event between µ and the hard problems given by the minimax
distribution.

Lemma 19. Fix a bandit model µ with sub-Gaussian arm distributions. Let q and λ1, . . . ,λK be a
minimax witness from Lemma 2, and let us introduce the abbreviation αi = φ′(µi)−

∑
k qkφ

′(λki ).
Fix sample size n, and consider any event A ∈ Fn. Then for any β > 0

max
k∈[K]

Pλk{A} ≥ e−
n

T∗(µ)
−β
(
Pµ {A} − exp

(
−β2

2nmaxi α
2
i

))
.

In words, if A is likely under µ then it must also be likely under at least one λk for sample sizes
n� T ∗(µ).

Proof. Let us form the (Bayesian) mixture distribution Pq =
∑
k qk Pλk . We have

Ln = − ln
dPq
dPµ

≤
∑
k

qk ln
dPµ
dPλk

.

It follows that for any γ ∈ R we have

{Ln > γ} ⊆

{∑
k

qk
∑
i

Nn,id(µi, λ
k
i ) +

∑
k

qkMn(µ,λk) > γ

}
.

Picking γ = n
T∗(µ) + β, we find

=

{∑
k

qk
∑
i

Nn,id(µi, λ
k
i ) +

∑
k

qkMn(µ,λk) >
n

T ∗(µ)
+ β

}

Since (w∗, q) is a Nash equilibrium of the game andNn/n is a mixed strategy for the first player,∑
k qk

∑
iNn,id(µi, λ

k
i ) ≤ n

∑
k qk

∑
i w
∗
i d(µi, λ

k
i ) = n

T∗(µ) , so we find

⊆

{∑
k

qkMn(µ,λk) > β

}

=

{∑
k

qk
∑
i

Nn,i
(
φ′(µi)− φ′(λki )

)(
µ̂n,i − µi

)
> β

}

=

{∑
i

Nn,iαi
(
µ̂n,i − µi

)
> β

}
(4)

The above left-hand quantity is a martingale of length n. Using the sub-Gaussianity assumption, the
Hoeffding-Azuma inequality gives

Pµ {Ln > γ} ≤ exp

(
−β2

2nmaxi α
2
i

)
.

Let A be a Fn-measurable event. Combination with the change of measure argument (3) with
maxk Pλk{A} ≥ Pq{A} gives the result.

The sub-Gaussian assumption of the Lemma can undoubtedly be relaxed. The crucial requirement is
that the n-step martingale in (4) concentrates, and hence cannot be large w.h.p.

We are now ready for the proof of Theorem 1, in which we will carefully tune the time n to which we
apply the above result.
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C.5 Proof of Theorem 1

We will bound the expectation of the stopping time τδ through Markov’s inequality. For T > 0,

Eµ[τδ] ≥ T (1− Pµ(τδ ≤ T )) .

The event {τδ ≤ T} can be partitioned depending on the answer which is returned. Since the
algorithm is δ-PAC by hypothesis, Pµ(τδ ≤ T, ı̂δ /∈ i∗(µ)) ≤ δ. So

Pµ(τδ ≤ T ) =
∑
i

Pµ(τδ ≤ T, ı̂δ = i)

≤ δ +
∑

i∈i∗(µ)

Pµ(τδ ≤ T, ı̂δ = i) .

For i ∈ i∗(µ), fix a minimax strategy λ1, . . . ,λK ∈ ¬i and q ∈ 4K as given by Lemma 2. Then by
Lemma 19, for any β > 0

Pµ(τδ ≤ T, ı̂δ = i) ≤ exp

(
T

T ∗i (µ)
+ β

)
max
k

Pλk(τδ ≤ T, ı̂δ = i) + exp

(
−β2

2T maxi α
2
i

)
≤ δ exp

(
T

T ∗i (µ)
+ β

)
+ exp

(
−β2

2T maxi α
2
i

)
Let α2 = maxi α

2
i . For η ∈ (0, 1), T ≤ (1− η)T ∗i (µ) log(1/δ) and β = η

2
√

1−η

√
T

T∗i (µ) log(1/δ),

Pµ(τδ ≤ T, ı̂δ = i) ≤ δ exp

(
T

T ∗i (µ)
+

η

2
√

1− η

√
T

T ∗i (µ)
log(1/δ)

)
+ exp

(
−η2 log(1/δ)

8(1− η)T ∗i (µ)α2

)
≤ δ exp

(
(1− η/2) log

1

δ

)
+ exp

(
−η2 log(1/δ)

8(1− η)T ∗i (µ)α2

)
= δη/2 + δη

2/(8(1−η)T∗i (µ)α2)

−−−→
δ→0

0

Suppose that T = mini∈i∗(µ)(1 − η)T ∗i (µ) log(1/δ) for some η ∈ (0, 1). Then we must have

limδ→0 Pµ(τδ ≤ T ) = 0 and therefore lim infδ→0
Eµ[τδ]

log(1/δ) ≥ limδ→0
T

log(1/δ) (1− Pµ(τδ ≤ T )) =

(1− η) mini∈i∗(µ) T
∗
i (µ). Letting η go to zero, we obtain that

lim inf
δ→0

Eµ[τδ]

log(1/δ)
≥ min
i∈i∗(µ)

T ∗i (µ) .

D Vanilla Track and Stop Fails for Multiple Answers

u1

(0, 0)

µ̂t

µ

Figure 3: Any Half-Space
problem. The oracle an-
swers iF (µ) are {u1} and
{u2} (and both on the di-

agonal).

We argue that Track and Stop in general does not ensure convergence
of Nt/t to w∗(µ) when that set is not convex. We illustrate our
claim on the Any Half-Space problem, a generalisation of Any Sign
from Table 1. Given n ∈ N hyperplanes of RK passing through
0, parametrized for m ∈ [n] by normal vectors um ∈ RK with
‖um‖1 = 1, the algorithm has to return (m, s) ∈ [n] × {−1, 1}
such that sµᵀum ≥ 0. i.e. it must return any of the half-spaces in
which µ lies. See Figure 3. The arms have Gaussian distributions
with variance 1.

This problem is chosen for the simplicity of its w∗ mapping. Indeed
w∗(µ,¬(m, s))) = {um} if sµᵀum ≥ 0 and w∗(µ,¬(m, s))) =
4K otherwise. The distance to that alternative is D(µ,¬(m, s)) =
I{sµᵀum ≥ 0}(µᵀum)2. The optimal weights set w∗(µ) is the
union of those {um} for which the distance is the greatest, and can
be non-convex.
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Figure 2: Suboptimality of Track-and-Stop with C-tracking on a K = 10 arm instance of the Any
Half-Space problem, where each µk = −1/10. We run the algorithm with an excessively small
δ = e−80 to focus on the asymptotic regime, using 500K repetitions. Left: empirical distribution of
the stopping time of Track-and-Stop and of Sticky Track-and-Stop, with respective means 24K and
16K. Right: the reason for the suboptimality is that the sampling proportions of Track-and-Stop do
not converge to the oracle weights.

For a ∈ [0, 1], let K = 2, n = 2, u1 = (a, 1 − a), u2 = (1 − a, a) and µ = (µ0, µ0) for some
µ0 ∈ R. Suppose that after stage t0 of Track and Stop, µ̂t verifies that µ̂ᵀ

tum has same sign as
µᵀum for both m ∈ {1, 2} (in expectation this happens except on at most a finite number of stages).
Then w∗(µ̂t) = {u1} iff µ̂t,1 > µ̂t,2 and w∗(µ̂t) = {u2} iff µ̂t,1 < µ̂t,2. The case µ̂t,1 = µ̂t,2 has
probability 0, hence we ignore it.

C-tracking ensures that Nt/t is close to
∑t
s=1ws for ws ∈ w∗(µ̂s). Calling T1(t) the number of

stages up to t for which µ̂t,1 > µ̂t,2 and neglecting the first t0 stages,Nt/t ≈ T1(t)u1+(1−T1(t))u2.
In the nomenclature of random walks, T1(t) is the occupation time of the region below the diagonal
on Figure 3.

In order for Track and Stop to be optimal, Nt/t need to be close to w∗(µ) = {u1,u2} at topt =
log(1/δ)/D(µ). For u1 6= u2 this means that the distribution of T1(topt)/topt must be concentrated
on {0, 1}. If the limit distribution of T1(t)/t (assuming it exists) for t → +∞ has mass in (0, 1),
Track and Stop likely has suboptimal asymptotic sample complexity.

In the case of a = 1/2, u1 = u2 = (1/2, 1/2), fot t even Nt,1 = Nt,2 and T1(t) = #{s ≤ t :∑s/2
u=1(X

(1)
2u −X

(2)
2u+1) > 0} is the occupation time of R+ for a Gaussian random walk. Its limit

distribution is the Arcsine distribution. But in that case Nt/t is always optimal. Experimentally,
when a 6= 1/2 (hence u1 6= u2 and Nt/t not always optimal), we observe that the limit distribution
for T1(t)/t is not Arcsine, but has mass in (0, 1) for a ∈ (0, 1). See Figure 4.

Figure 2 displays the stopping time of Track and Stop on such an hyperplane problem forK = n = 10
and shows that Track and Stop is empirically suboptimal and that Nτ/τ , proportions of pulls at the
stopping time, is not concentrated near w∗(µ).

E Failure of D-tracking

We illustrate the suboptimality of Track-and-Stop with D-tracking in a single-answer problem. On a
3-arms problem with Gaussian distributions with same variance, the algorithm must answer the two
following queries:

• What is the sign of µ1?

• Is there m ∈ {1, 2} such that µᵀu(m) ≥ 0? For some a ∈ (0, 1), u(1) = (0, a, 1− a) and
u(2) = (0, 1− a, a).

The possible answers are {(+, yes), (+, no), (−, yes), (−, no)}, and there is only one correct answer.
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Figure 4: Pulling proportions of Track-and-Stop with C-tracking on the Any Half-Space problem
with K = 2 and a = 1/5. Both figures use data from the same 10000 runs of Track-and-Stop.
Left: histogram at T = 10000 of Nt,1/t, normalized such that the total area of the bars is 1. The
values of the leftmost and rightmost bars are ≈ 15. The probability distribution function of the
Arcsine distribution is shown for comparison. Right: evolution over time of the mass in the interval
(1.01× a, 1−a

1.01 ) (non-extremal bars on the left).

The divergence from µ to an alternative where the sign is flipped is D1(µ) = 1
2µ

2
1. If µᵀu(m) < 0

for both u(m), then the divergence from µ to an alternative where the second answer is yes is
D2,3 = max( 1

2 (µᵀu(1))2, 1
2 (µᵀu(2))2). Let D2(µ) and D3(µ) be the two terms in that maximum.

In that case, the oracle weights w∗(µ) are

• {w(1)(µ)} if D2 > D3, where w(1)(µ) = ( D2

D1+D2
, a D1

D1+D2
, (1− a) D1

D1+D2
),

• {w(2)(µ)} if D2 < D3, where w(2)(µ) = ( D3

D1+D3
, (1− a) D1

D1+D3
, a D1

D1+D3
),

• the convex hull of {w(1)(µ),w(2)(µ)} if D2 = D3.

Let µ = (−µ0,−µ0,−µ0) for µ0 > 0. Thenw∗(µ) = conv{( 1
2 ,

1
2a,

1
2 (1− a)), ( 1

2 ,
1
2 (1− a), 1

2a)}.

If a ∈ {0, 1}, then these oracle weights correspond to w(1) and w(2) defined below Remark 8.

Track-and-Stop with D-tracking will track w(1)(µ̂t) or w(2)(µ̂t) depending on which side of the
hyperplane D2 = D3 the empirical mean µ̂t lies. As in Appendix D, we do not know the distribution
of the tracked vector wt, but if µ̂t crosses that boundary often enough, then as explained below
Remark 8, D-tracking will get Nt/t outside of the convex hull of {w(1)(µ),w(2)(µ)} and be
suboptimal.

We verify experimentally that suboptimality in Figure 5. For these experiments, the Gaussians have
variance 1/4, µ0 = 1/5, a = 1/10. The fixed optimal sampling strategy samples argminkNt,k −
t( 1

2 ,
1
2a,

1
2 (1− a))k.

F Continuity Proofs

We first introduce the necessary notions used in the modification of Berge’s theorem we will apply,
following [Feinberg et al., 2014].

Definition 20. For a function f : U → R with U a non-empty subset of a topological space, define
the level sets

Lf (y, U) = {x ∈ U : f(x) ≤ y} ,
L<f (y, U) = {x ∈ U : f(x) < y} .
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Figure 5: Histogram of the stopping time of Track-and-Stop with D-tracking and of fixed optimal
sampling. The data is comprised of 10000 runs of each algorithm, with δ = e−60.

A function f is lower semi-continuous on U if all the level sets Lf (y, U) are closed. It is inf-compact
on U if all these level sets are compact. It is upper semi-continuous if all the strict level sets L<f (y, U)
are open.

Let X and Y be Hausdorff topological spaces. Let u : X×Y→ R be a function, Φ : X→ S(Y) be a
set-valued function, where S(Y) is the set of non-empty subsets of Y. The objects of study are

v(x) = inf
y∈Φ(x)

u(x, y) ,

Φ∗(x) = {y ∈ Φ(x) : u(x, y) = v(x)} .

For U ⊂ X, let the graph of Φ restricted to U be GrU (Φ) = {(x, y) ∈ U × Y : y ∈ Φ(x)} .

Definition 21. A function u : X× Y→ R is called K-inf-compact on GrX(Φ) if for all non-empty
compact subset C of X, u is inf-compact on GrC(Φ).

We will use two versions of Berge’s theorem. The first one restricts Φ to be compact-valued. The
second one removes that hypothesis on Φ at the price of hypotheses on u. Denote by K(X) the subset
of S(X) containing non-empty compact subsets of X.

Theorem 22 (Berge’s theorem). Let X and Y be Hausdorff topological spaces. Assume that

• Φ : X→ K(X) is continuous (i.e. both lower hemicontinuous and upper hemicontinous),

• u : X× Y→ R is continuous.

Then the unction v : X→ R is continuous and the solution multifunction Φ∗ : X→ S(Y) is upper
hemicontinuous and compact valued.

Theorem 23 (Feinberg et al. 2014). Assume that

• X is compactly generated,

• Φ : X→ S(Y) is lower hemicontinuous,

• u : X× Y→ R is K-inf-compact and upper semi-continuous on GrX(Φ).

Then the function v : X→ R is continuous and the solution multifunction Φ∗ : X→ S(Y) is upper
hemicontinuous and compact valued.

Theorem 4 is cut into several successive lemma, whose proofs together prove the theorem. The first
three lemmas prove the continuity of (w,µ) 7→ D(w,µ,¬i), first in the case where ¬i is compact,
then in the general case.

Lemma 24. Set i ∈ I. If ¬i is compact, then (w,µ) 7→ D(w,µ,¬i) is jointly continuous on
4K ×M and λ∗(w,µ) is non-empty, upper hemicontinuous and compact valued.
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Proof. We apply Theorem 22 to

• X = 4K ×M,
• Y = ¬i,

• Φ(µ) = ¬i,
• u((w,µ),λ) = D(w,µ,λ).

Φ is compact-valued, non-empty and continuous (since it is constant). u is continuous. The hypotheses
are verified and the theorem gives the wanted result.

Let Q+ = {w ∈ RK : ∀k ∈ [K], wk ≥ 0}, Q̊+ be its interior and for ε > 0, Qε+ = {w ∈ RK :
∀k ∈ [K], wk ≥ ε}.

Lemma 25. The function (w,µ) 7→ D(w,µ,¬i) is jointly continuous on Q̊+ ×M .On the same
set, λ∗(w,µ) is upper hemicontinuous, non-empty and compact valued. In particular, the same
properties hold on 4̊K ×M.

Proof. Let ε > 0. We prove the result for (w,µ) ∈ Qε+ ×OK (and note thatM⊆ OK).

We will apply Theorem 23 to

• X = Qε+ ×OK ,
• Y = OK ,
• Φ((w,µ)) = ¬i ,

• u((w,µ),λ) = D(w,µ,λ) ,
• v(w,µ) = D(w,µ,¬i) .

We now verify the hypothesis of the theorem. First, X is compactly generated since it is a metric
space. Secondly, Φ is lower hemicontinuous since it is constant.

The function u is continuous, hence upper semi-continuous. It remains to check that u is K-inf-
compact on GrX(Φ).

Let C be a non-empty compact subset of Qε+ × OK . We need to prove that u is inf-compact on
GrC(Φ) = C × ¬i . The level sets Lu(y, C × ¬i) for y ∈ R are closed by continuity of u. Indeed
they are the reverse image of a closed set [−∞, y] by a continuous function, hence they are closed in
(Qε+ ×OK)×OK . We only need to prove that they are bounded.

Set y ∈ R. Let µ+
k = sup(w,µ)∈C µk, finite since C is compact. Define µ−k in a similar way with

an infimum. For j ∈ [K], lim d(µj , λj) = +∞ when λj approaches the boundaries of the open
intervalO. Then for all k ∈ [K], there exists λ+

k such that λ > λ+
k ⇒ ∀(w,µ) ∈ C, d(µk, λ) > y/ε.

Define λ−k in a similar way. For λ /∈ [λ−1 , λ
+
1 ] × . . . × [λ−K , λ

+
K ] there exists a k ∈ [K] such that

d(µk, λk) > y/ε for all (w,µ) ∈ C. Since wk ≥ ε for all k, for all (w,µ) ∈ C, D(w,µ,λ) =∑K
k=1 wkd(µk, λk) > y. The level set Lu(y, C × ¬i) is bounded.

We have verified the hypotheses of the theorem for compacts subsets of Qε+ ×OK and obtain that
v(w,µ) = D(w,µ,¬i) is continuous as a function of (w,µ) on that set. On that same set, the
function giving the points realizing the infimum λ∗(w,µ) is upper hemicontinuous, non-empty and
compact valued.

For a projection P on a subset of coordinates S ⊆ [K] and w ∈ Q+, denote the projected vector
by Pw. The same proof as the one of the previous lemma applied to the projected spaces gives the
following corollary.

Corollary 26. Let P be a projection on a subset of coordinates S ⊆ [K]. Then the function
(u,µ) 7→ D(u,µ, P¬i) is continuous on P̊Q+ ×M.

We now extend the continuity of D(w,µ,¬i) on all of4K ×M.
Lemma 27. The function (w,µ) 7→ D(w,µ,¬i) is continuous on4K ×M.

Proof. Let (w,µ) ∈ 4K ×M and λε be such that D(w,µ,λ) ≤ D(w,µ,¬i) + ε, which exists
by definition of D(w,µ,¬i) as an infimum.
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The function (w,µ) 7→ D(w,µ,λε) is continuous. Hence, there exists ε′ such that for ‖w′−w‖∞ ≤
ε′ and ‖µ′ − µ‖∞ ≤ ε′, D(w′,µ′,λε) ≤ D(w,µ,λε) + ε. For (w′,µ′) in such a neighbourhood
of (w,µ),

D(w′,µ′,¬i) ≤ D(w′,µ′,λε) ≤ D(w,µ,λε) + ε ≤ D(w,µ,¬i) + 2ε .

We proved that (w,µ) 7→ D(w,µ,¬i) is upper semi-continuous.

Now let ε > 0 be such that mink:wk>0 wk ≥ 2ε and (w′,µ′) be in an ε neighbourhood of (w,µ).
Then wk > 0 ⇒ w′k > ε. For u ∈ 4K , denote by Pu its projection on the coordinates for which
wk > 0.

D(w′,µ′,¬i) ≥ D(Pw′,µ′, P¬i) ,
D(w,µ,¬i) = D(Pw,µ, P¬i) .

By the previous lemma, (Pw′,µ′) 7→ D(Pw′,µ′, P¬i) is continuous on PQε+ ×M. Hence for
(w′,µ′) in a small enough neighbourhood of (w,µ), D(Pw′,µ′, P¬i) ≥ D(Pw,µ, P¬i)− ε. In
that neighbourhood,

D(w′,µ′,¬i) ≥ D(Pw′,µ′, P¬i) ≥ D(Pw,µ, P¬i)− ε ≥ D(w,µ,¬i)− ε .

This proves the lower semi-continuity of (w,µ) 7→ D(w,µ,¬i). We now have both lower and upper
semi-continuity: that function is continuous.

We proved continuity of the function of4K ×M but upper hemi-continuity of λ∗ only forw ∈ 4̊K .
We now show an example whereλ∗ is empty at a w on the boundary of the simplex.

Let µ = (0, 0), ¬i = {(
√
x,
√

1 + 1/x) : x ∈ R+} and d(µi, λi) = (µi − λi)2. Then

inf
λ

[w1d(µ1, λ1) + w2d(µ2, λ2)] = inf
x

(w1x+ (1− w1)(1 +
1

x
)) = 1− w1 + 2

√
w1(1− w1) ,

with minimum attained for w1 ∈ (0, 1) at x =
√

1−w1

w1
. Hence for w1 > 0, λ∗(w, (0, 0)) =

{(
√

1−w1

w1
,
√

w1

1−w1
)}, non-empty and compact. If w1 = 0 then the infimum is not attained and λ∗ is

empty.

Lemma 28. For all i ∈ I, D(µ,¬i) is a continuous function of µ onM and w∗(µ,¬i) is upper
hemicontinuous and compact-valued.

Proof. We apply Theorem 22 to

• X =M,
• Y = 4K ,

• Φ(µ) = 4K ,
• u(µ,w) = D(w,µ,¬i).

Φ is compact-valued, non-empty and continuous (since it is constant). u is continuous by Lemma 27.
The hypotheses are verified and the theorem gives the wanted result.

Lemma 29. For all i ∈ I, D(µ) is a continuous function of µ onM and w∗(µ) is upper hemicon-
tinuous and compact-valued.

Proof. We apply Theorem 22 to

• X =M,
• Y = 4K ,

• Φ(µ) = 4K ,
• u(µ,w) = maxi∈I D(w,µ,¬i).

Φ is compact-valued, non-empty and continuous (since it is constant). u is continuous since it is
a finite maximum of continuous functions. The hypotheses are verified and the theorem gives the
wanted result.

Lemma 30. iF (µ) is upper hemicontinuous and compact valued.
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Proof. We apply Theorem 22 to

• X =M,
• Y = {1, . . . ,K},

• Φ(µ) = {1, . . . ,K},
• u(µ,w) = D(µ,¬i).

Φ is compact-valued, non-empty and continuous (since it is constant). u is continuous Lemma 28.
The hypotheses are verified and the theorem gives the wanted result.

G Algorithm Analysis

G.1 Proof of Lemma 14

Lemma 31 (Lemma 19 of Garivier and Kaufmann 2016). There exists two constants B and C (that
depend on µ and ξ) such that

Pµ(E ′T
c
) ≤ BTe−C

√
h(T ) .

For h(T ) =
√
T ,
∑+∞
T=1 Pµ(E ′T

c
) is then finite.

Lemma 32 (Magureanu et al. 2014). Let β(t, δ) = log(Ct2/δ) with C a constant verifying the
inequality C ≥ e

∑∞
t=1( eK )K (log2(Ct2) log(t))K

t2 . Then

Pµ

{
∃t ∈ N,

K∑
k=1

Nt,kd(µ̂t,k, µk) > β(t, δ)

}
≤ δ .

Let f(t) = exp(β(t, 1/t5)) = Ct10 in the definition of the confidence ellipsoid Ct (see Algorithm 1).
Then

+∞∑
T=T0

Pµ(EcT ) ≤
+∞∑
T=1

T∑
t=
√
T

1

t5
< +∞ .

G.2 Proof of Lemma 15

Set T > T1 and suppose that ET ∩ E ′T is true. For t ≥ η(T ), if τδ > t then tC∗ε,ξ(µ) ≤
D(Nt, µ̂t,¬iµ) ≤ β(t, δ) , hence t ≤ β(t, δ)/C∗ε;ξ(µ) .

min(τδ, T ) ≤ dη(T )e+

T∑
t=dη(T )e+1

I{τδ > t− 1}

≤ dη(T )e+

T∑
t=dη(T )e+1

I{t ≤ 1 +
β(t, δ)

C∗ε,ξ(µ)
}

≤ dη(T )e+

T∑
t=dη(T )e+1

I{t ≤ 1 +
β(T, δ)

C∗ε,ξ(µ)
}

≤ max

(
dη(T )e, 1 +

β(T, δ)

C∗ε,ξ(µ)

)
.

Suppose that τδ > T . Then T ≤ max
(
dη(T )e, 1 + β(T,δ)

C∗ε,ξ(µ)

)
. But by hypothesis, η(T ) < T − 1,

such that that inequality implies T ≤ 1 + β(T,δ)
C∗ε,ξ(µ) . We conclude that

τδ ≤ inf

{
T : T > 1 +

β(T, δ)

C∗ε,ξ(µ)

}
.
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G.3 Continuity Results and Proof of Lemma 6

Lemma 33. Let ε > 0 and A ⊆ 4K be a convex set and let w1, . . . ,wt ∈ 4K be such that for all
s ∈ [t], infw∈A ‖ws −w‖∞ ≤ ε . Then infw∈A ‖ 1

t

∑t
s=1ws −w‖∞ ≤ ε .

Proof. For s ∈ [t], letw∗s ∈ A be such that ‖ws −w∗s‖∞ ≤ ε . Then 1
t

∑t
s=1w

∗
s ∈ A by convexity

and

‖1

t

t∑
s=1

ws −
1

t

t∑
s=1

w∗s‖∞ ≤
1

t

t∑
s=1

‖ws −w∗s‖∞ ≤ ε .

Proof of Lemma 6. Let ε > 0. By Theorem 4, w∗ is upper hemicontinuous: there exists ξ > 0 such
that if ‖µ̂t − µ‖∞ ≤ ξ then for all wt ∈ w∗(µ̂t), infw∈w∗(µ) ‖wt −w‖∞ ≤ ε .

For ξ > 0, there exists tξ such that for t ≥ tξ , ‖µ̂t −µ‖∞ ≤ ξ by hypothesis. Then forw ∈ w∗(µ),∥∥∥∥∥1

t

t∑
s=1

ws −w

∥∥∥∥∥
∞

≤ tξ
t

+
t− tξ
t

∥∥∥∥∥∥ 1

t− tξ

t∑
s=tξ

ws −w

∥∥∥∥∥∥
∞

.

Taking infimums and using the convexity of w∗(µ) to apply Lemma 33,

inf
w∈w∗(µ)

∥∥∥∥∥1

t

t∑
s=1

ws −w

∥∥∥∥∥
∞

≤ tξ
t

+ ε ≤ 2ε for t ≥ tξ/ε .

G.4 Proof of Lemma 16

Under ET , for t ≥ h(T ), µ ∈ Ct. Hence iF (µ) ⊆ It.

For µ,µ′ ∈ M, let ch(µ,µ′) = infλ∈RK
∑K
k=1(d(λk, µk) + d(λk, µ

′
k)). ch is a semi-metric on

M.

Suppose that the event ET holds and set t > h(T ). Then on one hand µ ∈ Ct, such that
D(Nt−1, µ̂t−1,µ) ≤ log f(t − 1). On the other hand, by definition every point µ′ ∈ Ct veri-
fies D(Nt−1, µ̂t−1,µ

′) ≤ log f(t− 1). We obtain in particular that

K∑
k=1

Nt−1,k(d(µ̂t−1,k, µk) + d(µ̂t−1,k, µ
′
k)) ≤ 2 log f(t− 1) .

By hypotheses, Nt−1,k ≥ n(t− 1). We obtain that ch(µ,µ′) ≤ 2 log f(t−1)
n(t−1) for all µ′ ∈ Ct .

By upper hemicontinuity of iF (µ), there exists ε > 0 such that ‖µ−µ′‖∞ ≤ ε⇒ iF (µ′) ⊆ iF (µ).
There exists ∆ > 0 such that ch(µ,µ′) ≤ ∆⇒ iF (µ′) ⊆ iF (µ) .

For such a ∆ and T∆ = inf{t ∈ N : 2 log f(t)
n(t) ≤ ∆}, if t ≥ max(h(T ), T∆), then iF (µ′) ⊆ iF (µ)

for all µ′ ∈ Ct. hence It =
⋃
µ′∈Ct iF (µ′) ⊆ iF (µ) .

G.5 Proof of Lemma 17

Lemma 34 (Garivier and Kaufmann 2016). For all t ≥ 1 and k ∈ [K], the C-tracking rule ensures
that Nt,k ≥

√
t+K2 − 2K and that∥∥∥∥∥Nt −

t−1∑
s=0

ws

∥∥∥∥∥
∞

≤ K(1 +
√
t) .
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Lemma 35. Suppose that there exists TI ∈ N such that for T ≥ TI , wt ∈ w∗(µ̂t,¬iµ). Then for T
such that h(T ) ≥ TI , it holds that on E ′T C-Tracking verifies

∀t ≥ 4
K2

ε2
+ 3

h(T )

ε
, inf
w∈w∗(µ,¬iµ)

‖N(t)

t
−w‖∞ ≤ 3ε .

Proof. Suppose that T verifies h(T ) ≥ TI . Using Lemma 34, for t ≥ h(T ) one can write for all
w ∈ w∗(µ,¬iµ), ∥∥∥∥Ntt −w

∥∥∥∥
∞
≤

∥∥∥∥∥Ntt − 1

t

t−1∑
s=0

ws

∥∥∥∥∥
∞

+

∥∥∥∥∥1

t

t−1∑
s=0

ws −w

∥∥∥∥∥
∞

≤ K(1 +
√
t)

t
+

∥∥∥∥∥1

t

t−1∑
s=0

ws −w

∥∥∥∥∥
∞

≤ 2K√
t

+
h(T )

t
+

∥∥∥∥∥∥1

t

t−1∑
s=h(T )

(ws −w)

∥∥∥∥∥∥
∞

.

The definition of event E ′T uses ξ > 0 such that if ‖µ̂t − µ‖∞ ≤ ξ then for all wt ∈ w∗(µ̂t,¬iµ),
infw∈w∗(µ,¬iµ) ‖wt −w‖∞ ≤ ε . Under that event, for t ≥ h(T ),

‖µ̂t − µ‖∞ ≤ ξ ,
∀wt ∈ w∗(µ̂t,¬iµ), inf

w∈w∗(µ,¬iµ)

‖wt −w‖∞ ≤ ε .

The convexity of w∗(µ,¬iµ) ensures that infw∈w∗(µ,¬iµ) ‖ 1
t

∑T
s=h(T )ws −w‖∞ ≤ ε as well by

Lemma 33. Hence, taking infimums and using the hypothesis that the event E ′T holds,

inf
w∈w∗(µ,¬iµ)

∥∥∥∥Ntt −w
∥∥∥∥
∞
≤ 2K√

t
+
h(T )

t
+ inf
w∈w∗(µ,¬iµ)

∥∥∥∥∥∥1

t

t−1∑
s=h(T )

(ws −w)

∥∥∥∥∥∥
∞

≤ 2K√
t

+
h(T )

t
+ ε .

For t ≥ 2K
2

ε2

(
1 + εh(T )

2K2 +
√

1 + εh(T )
K2

)
, the right-hand-side is smaller than 2ε. In particular, this

is also true for t ≥ 4K
2

ε2 + 3h(T )
ε .

Proof of Lemma 17. Let T ∈ N be such that h(T ) ≥ T∆. Under ET , for t ≥ h(T ) the set It is
constant and equal to iF (µ) by Lemma 16. For this stage on, it = iµ is constant and w∗(µ,¬it) ⊆
w∗(µ). We can hence take TI = h(T ) in Lemma 35 and we get the wanted result.

G.6 Proof of the empirical complexity of Track and Stop

We prove Theorem 7 and Theorem 9.

Lemma 16 depends only on the amount of forced exploration, thus it is valid for Track and Stop.
After some T∆ > 0, It = iF (µ). Since µ̂t ∈ It, iF (µ̂t) ⊆ iF (µ) . The alternative selected by Track
and Stop to compute wt will be in iF (µ).

We modify the event E ′T used for Sticky Track and Stop into E ′T =
⋂T
t=h(T ){‖µ̂t−µ‖∞ ≤ ξ} where

ξ is such that

‖µ′ − µ‖∞ ≤ ξ ⇒ ∀w′ ∈ w∗(µ′) ∃w ∈ w∗(µ), ‖w′ −w‖∞ ≤ ε .

The difference is that we use the upper hemicontinuity of w∗(µ) instead of w∗(µ,¬i) for some
i ∈ I.
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From that point on, we proceed as in the proof of the sample complexity of Sticky Track and Stop,
except that Nt/t will not necessarily converge to w∗(µ, iµ), but to conv(w∗(µ)), convex hull of
w∗(µ). Lemma 17 is true for Track and Stop with the adapted E ′T if w∗(µ, iµ) is replaced by
conv(w∗(µ)). The analogue of C∗ε,ξ(µ) is

Cε,ξ(µ) = inf
µ′:‖µ′−µ‖∞≤ξ

w′:infw∈conv(w∗(µ)) ‖w
′−w‖∞≤3ε

D(w′,µ′) .

Let T∆ be defined as in Lemma 16. Let T be such that h(T ) ≥ T∆. Let η(T ) = 4K
2

ε2 + 3h(T )
ε . By

Lemma 17 changed as explained, for t ≥ η(T ), if ET ∩ E ′T then D(Nt, µ̂t) ≥ tCε,ξ(µ).

We now apply Lemma 15. η(T ) < T − 1 if h(T ) < ε
3 (T − 1) − 4

3
K2

ε . For h(T ) =
√
T and T

bigger than a constant Tη depending on K and ε, this is true. Then under ET ∩ E ′T , the hypotheses of
Lemma 15 are verified with T1 = h−1(max(T∆, Tη)).

We obtain that the hypotheses of Lemma 13 are verified for

T0 = max(T1, inf{T : 1 +
β(T, δ)

Cε,ξ(µ)
≤ T}) .

Note that limδ→0 T0/ log(1/δ) = 1/Cε,ξ(µ). Taking ε → 0 (hence ξ → 0 as well), we obtain
limδ→0

Eµ[τδ]
log(1/δ) = 1

limε→0 Cε,ξ(µ) .

Finally, limδ→0 Cε,ξ(µ) = infw∈conv(w∗(µ))D(w,µ). This proves Theorem 9.

If iF (µ) is a singleton, thenw∗(µ) is convex and conv(w∗(µ)) = w∗(µ), leading to the observation
that infw∈conv(w∗(µ))D(w,µ) = D(µ). In that case, Track-and-Stop is asymptotically optimal:
Theorem 7 is proved.

H Divergences

An important building block in pure exploration algorithms is the largest weighted distance from µ
to the closest point λ in some set of alternatives,

D(µ,Λ) = sup
w∈4

inf
λ∈Λ

∑
k

wkd(µk, λk)

In this section we compute a few of these distances in closed form to get a feeling for their behaviour.
We do it for the Gaussian divergence d(µ, λ) = 1

2 (µ− λ)2.

H.1 Hyper-planes and Half-spaces

Lemma 36. When Λ =
{
λ ∈ RK

∣∣∣〈a,λ〉 = b
}

is a hyper-plane, we find

D(µ,Λ) =
1

2

(
〈a,µ〉 − b∑d

i=1 |ai|

)2

and w∗i (µ) =
|ai|∑d
i=1 |ai|

.

Note that the same result holds for the half-space Λ =
{
λ ∈ RK

∣∣∣〈a,λ〉 ≥ b} when µ /∈ Λ, i.e.
〈a,µ〉 < b. If µ ∈ Λ then D(µ,Λ) = 0. The Lemma implies in particular that for Best Arm
Identification with K = 2 arms, corresponding to a = (−1,+1) and b = 0, the optimal weights w∗
are uniform, as was shown by Kaufmann et al. [2016]. For the ε-BAI variant of the problem we set
b = ±ε, so here w∗ is also uniform.

Proof. We have

D(µ,Λ) = sup
w∈4

inf
λ:〈a,λ〉=b

d∑
i=1

wi
(µi − λi)2

2

23



Introducing Lagrange multiplier θ, we find

sup
w∈4

sup
θ

inf
λ∈Rd

d∑
i=1

wi
(µi − λi)2

2
− θ (〈a,λ〉 − b)

Plugging in the solution λi = µi + θai
wi

results in

sup
w∈4

sup
θ
− θ2

d∑
i=1

a2
i

2wi
− θ (〈a,µ〉 − b)

Now solving for θ results in θ = −(〈a,µ〉−b)∑d
i=1

a2
i
wi

and objective function value

sup
w∈4

(〈a,µ〉 − b)2

2
∑d
i=1

a2i
wi

Further solving for w tells us that wi = |ai|∑d
i=1 |ai|

and hence the value is

1

2

(
〈a,µ〉 − b∑d

i=1 |ai|

)2

.

H.2 Minimum Threshold

The following two lemmas appear as [Kaufmann et al., 2018, Lemma 1] for general divergences
d(µ, λ).

Lemma 37. Let Λ =
{
λ ∈ RK

∣∣∣mink λk ≤ γ
}

. Then when µ /∈ Λ,

D(µ,Λ) =
1∑

k
1

d(µa,γ)

where w∗k(µ) =

1
d(µk,γ)∑
j

1
d(µj ,γ)

Lemma 38. Let Λ =
{
λ ∈ RK

∣∣∣mink λk ≥ γ
}

. Then when µ /∈ Λ,

D(µ,Λ) = d
(
min
k
µk, γ

)
where w∗(µ) = 1k=argminj µj .

For the version of the problem with slack ε, we can simply replace γ by the appropriate γ ± ε.

H.3 Sphere

We now consider the distance to the sphere both from within and from the outside.

Lemma 39. Let Λ =
{
λ ∈ RK

∣∣∣‖λ‖ = 1
}

. Consider any µ ∈ RK . Then

D(µ,Λ) =
1

2K2

(√
K
(
1− ‖µ‖2

)
+ ‖µ‖21 − ‖µ‖1

)2

and w∗k(µ) =
1

K
+

|µk| − 1
K ‖µ‖1√

K
(
1− ‖µ‖2

)
+ ‖µ‖21

,

provided that (
‖µ‖1 −K min

k
|µk|

)2

≤ ‖µ‖21 −K
(
‖µ‖2 − 1

)
(5)

Note that the proviso is always satisfied when ‖µ‖ ≤ 1. When ‖µ‖ > 1 it depends. When the
proviso is not satisfied, boundary conditions are active. In that case a pairwise swapping argument
shows that w∗k(µ) = 0 for the k of minimal |µk|. The rest of the solution is found by removing k,
and solving the remaining problem of size K − 1.
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Proof. We need to find

D(µ,Λ) = max
w∈4

min
λ:‖λ‖=1

1

2

∑
k

wk(µk − λk)2

As strong duality holds for the inner problem [Boyd and Vandenberghe, 2004, Appendix B], we may
introduce a Lagrange multiplier θ for the constraint, and write

max
w∈4,θ

min
λ∈RK

1

2

∑
k

wk(µk − λk)2 +
θ

2

(
1− ‖λ‖2

)
.

The innermost problem is unbounded in λ unless mink wk ≥ θ, so we add this as an outer constraint.
Then the minimiser is found at λk = µk

1− θ
wk

, and by substituting that in, the problem simplifies to

max
w∈4

θ≤mink wk

− 1

2

∑
k

µ2
k

1
θ −

1
wk

+
θ

2
= max

w∈4
θ≤mink wk

− 1

2

∑
k

µ2
kθ

2

wk − θ
+
θ

2

(
1− ‖µ‖2

)
.

As a point of interpretation, note that we will find θ > 0 when ‖µ‖ < 1, and θ < 0 for ‖µ‖ > 1.
Next we solve for w, enforcing unit sum (but delaying non-negativity). With Lagrange multiplier c,
we need to have

c =
1

2

µ2
k(

wk
θ − 1

)2 resulting in wk = θ

(
1 +

√
µ2
k

2c

)
.

Solving for the normalisation results in

c =
1

2

(
θ

1− θK
‖µ‖1

)2

whence wk = θ + (1− θK)
|µk|
‖µ‖1

.

Plugging this in, it remains to solve

max
θ
− θ2

2 (1− θK)
‖µ‖21 +

θ

2

(
1− ‖µ‖2

)
.

This concave problem is bounded by non-negativity of the right-hand side of (5). Cancelling the
derivative results in a quadratic equation, with the single feasible solution

θ =
1

K

1−
‖µ‖1√

K
(

1− ‖µ‖2
)

+ ‖µ‖21

 .

Filling this in yields the value and weights of the Lemma. Finally, we need to check for negativity in
the weights. Using the above expression for the weights, have mink wk ≥ 0 if

− 1
‖µ‖1

mink|µk|
−K

≤ θ i.e.
‖µ‖1√

‖µ‖21 −K
(
‖µ‖2 − 1

) ≤ 1

1−Kmink|µk|
‖µ‖1

which we can further reorganise to (5), as required.

H.4 Composition of two independent problems

We consider the case where we seek to answer two independent queries on disjoint sets of arms. Let
A,B be a partition of [K]. Suppose that the structure of the problem and the answers decompose
according to this partition, i.e.M =MA ×MB , I = IA × IB and i∗(µ) = i∗A(µA)× i∗B(µB).
Then we can also write all alternative sets ¬i as ¬iA × IB ∪ IA × ¬iB . It then holds that for all
w ∈ w∗(µ,¬i), ∑

k∈A

wk =

1
D(µA,¬iA)

1
D(µA,¬iA)

+ 1
D(µB ,¬iB)

,

∑
k∈B

wk =

1
D(µB ,¬iB)

1
D(µA,¬iA)

+ 1
D(µB ,¬iB)

,

1

D(µ,¬i)
=

1

D(µA,¬iA)
+

1

D(µB ,¬iB)
.
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Since the sample complexity is proportional to 1/D we obtain the natural conclusion that the number
of samples needed to solve two independent queries is the sum of the samples needed by each query.
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