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Abstract

In this paper, we study large-scale convex optimization algorithms based on the
Newton method applied to regularized generalized self-concordant losses, which
include logistic regression and softmax regression. We first prove that our new
simple scheme based on a sequence of problems with decreasing regularization
parameters is provably globally convergent, that this convergence is linear with a
constant factor which scales only logarithmically with the condition number. In
the parametric setting, we obtain an algorithm with the same scaling than regular
first-order methods but with an improved behavior, in particular in ill-conditioned
problems. Second, in the non-parametric machine learning setting, we provide
an explicit algorithm combining the previous scheme with Nyström projection
techniques, and prove that it achieves optimal generalization bounds with a time
complexity of order O(ndfλ), a memory complexity of order O(df2λ) and no
dependence on the condition number, generalizing the results known for least-
squares regression. Here n is the number of observations and dfλ is the associated
degrees of freedom. In particular, this is the first large-scale algorithm to solve
logistic and softmax regressions in the non-parametric setting with large condition
numbers and theoretical guarantees.

1 Introduction

Minimization algorithms constitute a crucial algorithmic part of many machine learning methods,
with algorithms available for a variety of situations [10]. In this paper, we focus on finite sum
problems of the form

min
x∈H

fλ(x) = f(x) +
λ

2
‖x‖2, with f(x) =

1

n

n∑
i=1

fi(x),

where H is a Euclidean or a Hilbert space, and each function is convex and smooth. The running-
time of minimization algorithms classically depends on the number of functions n, the explicit (for
Euclidean spaces) or implicit (for Hilbert spaces) dimension d of the search space, and the condition
number of the problem, which is upper bounded by κ = L/λ, where L characterizes the smoothness
of the functions fi, and λ the regularization parameter.

In the last few years, there has been a strong focus on problems with large n and d, leading to first-
order (i.e., gradient-based) stochastic algorithms, culminating in a sequence of linearly convergent
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algorithms whose running time is favorable in n and d, but scale at best in
√
κ [15, 22, 14, 4].

However, modern problems lead to objective functions with very large condition numbers, i.e., in
many learning problems, the regularization parameter that is optimal for test predictive performance
may be so small that the scaling above in

√
κ is not practical anymore (see examples in Sect. 5).

These ill-conditioned problems are good candidates for second-order methods (i.e., that use the
Hessians of the objective functions) such as Newton method. These methods are traditionally
discarded within machine learning for several reasons: (1) they are usually adapted to high precision
results which are not necessary for generalization to unseen data for machine learning problems [9],
(2) computing the Newton step ∆λ(x) = ∇2fλ(x)−1∇fλ(x) requires to form the Hessian and solve
the associated linear system, leading to complexity which is at least quadratic in d, and thus prohibitive
for large d, and (3) the global convergence properties are not applicable, unless the function is very
special, i.e., self-concordant [24] (which includes only few classical learning problems), so they often
are only shown to converge in a small area around the optimal x.

In this paper, we argue that the three reasons above for not using Newton method can be circumvented
to obtain competitive algorithms: (1) high absolute precisions are indeed not needed for machine
learning, but faced with strongly ill-conditioned problems, even a low-precision solution requires
second-order schemes; (2) many approximate Newton steps have been designed for approximating
the solution of the associated large linear system [1, 27, 25, 8]; (3) we propose a novel second-
order method which is globally convergent and which is based on performing approximate Newton
methods for a certain class of so-called generalized self-concordant functions which includes logistic
regression [6]. For these functions, the conditioning of the problem is also characterized by a more
local quantity: κ` = R2/λ, where R characterizes the local evolution of Hessians. This leads
to second-order algorithms which are competitive with first-order algorithms for well-conditioned
problems, while being superior for ill-conditioned problems which are common in practice.

Contributions. We make the following contributions:

(a) We build a global second-order method for the minimization of fλ, which relies only on
computing approximate Newton steps of the functions fµ, µ ≥ λ. The number of such
steps will be of order O(c log κ` + log 1

ε ) where ε is the desired precision, and c is an
explicit constant. In the parametric setting (H = Rd), c can be as bad as

√
κ` in the

worst-case but much smaller in theory and practice. Moreover in the non-parametric/kernel
machine learning setting (H infinite dimensional), c does not depend on the local condition
number κ`.

(b) Together with the appropriate quadratic solver to compute approximate Newton steps,
we obtain an algorithm with the same scaling as regular first-order methods but with an
improved behavior, in particular in ill-conditioned problems. Indeed, this algorithm matches
the performance of the best quadratic solvers but covers any generalized self-concordant
function, up to logarithmic terms.

(c) In the non-parametric/kernel machine learning setting we provide an explicit algorithm
combining the previous scheme with Nyström projections techniques. We prove that it
achieves optimal generalization bounds with O(ndfλ) in time and O(df2λ) in memory,
where n is the number of observations and dfλ is the associated degrees of freedom. In
particular, this is the first large-scale algorithm to solve logistic and softmax regression in
the non-parametric setting with large condition numbers and theoretical guarantees.

1.1 Comparison to related work

We consider two cases forH and the functions fi that are common in machine learning: H = Rd with
linear (in the parameter) models with explicit feature maps, andH infinite-dimensional, corresponding
in machine learning to learning with kernels [32]. Moreover in this section we first consider the
quadratic case, for example the squared loss in machine learning (i.e., fi(x) = 1

2 (x>zi − yi)2 for
some zi ∈ H, yi ∈ R). We first need to introduce the Hessian of the problem, for any λ > 0, define

H(x) := ∇2f(x), Hλ(x) := ∇2fλ(x) = H(x) + λI,

in particular we denote by H (and analogously Hλ) the Hessian at optimum (which in case of squared
loss corresponds to the covariance matrix of the inputs).
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Quadratic problems and H = Rd (ridge regression). The problem then consists in solving a
(ill-conditioned) positive semi-definite symmetric linear system of dimension d× d. Methods based
on randomized linear algebra, sketching and suitable subsampling [17, 18, 11] are able to find the
solution with precision ε in time that isO((nd+min(n, d)3) log(L/λε)), so essentially independently
of the condition number, because of the logarithmic complexity in λ.

Quadratic problems and H infinite-dimensional (kernel ridge regression). Here the problem
corresponds to solving a (ill-conditioned) infinite-dimensional linear system in a reproducing kernel
Hilbert space [32]. Since however the sum defining f is finite, the problem can be projected on a
subspace of dimension at most n [5], leading to a linear system of dimension n × n. Solving it
with the techniques above would lead to a complexity of the order O(n2), which is not feasible on
massive learning problems (e.g., n ≈ 107). Interestingly these problems are usually approximately
low-rank, with the rank represented by the so called effective-dimension dfλ [13], counting essentially
the eigenvalues of the problem larger than λ,

dfλ = Tr(HH−1
λ ). (1)

Note that dfλ is bounded by min{n,L/λ} and in many cases dfλ � min(n,L/λ). Using suitable
projection techniques, like Nyström [34] or random features [26] it is possible to further reduce the
problem to dimension dfλ, for a total cost to find the solution ofO(ndf2λ). Finally recent methods [29],
combining suitable projection methods with refined preconditioning techniques, are able to find the
solution with precision compatible with the optimal statistical learning error [13] in time that is
O(ndfλ log(L/λ)), so being essentially independent of the condition number of the problem.

Convex problems and explicit features (logistic regression). When the loss function is self-
concordant it is possible to leverage the fast techniques for linear systems in approximate Newton
algorithms [25] (see more in Sec. 2), to achieve the solution in essentially O(nd + min(n, d)3)
time, modulo logarithmic terms. However only few loss functions of interest are self-concordant,
in particular the widely used logistic and soft-max losses are not self-concordant, but generalized-
self-concordant [6]. In such cases we need to use (accelerated/stochastic) first order optimization
methods to enter in the quadratic convergence region of Newton methods [2], which leads to a
solution in O(dn + d

√
nL/λ + min(n, d)3) time, which does not present any improvement on a

simple accelerated first-order method. Globally convergent second-order methods have also been
proposed to solve such problems [21], but the number of Newton steps needed being bounded only
by L/λ, they lead to a solution in O(L/λ (nd + min(n, d)3)). With λ that could be as small as
10−12 in modern machine learning problems, this makes both these kind of approaches expensive
from a computational viewpoint for ill-conditioned problems. For such problems, with our new
global second-order scheme, the algorithm we propose achieves instead a complexity of essentially
O((nd+ min(n, d)3) log(R2/λε)) (see Thm. 1).

Convex problems and H infinite-dimensional (kernel logistic regression). Analogously to the
case above, it is not possible to use Newton methods profitably as global optimizers on losses that
are not self-concordant as we see in Sec. 3. In such cases by combining projecting techniques
developped in Sec. 4 and accelerated first-order optimization methods, it is possible to find a
solution in O(ndfλ + dfλ

√
nL/λ) time. This can still be prohibitive in the very small regularization

scenario, since it strongly depends on the condition number L/λ. In Sec. 4 we suitably combine our
optimization algorithm with projection techniques achieving optimal statistical learning error [23] in
essentially O(ndfλ log(R2/λ)).

First-order algorithms for finite sums. In dimension d, accelerated algorithms for strongly-
convex smooth (not necessarily self-concordant) finite sums, such as K-SVRG [4], have a running time
proportional O((n+

√
nL/λ)d). This can be improved with preconditioning to O((n+

√
dL/λ)d)

for large n [2]. Quasi-Newton methods can also be used [20], but typically without the guarantees
that we provide in this paper (which are logarithmic in the condition number in natural scenarios).

2 Background: Newton methods and generalized self concordance

In this section we start by recalling the definition of generalized self concordant functions and motivate
it with examples. We then recall basic facts about Newton and approximate Newton methods, and
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present existing techniques to efficiently compute approximate Newton steps. We start by introducing
the definition of generalized self-concordance, that here is an extension of the one in [6].

Definition 1 (generalized self-concordant (GSC) function). LetH be a Hilbert space. We say that f
is a generalized self-concordant function on G ⊂ H, when G is a bounded subset of H and f is a
convex and three times differentiable mapping onH such that

∀x ∈ H, ∀h, k ∈ H, ∇(3)f(x)[h, k, k] ≤ supg∈G |g · h| ∇2f(x)[k, k].

We will usually denote by R the quantity supg∈G ‖g‖ <∞ and often omit G when it is clear from
the context (for simplicity think of G as the ball in H centered in zero and with radius R > 0,
then supg∈G |g · h| = R‖h‖). The globally convergent second-order scheme we present in Sec. 3
is specific to losses which satisfy this generalized self-concordance property. The following loss
functions, which are widely used in machine learning, are generalized-self-concordant, and motivate
this work.

Example 1 (Application to finite-sum minimization). The following loss functions are generalized
self-concordant functions, but not self-concordant:
(a) Logistic regression: fi(x) = log(1 + exp(−yiw>i x)), where x,wi ∈ Rd and yi ∈ {−1, 1}.
(b) Softmax regression: fi(x) = log

(∑k
j=1 exp(x>j wi)

)
− x>yiwi, where now x ∈ Rd×k and

yi ∈ {1, . . . , k} and xj denotes the j-th column of x.
(c) Generalized linear models with bounded features (see details in [7, Sec. 2.1]), which include
conditional random fields [33].
(d) Robust regression: fi(x) = ϕ(yi − w>i x) with ϕ(u) = log(eu + e−u).

Note that these losses are not self-concordant in the sense of [25]. Moreover, even if the losses fi are
self-concordant, the objective function f is not necessarily self-concordant, making any attempt to
prove the self-concordance of the objective function f almost impossible.

Newton method (NM). Given x0 ∈ H, the Newton method consists in doing the following update:

xt+1 = xt −∆λ(xt), ∆λ(xt) := H−1
λ (xt)∇fλ(xt). (2)

The quantity ∆λ(x) := H−1
λ (x)∇fλ(x) is called the Newton step at point x, and x−∆λ(x) is the

minimizer of the second order approximation of fλ around x. Newton methods enjoy the following
key property: if x0 is close enough to the optimum, the convergence to the optimum is quadratic and
the number of iterations required to a given precision is independent of the condition number of the
problem [12].

However Newton methods have two main limitations: (a) the region of quadratic convergence can be
quite small and reaching the region can be computationally expensive, since it is usually done via
first order methods [2] that converge linearly depending on the condition number of the problem, (b)
the cost of computing the Hessian can be really expensive when n, d are large, and also (c) the cost
of computing ∆λ(xt) can be really prohibitive. In the rest of the section we recall some ways to deal
with (b) and (c). Our main result of Sec. 3 is to provide globalization scheme for the Newton method
to tackle problem (a), which is easily integrable with approximate techniques to deal with (b) ans (c),
to make second-order technique competitive.

Approximate Newton methods (ANM) and approximate solutions to linear systems. Comput-
ing exactly the Newton increment ∆λ(xt), which corresponds essentially to the solution of a linear
system, can be too expensive when n, d are large. A natural idea is to approximate the Newton
iteration, leading to approximate Newton methods,

xt+1 = xt − ∆̃λ(xt), ∆̃λ ≈ ∆λ(xt). (3)

In this paper, more generally we consider any technique to compute ∆̃λ(xt) that provides a relative
approximation [16] of ∆λ(xt) defined as follows.

Definition 2 (relative approximation). Let ρ < 1, let A be an invertible positive definite Hermitian
operator onH and b inH. We denote by LinApprox(A, b, ρ) the set of all ρ-relative approximations
of z∗ = A−1b, i.e., LinApprox(A, b, ρ) = {z ∈ H | ‖z − z∗‖A ≤ ρ‖z∗‖A}.
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Sketching and subsampling for approximate Newton methods. Many techniques for approxi-
mating linear systems have been used to compute ∆̃λ, in particular sketching of the Hessian matrix
via fast transforms and subsampling (see [25, 8, 2] and references therein). Assuming for simplicity
that fi = `i(w

>
i x), with `i : R→ R and wi ∈ H, it holds:

H(x) =
1

n

n∑
i=1

`
(2)
i (w>i x)wiw

>
i = V >x Vx, (4)

with Vx ∈ Rn×d = DxW , where Dx ∈ Rn×n is a diagonal matrix defined as (Dx)ii =

(`
(2)
i (w>i x))1/2 and W ∈ Rn×d defined as W = (w1, . . . , wn)>.

Both sketching and subsampling methods approximate z∗ = Hλ(x)−1∇fλ(x) with z̃ =

H̃λ(x)−1∇fλ(x), in particular, in the case of subsampling H̃(x) =
∑Q
j=1 pjwijw

>
ij

where

Q � min(n, d), (pj)
n
j=1 are suitable weights and (ij)

Q
j=1 are indices selected at random from

{1, . . . , n} with suitable probabilities. Sketching methods instead use H̃(x) = Ṽ >x Ṽx, with
Ṽx = ΩVx with Ω ∈ RQ×n a structured matrix such that computing Ṽx has a cost in the order
of O(nd log n); to this end usually Ω is based on fast Fourier or Hadamard transforms [25]. Note that
essentially all the techniques used in approximate Newton methods guarantee relative approximation.
In particular the following results can be found in the literature (see Lemmas 28 and 29 in Appendix I
and [25], Lemma 2 for more details).

Lemma 1. Let x, b ∈ H and assume that `(2)
i ≤ a for a > 0. With probability 1− δ the following

methods output an element in LinApprox(Hλ(x), b, ρ), inO(Q2d+Q3 +c) time, O(Q2 +d) space:
(a) Subsampling with uniform sampling (see [27, 28]), where Q = O(ρ−2a/λ log 1

λδ ) and c = O(1).
(b) Subsampling with approximate leverage scores [27, 3, 28]), whereQ = O(ρ−2 ¯dfλ log 1/λδ), c =

O(min(n, a/λ) ¯dfλ
2
) and ¯dfλ = Tr(W>W (W>W + λ/aI)−1) [30]. Note that ¯dfλ ≤ min(n, d).

(c) Sketching with fast Hadamard transform [25], where Q = O(ρ−2 ¯dfλ log a/λδ), c = O(nd log n).

3 Globally convergent scheme for ANM algorithms on GSC functions

The algorithm is based on the observation that when fλ is generalized self concordant, there exists
a region where t steps of ANM converge as fast as 2−t. Our idea is to start from a very large
regularization parameter λ0, such that we are sure that x0 is in the convergence region and perform
some steps of ANM such that the solution enters in the convergence region of fλ1

, with λ1 = qλ0

with q < 1, and to iterate this procedure until we enter the convergence region of fλ. First we define
the region of interest and characterize the behavior of NM and ANM in the region, then we analyze
the globalization scheme.

Preliminary results: the Dikin ellipsoid. We consider the following region that we prove to be
contained in the region of quadratic convergence for the Newton method and that will be useful to
build the globalization scheme. Let c,R > 0 and fλ be generalized self-concordant with coefficientR,
we call Dikin ellipsoid and denote by Dλ(c) the region

Dλ(c) :=
{
x | νλ(x) ≤ c

√
λ/R

}
, with νλ(x) := ‖∇fλ(x)‖H−1

λ (x),

where νλ(x) is usually called the Newton decrement and ‖x‖A stands for ‖A1/2x‖.
Lemma 2. Let λ > 0, c ≤ 1/7, let fλ be generalized self-concordant and x ∈ Dλ(c). Then it
holds: 1

4νλ(x)2 ≤ fλ(x) − fλ(x?λ) ≤ νλ(x)2. Moreover Newton method starting from x0 has
quadratic convergence, i.e., let xt be obtained via t ∈ N steps of Newton method in Eq. (2), then
νλ(xt) ≤ 2−(2t−1)νλ(x0). Finally, approximate Newton methods starting from x0 have a linear
convergence rate, i.e., let xt given by Eq. (3), with ∆̃t ∈ LinApprox(Hλ(xt),∇fλ(xt), ρ) and
ρ ≤ 1/7, then νλ(xt) ≤ 2−tνλ(x0).

This result is proved in Lemma 11 in Appendix B.3. The crucial aspect of the result above is that
when x0 ∈ Dλ(c), the convergence of the approximate Newton method is linear and does not depend
on the condition number of the problem. However Dλ(c) itself can be very small depending on√
λ/R. In the next subsection we see how to enter in Dλ(c) in an efficient way.
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Entering the Dikin ellipsoid using a second-order scheme. The lemma above shows that Dλ(c)
is a good region where to use the approximate Newton algorithm on GSC functions. However the
region itself is quite small, since it depends on

√
λ/R. Some other globalization schemes arrive to

regions of interest by first-order methods or back-tracking schemes [2, 1]. However such approaches
require a number of steps that is usually proportional to

√
L/λmaking them non-beneficial in machine

learning contexts. Here instead we consider the following simple scheme where ANMρ(fλ, x, t) is the
result of a ρ-relative approximate Newton method performing t steps of optimization starting from x.

The main ingredient to guarantee the scheme to work is the following lemma (see Lemma 13 in
Appendix C.1 for a proof).
Lemma 3. Let µ > 0, c < 1 and x ∈ H. Let s = 1 +R‖x‖/c, then for q ∈ [1− 2/(3s), 1)

Dµ(c/3) ⊆ Dqµ(c).

Now we are ready to show that we can guarantee the loop invariant xk ∈ Dµk(c). Indeed assume that
xk−1 ∈ Dµk−1

(c). Then νµk−1
(xk−1) ≤ c

√
µk−1/R. By taking t = 2, ρ = 1/7, and performing

xk = ANMρ(fµk−1
, xk−1, t), by Lemma 2, νµk−1

(xk) ≤ 1/4νµk−1
(xk−1) ≤ c/4

√
µk−1/R, i.e.,

xk ∈ Dµk−1
(c/4). If qk is large enough, this implies that xk ∈ Dqkµk−1

(c) = Dµk(c), by Lemma 3.
Now we are ready to state our main theorem of this section.

Proposed Globalization Scheme
Phase I: Getting in the Dikin ellispoid of fλ

Start with x0 ∈ H, µ0 > 0, t, T ∈ N and (qk)k∈N ∈ (0, 1].
For k ∈ N

xk+1 ← ANMρ(fµk , xk, t)
µk+1 ← qk+1µk

Stop when µk+1 < λ and set xlast ← xk.
Phase II: reach a certain precision starting from inside the Dikin ellipsoid

Return x̂← ANMρ(fλ, xlast, T )

Fully adaptive method. The scheme presented above converges with the following parameters.
Theorem 1. Let ε > 0. Set µ0 = 7R‖∇f(0)‖, x0 = 0, and perform the globalization scheme above
for ρ ≤ 1/7, t = 2, and qk = 1/3+7R‖xk‖

1+7R‖xk‖ , T = dlog2

√
1 ∨ (λε−1/R2)e. Then denoting by K the

number of steps performed in the Phase I, it holds:
fλ(x̂)− fλ(x?λ) ≤ ε, K ≤ b(3 + 11R‖x?λ‖) log(7R‖∇f(0)‖/λ)c .

Note that the theorem above (proven in Appendix C.3) guarantees a solution with error ε with K steps
of ANM each performing 2 iterations of approximate linear system solving, plus a final step of ANM
which performs T iterations of approximate linear system solving. In case of fi(x) = `i(w

>
i x), with

`i : R → R, wi ∈ H with `(2)
i ≤ a, for a > 0, the final runtime cost of the proposed scheme to

achieve precision ε, when combined with of the methods for approximate linear system solving from
Lemma 1 (i.e. sketching), is O(Q2 + d) in memory and

O
(

(nd log n+ dQ2 +Q3)
(
R‖x?λ‖ log

R

λ
+ log

λ

Rε

))
in time, Q = O

(
¯dfλ log

1

λδ

)
,

where ¯dfλ, defined in Lemma 1, measures the effective dimension of the correlation matrix W>W
withW = (w1, . . . , wn)> ∈ Rn×d, corresponding essentially to the number of eigenvalues ofW>W
larger than λ/a. In particular note that ¯dfλ ≤ min(n, d, rank(W ), ab2/λ), with b := maxi ‖wi‖,
and usually way smaller than such quantities.
Remark 1. The proposed method does not depend on the condition number of the problem L/λ, but
on the term R‖x?λ‖ which can be in the order of R/

√
λ in the worst case, but usually way smaller.

For example, it is possible to prove that this term is bounded by an absolute constant not depending
on λ, if at least one minimum for f exists. In the appendix (see Proposition 7), we show a variant of
this adaptive method which can leverage the regularity of the solution with respect to the Hessian,
i.e., depending on the smaller quantity R

√
λ‖x?λ‖H−1

λ (x?λ) instead of R‖x?λ‖.

Finally note that it is possible to use qk = q fixed for all the iterations and way smaller than the one
in Thm. 1, depending on some regularity properties of H (see Proposition 8 in Appendix C.2).
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4 Application to the non-parametric setting: Kernel methods

In supervised learning the goal is to predict well on future data, given the observed training dataset.
Let X be the input space and Y ⊆ Rp be the output space. We consider a probability distribution P
over X × Y generating the data and the goal is to estimate g∗ : X → Y solving the problem

g∗ = arg min
g:X→Y

L(g), L(g) = E[`(g(x), y)], (5)

for a given loss function ` : Y × Y → R. Note that P is not known, and accessible only via the
dataset (xi, yi)

n
i=1, with n ∈ N, independently sampled from P . A prototypical estimator for g∗ is

the regularized minimizer of the empirical risk L̂(g) = 1
n

∑n
i=1 `(g(xi), yi) over a suitable space of

functions G. Given φ : X → H a common choice is to select G as the set of linear functions of φ(x),
that is, G = {w>φ(·) | w ∈ H}. Then the regularized minimizer of L̂, denoted by ĝλ, corresponds to

ĝλ(x) = ŵ>λ φ(x), ŵλ = arg min
w∈H

1
n

∑n
i=1 fi(w) + λ‖w‖2, fi(w) = `(w>φ(xi), yi). (6)

Learning theory guarantees how fast ĝλ converges to the best possible estimator g∗ with respect
to the number of observed examples, in terms of the so called excess risk L(ĝλ) − L(g∗). The
following theorem recovers the minimax optimal learning rates for squared loss and extend them to
any generalized self-concordant loss function.

Note on dfλ. In this section, we always denote with dfλ the effective dimension of the problem in
Eq. (5). When the loss belongs to the family of generalized linear models (see Example 1) and if the
model is well-specified, then dfλ is defined exactly as in Eq. (1) otherwise we need a more refined
definition (see [23] or Eq. (30) in Appendix D).
Theorem 2 (from [23], Thm. 4). Let λ > 0, δ ∈ (0, 1]. Let ` be generalized self-concordant with
parameter R > 0 and supx∈X ‖φ(x)‖ ≤ C < ∞. Assume that there exists g∗ minimizing L.
Then there exists c0 not depending on n, λ, δ, dfλ, C, g∗, such that if

√
dfλ/n, bλ ≤ λ1/2/R, and

n ≥ C/λ log(δ−1C/λ) the following holds with probability 1− δ:

L(ĝλ)− L(g∗) ≤ c0
(dfλ
n

+ b2
λ

)
log(1/δ), bλ := λ‖g∗‖H−1

λ (g∗). (7)

Under standard regularity assumptions of the learning problems [23], i.e., (a) the capacity condition
σj(H(g∗)) ≤ Cj−α, for α ≥ 1, C > 0 (i.e., a decay of eigenvalues σj(H(g∗)) of the Hessian at the
optimum), and (b) the source condition g∗ = H(g∗)rv, with v ∈ H and r > 0 (i.e., the control of the
optimal g∗ for a specific Hessian-dependent norm), dfλ ≤ C ′λ−1/α and b2

λ ≤ C ′′λ1+2r, leading to
the following optimal learning rate,

L(ĝλ)− L(g∗) ≤ c1n−
1+2rα

1+α+2rα log(1/δ), when λ = n−
α

1+α+2rα . (8)
Now we propose an algorithmic scheme to compute efficiently an approximation of ĝλ that achieves
the same optimal learning rates. First we need to introduce the technique we are going to use.

Nyström projection. It consists in suitably selecting {x̄1, . . . , x̄M} ⊂ {x1, . . . , xn}, withM � n
and computing ḡM,λ, i.e., the solution of Eq. (6) overHM = span{φ(x̄1), . . . , φ(x̄M )} instead ofH.
In this case the problem can be reformulated as a problem in RM as

ḡM,λ = ᾱ>M,λT
−1v(x), ᾱM,λ = arg min

α∈RM
f̄λ(α), f̄(α) =

1

n

n∑
i=1

f̄i(α) + λ‖α‖2, (9)

where f̄i(α) = `(v(xi)
>T−1α, yi) and v(x) ∈ RM , v(x) = (k(x, x̄1), . . . , k(x, x̄M )) with

k(x, x′) = φ(x)>φ(x′) the associated positive-definite kernel [32], while T is the upper trian-
gular matrix such that K = T>T, with K ∈ RM×M with Kij = k(x̄i, x̄j). In the next theorem
we characterize the sufficient M to achieve minimax optimal rates, for two standard techniques of
choosing the Nyström points {x̄1, . . . , x̄M}.
Theorem 3 (Optimal rates for learning with Nyström). Let λ > 0, δ ∈ (0, 1]. Assume the conditions
of Thm. 2. Then the excess risk of ḡM,λ is bounded with prob. 1− 2δ as in Eq. (7) (with c′1 ∝ c1),
when

(1) Uniform Nyström method [28, 29] is used and M ≥ C1/λ log(C2/λδ).
(2) Approximate leverage score method [3, 28, 29] is used and M ≥ C3 dfλ log(C4/λδ).

Here C,C1, C2, C4 do not depend on λ, n,M, dfλ, δ.
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Thm. 3 generalizes results for learning with Nyström and squared loss [28], to GSC losses. It is
proved in Thm. 6, in Appendix D.4. As in [28], Thm. 3 shows that Nyström is a valid technique
for dimensionality reduction. Indeed it is essentially possible to project the learning problem on a
subspace HM of dimension M = O(c/λ) or even as small as M = O(dfλ) and still achieve the
optimal rates of Thm. 2. Now we are ready to introduce our algorithm.

Proposed algorithm. The algorithm conceptually consists in (a) performing a projection step with
Nyström, and (b) solving the resulting optimization problem with the globalization scheme proposed
in Sec. 3 based on ANM in Eq. (3). In particular, we want to avoid to apply explicitly T−1 to each
v(xi) in Eq. (9), which would require O(nM2) time. Then we will use the following approximation
technique based only on matrix vector products, so we can just apply T−1 to α at each iteration,
with a total cost proportional only to O(nM +M2) per iteration. Given α,∇f̄λ(α), we approximate
z∗ = H̄λ(α)−1∇f̄λ(α), where H̄λ is the Hessian of f̄λ(α), with z̃ defined as

z̃ = prec-conj-gradt(H̄λ(α),∇f̄λ(α)),

where prec-conj-gradt corresponds to performing t steps of preconditioned conjugate gradi-
ent [19] with preconditioner computed using a subsampling approach for the Hessian among the ones
presented in Sec. 2, in the paragraph starting with Eq. (4). The pseudocode for the whole procedure
is presented in Alg. 1, Appendix E. This technique of approximate linear system solving has been
studied in [29] in the context of empirical risk minimization for squared loss.

Lemma 4 ([29]). Let λ > 0, α, b ∈ RM . The previous method, applied with t = O(log 1/ρ), outputs
an element of LinApprox(H̄λ(α), b, ρ), with probability 1− δ with complexity O((nM +M2Q+
M3 + c)t) in time and O(M2 + n) in space, with Q = O(C1/λ log(C1/λδ)), c = O(1) if uniform
sub-sampling is used or Q = O(C2dfλ log(C1/λδ)), c = O(df2λ min(n, 1

λ )) if sub-sampling with
leverage scores is used [30].

A more complete version of this lemma is shown in Proposition 12 in Appendix D.5.1. We conclude
this section with a result proving the learning properties of the proposed algorithm.

Theorem 4 (Optimal rates for the proposed algorithms). Let λ > 0 and ε < λ/R2. Under the
hypotheses of Thm. 3, if we set M as in Thm. 3, Q as in Lemma 4 and setting the globalization
scheme as in Thm. 1, then the proposed algorithm (Alg. 1, Appendix E) finishes in a finite number of
newton steps Nns = O(R‖g∗‖ log(C/λ) + log(C/ε)) and returns a predictor gQ,M,λ of the form
gQ,M,λ = α>T−1v(x). With probability at least 1− δ, this predictor satisfies:

L(gQ,M,λ)− L(g∗) ≤ c0
(dfλ
n

+ b2
λ + ε

)
log(1/δ), bλ := λ‖g∗‖H−1

λ (g∗). (10)

The theorem above (see Proposition 14, Appendix D.6 for exacts quantifications) shows that the
proposed algorithm is able to achieve the same learning rates of plain empirical risk minimization as
in Thm. 2. The total complexity of the procedure, including the cost of computing the preconditioner,
the selection of the Nyström points via approximate leverage scores and also the computation of the
leverage scores [30] is then

O
(
R‖g∗‖ log(R2/λ)

(
n dfλ log(Cλ−1δ−1) cX + + df3λ log3(Cλ−1δ−1) + min(n,C/λ) df2λ

))
in time and O(df2λ log2(Cλ−1δ−1)) in space, where cX is the cost of computing the inner product
k(x, x′) (in the kernel setting assumed when the input space X is X = Rp it is c = O(p)).
As noted in [30], under the standard regularity assumptions on the learning problem seen above,
df2λ ≤ dfλ/λ ≤ n when the optimal λ is chosen. So the total computational complexity is

O
(
R log(R2/λ) log3(Cλ−1δ−1) ‖g∗‖ · n · dfλ · cX

)
in time, O(df2λ·log2(Cλ−1δ−1)) in space.

First note, the fact that due to the statistical properties of the problem the complexity does not depend
even implicitly on

√
C/λ, but only on log(C/λ), so the algorithm runs in essentially O(ndfλ),

compared to O(dfλ
√
nC/λ) of the accelerated first-order methods we develop in Appendix F and

the O(ndfλ
√
C/λ) of other Newton schemes (see Sec. 1.1). To our knowledge, this is the first

algorithm to achieve optimal statistical learning rates for generalized self-concordant losses and with
complexity only Õ(ndfλ). This generalizes similar results for squared loss [29, 30].
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Figure 1: Training loss and test error as as function of the number of passes on the data for our
algorithm vs. K-SVRG. on the (left) Susy and (right) Higgs data sets.

5 Experiments

The code necessary to reproduce the following experiments is available on GitHub at https:
//github.com/umarteau/Newton-Method-for-GSC-losses-.

We compared the performances of our algorithm for kernel logistic regression on two large scale
classification datasets (n ≈ 107), Higgs and Susy, pre-processed as in [29]. We implemented the
algorithm in pytorch and performed the computations on 1 Tesla P100-PCIE-16GB GPU. For Susy
(n = 5 × 106, p = 18): we used Gaussian kernel with k(x, x′) = e−‖x−x

′‖2/(2σ2), with σ = 5,
which we obtained through a grid search (in [29], σ = 4 is taken for the ridge regression); M = 104

Nyström centers and a subsampling Q = M for the preconditioner, both obtained with uniform
sampling. Analogously for Higgs (n = 1.1× 107, p = 28): , we used a Gaussian kernel with σ = 5
and M = 2.5× 104 and Q = M , using again uniform sampling. To find reasonable λ for supervised
learning applications, we cross-validated λ finding the minimum test error at λ = 10−10 for Susy
and λ = 10−9 for Higgs (see Figs. 2 and 3 in Appendix F) for such values our algorithm and the
competitor achieve an error of 19.5% on the test set for Susy, comparable to the state of the art (19.6%
[29]) and analogously for Higgs (see Appendix F). We then used such λ’s as regularization parameters
and compared our algorithm with a well known accelerated stochastic gradient technique Katyusha
SVRG (K-SVRG) [4], tailored to our problem using mini batches. In Fig. 1 we show the convergence
of the training loss and classification error with respect to the number of passes on the data, of our
algorithm compared to K-SVRG. It is possible to note our algorithm is order of magnitude faster in
achieving convergence, validating empirically the fact that the proposed algorithm scales as O(ndfλ)

in learning settings, while accelerated first order methods go as O((n +
√
nL/λ)dfλ). Moreover,

as mentioned in the introduction, this highlights the fact that precise optimization is necessary to
achieve a good performance in terms of test error. Finally, note that since a pass on the data is much
more expensive for K-SVRG than for our second order method (see Appendix F for details), the
difference in computing time between the second order scheme and K-SVRG is even more in favour
of our second order method (see Figs. 4 and 5 in Appendix F).
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Organization of the Appendix
A. Main results on generalized self-concordant functions

Notations, definitions and basic results concerning generalized self-concordant functions.

B. Results on approximate Newton methods
In this section, the interaction between the notion of Dikin ellipsoid, approximate Newton
methods and generalized self-concordant functions is studied. The results needed in the
main paper are all concentrated in Appendix B.3. In particular the results in Lemma 2 are
proven in a more general form in Lemma 11.

C. Proof of bounds for the globalization scheme
In this section, we leverage the results of the previous two sections to analyze the globaliza-
tion scheme.
C.1. Main technical lemmas

We start by proving the result on the inclusion of Dikin ellipsoids (Lemma 3).
C.2. Proof of main theorems

In particular, a general version of Thm. 1 is proven. Moreover Remark 1 is proven in
Proposition 7, while the fixed scheme to choose (qk)k∈N is proven in Proposition 8.

C.3. Proof of Thm. 1
Finally, we prove the properties of the globalization schemes presented in Thm. 1.

D. Non-parametric learning with generalized self-concordant functions
In this section, some basic results about non-parametric learning with generalized self-
concordant functions are recalled and the main results of Sec. 4 are proven.
D.1. General setting and assumptions, statistical result for regularized ERM.

More details about the generalization properties of empirical risk minimization as well
as the optimal rates in Thm. 2 are recalled.

D.2. Reducing the dimension: projecting on a subspace using Nyström sub-sampling.
D.3. Sub-sampling techniques.

The basics of uniform sub-sampling and sub-sampling with approximate leverage
scores are recalled.

D.4. Selecting the M Nyström points
Thm. 3 is proven in a more general version in Thm. 6.

D.5 Performing the globalization scheme to approximate βM,λ

A general scheme is proposed to solve the projected problem approximately using the
globalization scheme.

D.5.1. Performing approximate Newton steps
We start by describing the way of computing approximate Newton steps. A gener-
alized version of Lemma 4 is proven in Proposition 12.

D.5.2. Applying the globalization scheme to control ν̂M,λ(β)
We then completely analyse the approximating of βM,λ from an optimization point
of view (see Proposition 13).

D.6. Final algorithm and results
Finally, the proof of Thm. 4 is provided, using the results of the previous subsections.

E. Algorithm
In this section, the pseudocode for the algorithm presented in Sec. 4 and analyzed in Thm. 7
is provided.

F. Experiments
In this section, more details about the experiments are provided.

G. Solving a projected problem to reduce dimension
In this section, more details about the problem of randomized projections are provided.
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G.2. Relating the projected to the original problem
In particular, results to relate the ERM with the projected ERM in terms of excess risk
are provided for generalized self-concordant functions.

H. Relations between statistical problems and empirical problem.
In this section, we provide results to relate excess expected risk with excess empirical risk
for generalized self-concordant functions.

I. Multiplicative approximations for Hermitian operators
In this section, some general analytic results on multiplicative approximations for Hermitian
operators are derived. Moreover they are used to provide a simplified proof for the results in
Lemma 1. See in particular Lemmas 28 and 29 and [25], Lemma 2.

A Main results on generalized self-concordant functions

In this section, we start by introducing a few notations. We define the key notion of generalized self-
concordance in Appendix A.1, and present the main results concerning generalized self-concordant
functions. In Appendix A.2, we describe how generalized self-concordance behaves with respect to
an expectation or to certain relaxations.

Notations Let λ ≥ 0 and A be a bounded positive semidefinite Hermitian operator on H. We
denote with I the identity operator, and

‖x‖A := ‖A1/2x‖, (11)
Aλ := A + λI. (12)

Let f be a twice differentiable convex function on a Hilbert spaceH. We adopt the following notation
for the Hessian of f :

∀x ∈ H, Hf (x) := ∇2f(x) ∈ L(H).

For any λ > 0, we define the λ-regularization of f :

fλ := f +
λ

2
‖ · ‖2.

fλ is λ-strongly convex and has a unique minimizer which we denote with xf,λ? . Moreover, define

∀x ∈ H, Hf,λ(x) := ∇2fλ(x) = Hf (x) + λI, νf,λ(x) := ‖∇fλ(x)‖H−1
f,λ(x).

The quantity νf,λ(x) is called the Newton decrement at point x and will play a significant role.

When the function f is clear from the context, we will omit the subscripts with f and use H,Hλ, νλ....

A.1 Definitions and results on generalized self-concordant functions

In this section, we introduce the main definitions and results for self-concordant functions. These
results are mainly the same as in appendix B of [23].
Definition 3 (generalized self-concordant function). LetH be a Hilbert space. Formally, a general-
ized self-concordant function onH is a couple (f,G) where:

i G is a bounded subset ofH; we will usually denote ‖G‖ or R the quantity supg∈G ‖g‖ <∞;

ii f is a convex and three times differentiable mapping onH such that

∀x ∈ H, ∀h, k ∈ H, ∇(3)f(x)[h, k, k] ≤ sup
g∈G
|g · h| ∇2f(x)[k, k].
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To make notations lighter, we will often omit G from the notations and simply say that f stands both
for the mapping and the couple (f,G).

Definition 4 (Definitions). Let f be a generalized self-concordant function. We define the following
quantities.

• ∀h ∈ H, tf (h) := supg∈G |h · g|;

• ∀x ∈ H, ∀λ > 0, rf,λ(x) := 1
supg∈G ‖g‖H−1

f,λ
(x)

;

• ∀c ≥ 0, ∀λ > 0, Df,λ(c) := {x : νf,λ(x) ≤ crf,λ(x)}.

We also define the following functions:

ψ(t) =
et − t− 1

t2
, φ(t) =

1− e−t

t
, φ(t) =

et − 1

t
. (13)

Note that ψ, φ are increasing functions and that φ is a decreasing function. Moreover, φ(t)
φ(t) = et.

Once again, if f is clear, we will often omit the reference to f in the quantities above, keeping only
t, rλ,Dλ...

We condense results obtained in [23] under a slightly different form. The proofs, however, are exactly
the same.

While in [23], only the regularized case is dealt with, the proof techniques are exactly the same to
obtain Proposition 1. Proposition 2 is proved explicitly in Proposition 4 of [23] and Lemma 5 is
proved in Proposition 5.
Omitting the subscript f , we get the following results.

Proposition 1 (Bounds for the non-regularized function f ). Let f be a generalized self-concordant
function. Then the following bounds hold (we omit f in the subscripts):

∀x ∈ H, ∀h ∈ H, e−t(h)H(x) � H(x+ h) � et(h)H(x), (14)

∀x, h ∈ H, ∀λ > 0, ‖∇f(x+ h)−∇f(x)‖H−1
λ (x) ≤ φ(t(h))‖h‖Hλ(x), (15)

∀x, h ∈ H, ψ(−t(h))‖h‖2H(x) ≤ f(x+ h)− f(x)−∇f(x).h ≤ ψ(t(h))‖h‖2H(x). (16)

We get the analoguous bounds in the regularized case.

Proposition 2 (Bounds for the regularized function fλ). Let f be a generalized self-concordant
function and λ > 0 be a regularizer. Then the following bounds hold:

∀x, h ∈ H, e−t(h)Hλ(x) � Hλ(x+ h) � et(h)Hλ(x), (17)

∀x, h ∈ H, φ(t(h))‖h‖Hλ(x) ≤ ‖∇fλ(x+ h)−∇fλ(x)‖H−1
λ (x) ≤ φ(t(h))‖h‖Hλ(x), (18)

∀x, h ∈ H, ψ(−t(h))‖h‖2Hλ(x) ≤ fλ(x+ h)− fλ(x)−∇fλ(x).h ≤ ψ(t(h))‖h‖2Hλ(x). (19)

Corollary 1. Let f be a G generalized self-concordant function and λ > 0 be a regularizer, and x?λ
the unique minimizer of fλ. Then the following bounds hold for any x ∈ H:

φ(t(x− x?λ))‖x− x?λ‖Hλ(x) ≤ ‖∇fλ(x)‖H−1
λ (x)︸ ︷︷ ︸

νλ(x)

≤ φ(t(x− x?λ))‖x− x?λ‖Hλ(x), (20)

ψ(−t(x− x?λ))‖x− x?λ‖2Hλ(x?λ) ≤ fλ(x)− fλ(x?λ) ≤ ψ(t(x− x?λ))‖x− x?λ‖2Hλ(x?λ). (21)

Moreover, the following localization lemma holds.
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Lemma 5 (localization). Let λ > 0 be fixed. If νλ(x)
rλ(x) < 1, then

t(x− x?λ) ≤ − log

(
1− νλ(x)

rλ(x)

)
. (22)

In particular, this shows:

∀c < 1, ∀λ > 0, x ∈ Dλ(c) =⇒ t(x− x?λ) ≤ − log(1− c).

We now state a Lemma which shows that the difference to the optimum in function values is equivalent
to the squared newton decrement in a small Dikin ellipsoid. We will use this result in the main paper.
Lemma 6 (Equivalence of norms). Let λ > 0 and x ∈ Dλ( 1

7 ). Then the following holds:

1

4
νλ(x)2 ≤ fλ(x)− fλ(x?λ) ≤ νλ(x)2.

Proof. Apply Lemma 5 knowing x ∈ Dλ( 1
7 ) to get t(x− x?λ) ≤ log(7/6). Then apply Eq. (19) and

Eq. (18) to get:

fλ(x)− fλ(x?λ) ≤ ψ(t(x− x?λ))‖x− x?λ‖2Hλ(x?λ)

≤ et(x−x
?
λ)ψ(t(x− x?λ))‖x− x?λ‖2Hλ(x)

≤ et(x−x
?
λ)ψ(t(x− x?λ))

φ(t(x− x?λ))2
νλ(x)2.

Replacing with the bound above, we get

∀λ > 0, ∀x ∈ Dλ(
1

7
), fλ(x)− fλ(x?λ) ≤ νλ(x)2.

For the lower bound, proceed in exactly the same way.

A.2 Comparison between generalized self-concordant functions

The following result is straightforward.
Lemma 7 (Comparison between generalized self-concordant functions). Let G1 ⊂ G2 ⊂ H be
two bounded subsets. If (f,G1) is generalized self-concordant, then (f,G2) is also generalized
self-concordant. Moreover,

∀x ∈ H, ∀λ > 0, r(f,G1),λ(x) ≥ r(f,G2),λ(x).

In particular, we will often use the following fact. If (f,G) is generalized self-concordant, and G is
bounded by R, then (f,BH(R)) is also generalized self-concordant. Moreover,

r(f,BH(R)),λ(x) =

√
λ+ λmin(Hf (x))

R
≥
√
λ

R
.

We now state a result which shows that, given a family of generalized self-concordant functions, the
expectancy of that family is also generalized self-concordant. This can be seen as a reformulation of
Proposition 2 of [23].
Proposition 3 (Expectation). Let Z be a polish space equipped with its Borel sigma-algebra, andH
be a Hilbert space. Let ((fz,Gz))z∈Z be a family of generalized self-concordant functions such that
the mapping (z, x) 7→ fz(x) is measurable.

Assume we are given a random variable Z on Z , whose support we denote with supp(Z), such that

• the random variables ‖fZ(0)‖, ‖∇fZ(0)‖,Tr(∇2fZ(0)) are are bounded;

• G :=
⋃
z∈supp(Z) Gz is a bounded subset ofH.

Then the mapping f : x ∈ H 7→ E [fZ(x)] is well defined, (f,G) is generalized self-concordant, and
we can differentiate under the expectation.
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Corollary 2. Let n ∈ N and (fi,Gi)1≤i≤n be a family of generalized self-concordant functions.
Define

f(x) =
1

n

n∑
i=1

fi(x), G =

n⋃
i=1

Gi.

Then (f,G) is generalized self-concordant.
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B Results on approximate Newton methods

In this section, we assume we are given a generalized self-concordant function f in the sense of
Appendix A. As f will be fixed throughout this part, we will omit it from the notations. Recall the
definitions from Definition 4:

νλ(x) := ‖∇fλ(x)‖H−1
λ (x),

1

rλ(x)
:= sup

g∈G
‖g‖H−1

λ (x), Dλ(c) :=

{
x :

νλ(x)

rλ(x)
≤ c

}
.

Define the following quantities:

• the true Newton step at point x for the λ-regularized problem:

∆λ(x) := H−1
λ (x)∇fλ(x).

• the renormalized Newton decrement ν̃λ(x):

ν̃λ(x) :=
νλ(x)

rλ(x)
.

Moreover, note that a direct application of Eq. (17) yields the following equation which relates the
radii at different points:

∀λ > 0, ∀x ∈ H, ∀h ∈ H, e−t(h)rλ(x) ≤ rλ(x+ h) ≤ et(h)rλ(x). (23)

In this appendix, we develop a complete analysis of so-called approximate Newton methods in
the case of generalized self-concordant losses. By "approximate Newton method", we mean that
instead of performing the classical update xt+1 = xt −∆λ(xt), we perform an update of the form
xt+1 = xt − ∆̃t where ∆̃t is an approximation of the real Newton step. We will characterize this
approximation by measuring its distance to the real Newton step using two parameters ρ and ε0:

‖∆̃t −∆λ(xt)‖ ≤ ρνλ(xt) + ε0.

We start by presenting a few technical results in Appendix B.1. We continue by proving that
an approximate Newton method has linear convergence guarantees in the right Dikin ellipsoid in
Appendix B.2. In Appendix B.3, we adapt these results to a certain way of computing approximate
Newton steps, which will be the one we use in the core of the paper. In Appendix B.4, we mention
ways to reduce the computational burden of these methods by showing that since all Hessians are
equivalent in Dikin ellipsoids, one can actually sketch the Hessian at one given point in that ellipsoid
instead of re-sketching it at each Newton step. For the sake of simplicity, this is not mentioned in the
core paper, but works very well in practice.

B.1 Main technical results

We start with a technical decomposition of the Newton decrement at point x− ∆̃ for a given ∆̃ ∈ H.
Lemma 8 (Technical decomposition). Let λ > 0, x ∈ H be fixed. Assume we perform a step of the
form x− ∆̃ for a certain ∆̃ ∈ H. Define

δ := ‖∆̃−∆λ(x)‖Hλ(x), δ̃ :=
δ

rλ(x)
.

The following holds:

ν̃λ(x− ∆̃) ≤ eν̃λ(x)+δ̃
[
ψ(ν̃λ(x) + δ̃)(ν̃λ(x) + δ̃)2 + δ̃

]
; (24)

νλ(x− ∆̃λ(x)) ≤ eν̃λ(x)+δ̃
[
ψ(ν̃λ(x) + δ̃)(ν̃λ(x) + δ̃)(νλ(x) + δ) + δ

]
. (25)

Proof. Note that by definition,∇fλ(x) = Hλ(x)∆λ(x). Hence
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‖∇fλ(x− ∆̃)‖H−1
λ (x) = ‖∇fλ(x− ∆̃)−∇fλ(x) + Hλ(x)∆λ(x)‖H−1

λ (x)

≤ ‖∇fλ(x− ∆̃)−∇fλ(x) + Hλ(x)∆̃‖H−1
λ (x)

+ ‖Hλ(x)(∆λ(x)− ∆̃)‖H−1
λ (x)

= ‖
∫ 1

0

[Hλ(x− s∆̃)−Hλ(x)]∆̃ds‖H−1
λ (x) + δ

≤
∫ 1

0

‖H−1/2
λ (x)Hλ(x− s∆̃)H

−1/2
λ (x)− I‖ds ‖∆̃‖Hλ(x) + δ.

Now using Eq. (17), one has ‖H−1/2
λ (x)Hλ(x− s∆̃)H

−1/2
λ (x)− I‖ ≤ est(∆̃) − 1, whose integral

on s is ψ(t(∆̃))t(∆̃) where ψ is defined in Definition 4. Morever, bounding

‖∆̃‖Hλ(x) ≤ ‖∆̃−∆λ(x)‖Hλ(x) + ‖∆λ(x)‖Hλ(x) = δ + νλ(x),

it holds
‖∇fλ(x− ∆̃)‖H−1

λ (x) ≤ ψ(t(∆̃))t(∆̃) (νλ(x) + δ) + δ.

1. Now note that using Eq. (17), it holds: νλ(x− ∆̃) ≤ et(∆̃)/2‖∇fλ(x− ∆̃)‖H−1
λ (x) and hence:

νλ(x− ∆̃) ≤ et(∆̃)/2
(
ψ(t(∆̃))t(∆̃) (νλ(x) + δ) + δ

)
. (26)

2. Moreover, using Eq. (23),

ν̃λ(x− ∆̃) ≤ et(∆̃)
(
ψ(t(∆̃))t(∆̃) (ν̃λ(x) + δ̃) + δ̃

)
. (27)

Noting that

t(∆̃) ≤
‖∆̃‖Hλ(x)

rλ(x)
≤ ν̃λ(x) + δ̃,

and bounding Eq. (26) simply by taking et(∆̃)/2 ≤ et(∆̃), we get the two bounds in the lemma.

We now place ourselves in the case where we are given an approximation of the Newton step of the
following form. Assume λ and x are fixed, and that we approximate ∆λ(x) with ∆̃ such that there
exists ρ ≥ 0 and ε0 ≥ 0 such that it holds:

‖∆̃−∆λ(x)‖Hλ(x) ≤ ρνλ(x) + ε0.

We define/prove the three different following regimes.

Lemma 9 (3 regimes). Let x ∈ Dλ
(

1
7

)
and λ > 0 be fixed. Let

0 ≤ ρ ≤ 1

7
, ε0 ≥ 0 s.t. ε̃0 :=

ε0
rλ(x)

≤ 1

21
.

Let ∆̃ be an approximation of the Newton steps satisfying ‖∆̃−∆λ(x)‖Hλ(x) ≤ ρνλ(x) + ε0. The
three following regimes appear.

• If ν̃λ(x) ≥ ρ and ν̃λ(x)2 ≥ ε̃0, then we are in the quadratic regime, i.e.

10ν̃λ(x− ∆̃λ(x))

3
≤
(

10ν̃λ(x)

3

)2

, νλ(x− ∆̃λ(x)) ≤ 10

3
ν̃λ(x)νλ(x).
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• If ρ ≥ ν̃λ(x) and ρν̃λ(x) ≥ ε̃0, then we are in the linear regime, i.e.

10

3
ν̃λ(x− ∆̃λ(x)) ≤

(
10ρ

3

)(
10

3
ν̃λ(x)

)
, νλ(x− ∆̃λ(x)) ≤ 10

3
ν̃λ(x)νλ(x).

• If ε̃0 ≥ ν̃λ(x)2, ρ ν̃λ(x), then the maximal precision of the approximation is reached, and
it holds:

ν̃λ(x− ∆̃λ(x)) ≤ 3ε̃0 ≤
1

7
, νλ(x− ∆̃λ(x)) ≤ 3ε0.

Proof. Using the previous lemma,

ν̃λ(x− ∆̃λ(x)) ≤ e(1+ρ)ν̃λ(x)+ε̃0
[
ψ((1 + ρ)ν̃λ(x) + ε̃0)((1 + ρ)ν̃λ(x) + ε̃0)2 + ρν̃λ(x) + ε̃0

]
≤ �1(ν̃λ(x), ρ, ε̃0) ν̃λ(x)2 + �2(ν̃λ(x), ρ, ε̃0) ρν̃λ(x) + �3(ν̃λ(x), ρ, ε̃0) ε̃0,

and

νλ(x− ∆̃λ(x)) ≤ �1(ν̃λ(x), ρ, ε̃0) ν̃λ(x)νλ(x) + �2(ν̃λ(x), ρ, ε̃0) ρνλ(x) + �3(ν̃λ(x), ρ, ε̃0) ε0,

where the following defintions are used:

�1(ν̃, ρ, ε̃0) := e(1+ρ)ν̃+ε̃0ψ((1 + ρ)ν̃ + ε̃0)(1 + ρ)2,

�2(ν̃, ρ, ε̃0) := e(1+ρ)ν̃+ε̃0 ,

�3(ν̃, ρ, ε̃0) := e(1+ρ)ν̃+ε̃0 [2ψ((1 + ρ)ν̃ + ε̃0)(1 + ρ)ν̃ + 1] .

Now assume ε̃0 ≤ 1
21 , ν̃λ(x), ρ ≤ 1

7 . Replacing these values in the functions above bounds �1,�2

and �3, and using the case distinction, we get the result.

B.2 General analysis of an approximate Newton method

The following proposition describes the behavior of an approximate newton method where ρ and ε0
are fixed a priori.

Proposition 4 (General approximate Newton scheme results). Let c ≤ 1
7 be fixed and x0 ∈ Dλ(c)

be a given starting point.
Let ρ ≤ 1

7 and ε0 such that ε0 ≤ c
4 rλ(x0).

Define the following approximate Newton scheme:

∀t ≥ 0, xt+1 = xt − ∆̃t, ‖∆̃t −∆λ(xt)‖Hλ(xt) ≤ ρνλ(xt) + ε0.

The following guarantees hold.

• ∀t ≥ 0, xt ∈ Dλ(c).

• Let tc =
⌊
log2 log2

3
10ρ

⌋
+ 1.

∀t ≤ tc,
10ν̃λ(xt)

3
≤ max

(
12ε0
rλ(x0)

, 2−2t
)
,

∀t ≥ tc,
10ν̃λ(xt)

3
≤ max

(
12ε0
rλ(x0)

,

(
10ρ

3

)t−tc+1
)
.
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• We can bound the relative decrease for both the Newton decrement and the renormalized
Newton decrement:

∀t ≤ tc, νλ(xt) ≤ max

(
3ε0,

(
1

2

)2t−1

νλ(x0)

)
,

ν̃λ(xt) ≤ max

(
18ε0

5rλ(x0)
,

(
1

2

)2t−1

ν̃λ(x0)

)
.

∀t ≥ tc, νλ(xt) ≤ max

(
3ε0,

(
10ρ

3

)t−tc+1

νλ(x0)

)
,

ν̃λ(xt) ≤ max

(
18ε0

5rλ(x0)
,

(
10ρ

3

)t−tc+1

ν̃λ(x0)

)
.

Proof. Start by noting, using Eq. (23),

∀x ∈ Dλ

(
1

7

)
, ε ≤ rλ(x)

21
,

6

7
rλ(x0) ≤ rλ(x) ≤ 7

6
rλ(x0). (28)

In particular, this holds for any x ∈ Dλ(c), c ≤ 1
7 . Thus,

∀c ≤ 1

7
, ∀x0 ∈ Dλ(c),

ε0
rλ(x0)

≤ c

4
=⇒ ∀x ∈ Dλ(c),

ε0
rλ(x)

≤ c

3
.

1. Proving the first point is simple by induction. Indeed, assume ν̃λ(xt) ≤ c. We can apply
Lemma 9 since the conditions on ε and ρ guarantee that the conditions of this lemma are satisfied.

If we are in either the linear or quadratic regime, the fact that 10ρ
3 , 10ν̃λ(xt)

3 ≤ 10
21 show that

ν̃λ(xt+1) ≤ 10
21 ν̃λ(xt) ≤ c.

If we are in the last case, ν̃λ(xt+1) ≤ 3ε0
rλ(xt)

≤ c.

2. Let us prove the second bullet point by induction. Start by assuming the property holds at t. By
the previous point, the hypothesis of Lemma 9 are satisfied at xt with ρ and ε. Assume we are in the
limiting case; we easily show that in this case,

10ν̃λ(xt+1)

3
≤ 10

3
3

ε0
rλ(xt)

≤ 35ε0
3rλ(x0)

.

Here, the last inequality comes from Eq. (28). If we are not in the limiting case, let us distinguish
between the two following cases.

If t ≤ tc − 1,

10ν̃λ(xt+1)

3
≤ 10ν̃λ(xt)

3
max

(
10ν̃λ(xt)

3
,

10ρ

3

)
≤ max

(
35ε0

3rλ(x0)
,

10ν̃λ(xt)

3
max

((
1

2

)2t

,
10ρ

3

))
,

where the last inequality comes from using the induction hypothesis and the fact that 10ν̃λ(xt)
3 ≤ 1.

Using once again the induction hypotheses and the fact that t ≤
⌊
log2 log2

3
10ρ

⌋
which implies

10ρ
3 ≤

(
1
2

)2t
, we finally get

10ν̃λ(xt+1)

3
≤ max

(
35ε0

3rλ(x0)
,

(
1

2

)2t+1)
.
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The fact that the second property holds for t = tc is trivial Now consider the case where t ≥ tc.
Using the same technique as before but noting that in this case

10ν̃λ(xt)

3
≤ max

(
35ε0

3rλ(x0)
,

(
10ρ

3

)t−tc+1
)
≤ max

(
35ε0

3rλ(x0)
,

10ρ

3

)
,

We easily use Lemma 9 to reach the desired conclusion.

3. Let t < tc. Then using Lemma 9:

∀s ≤ t, νλ(xs+1) ≤ max

(
3ε0,max(

10ρ

3
,

10ν̃λ(xs)

3
)νλ(xs)

)
.

Using the fact that for any s ≤ t, 10ν̃λ(xs)
3 ≤ max( 35ε0

3rλ(x0) ,
(

1
2

)2s
):

∀s ≤ t, νλ(xs+1) ≤ max

(
3ε0,

35ε0
3

νλ(xs)

rλ(x0)
,max(

10ρ

3
,

(
1

2

)2s

)νλ(xs)

)
.

Now using the fact that for any s ≤ t, ν̃λ(xs) ≤ 1
7 , we see that νλ(xs)

rλ(x0) ≤
7
6 ν̃λ(xs) ≤ 1

6 and hence
35ε0

3
νλ(xs)
rλ(x0) ≤ 3ε0. Moreover, since s ≤ t < tc, max( 10ρ

3 ,
(

1
2

)2s
) =

(
1
2

)2s
. Thus:

∀s ≤ t, νλ(xs+1) ≤ max

(
3ε0,

(
1

2

)2s

νλ(xs)

)
.

Combining these results yields:

νλ(xt+1) ≤ max

(
3ε0,

(
1

2

)2t+1−1

νλ(x0)

)
.

This shows the first equation, that is:

∀t ≤ tc, νλ(xt) ≤ max

(
3ε0,

(
1

2

)2t−1

νλ(x0)

)
.

The case for t ≥ tc is completely analogous. We can also reproduce the same proof to get the same
bounds for ν̃, since the bounds in Lemma 9 are the same for both.

B.3 Main results in the paper

In the main paper, we mention two types of Newton method. First, we present a result of convergence
on the full Newton method:
Lemma 10 (Quadratic convergence of the full Newton method). Let c ≤ 1

7 and x0 ∈ Dλ(c). Define

xt+1 = xt −∆λ(xt).

Then this scheme converges quadratically, i.e.:

∀t ∈ N,
νλ(xt)

νλ(x0)
,
ν̃λ(xt)

ν̃λ(x0)
≤ 2−(2t−1).

Thus :

• ∀t ∈ N, xt ∈ Dλ(c).

• For any c̃ ≤ c then ∀t ≥
⌈
log2

(
1 + log2

c
c̃

)⌉
, xt ∈ Dλ(c̃).

• For any ε > 0, ∀t ≥
⌈
log2

(
1 + log2

νλ(x0)√
ε

)⌉
, νλ(xt) ≤

√
ε, fλ(x)− fλ(x?λ) ≤ ε.
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• If we perform the Newton method and return the first xt such that νλ(xt) ≤
√
ε, then the

number of Newton steps computations is at most 1 +
⌈
log2

(
1 + log2

νλ(x0)√
ε

)⌉
.

Proof. A full Newton method is an approximate Newton method where ρ, ε0 = 0. Thus apply
Proposition 4; note that in this case tc = +∞. The last point shows that if c ≤ 1

7 , and if we perform
the Newton method with a full Newton step, then

∀t ≥ 0, ν̃λ(xt) ≤ 2−(2t−1)νλ(x0), ν̃λ(xt) ≤ 2−(2t−1)νλ(x0).

This shows the quadratic convergence, and the first two points directly follow. For the third point, the
result for νλ(xt) directly follows from the previous equation, and the one on function values is a
direct consequence of Lemma 6 and the fact that xt ∈ Dλ(1/7).

For the last point, note that νt(xt) = ∇fλ(xt) ·∆λ(xt) is accessible. Moreover, the bound on t is
given in the point before, and since one has to compute ∆λ(xs) for 0 ≤ s ≤ t, there are at most t+ 1
computations.

In the main paper, we compute approximate Newton steps by considering methods which naturally
yield only a relative error ρ and no absolute error ε0. Indeed, we take the following notation.

Approximate solutions to linear problems. Let A be a positive definite Hermitian operator on
H, b inH, and a wanted relative precision ρ.

We say that x is a ρ-relative approximation to the linear problem Ax = b and write x ∈
LinApprox(A, b, ρ) if the following holds:

‖A−1b− x‖A ≤ ρ‖b‖A−1 = ρ‖A−1b‖A.

Note that if x ∈ LinApprox(A, b, ρ) for ρ < 1, then

(1− ρ)‖b‖A−1 ≤ x · b ≤ (1 + ρ)‖b‖A−1 .

The following lemma shows that if, instead of computing the exact Newton step, we compute a
relative approximation of the Newton step belonging to LinApprox(Hλ(x),∇fλ(x), ρ) for a given
ρ < 1, then one has linear convergence. Moreover, we show that we can still perform a method which
automatically stops.

Proposition 5 (relative approximate Newton method). Let λ > 0, ρ ≤ 1
7 , c ≤ 1

7 and a starting point
x0 ∈ Dλ(c). Assume we perform the following Newton scheme:

∀t ≥ 0, xt+1 = xt − ∆̃t, ∆̃t ∈ LinApprox(Hλ(xt),∇fλ(xt), ρ).

Then the scheme converges linearly, i.e.

∀t ∈ N,
νλ(xt)

νλ(x0)
,
ν̃λ(xt)

ν̃λ(x0)
≤ 2−t.

Thus,

• ∀t ∈ N, xt ∈ Dλ(c).

• For any c̃ ≤ c then ∀t ≥
⌈
log2

c
c̃

⌉
, xt ∈ Dλ(c̃).

• For any ε > 0, ∀t ≥
⌈
log2

νλ(x0)√
ε

⌉
, νλ(xt) ≤

√
ε, fλ(x)− fλ(x?λ) ≤ ε

• If the method is performed and returns the first xt such that xt · ∆̃t ≤ 6
7ε, then at most

2 +
⌊
log2

(√
4
3
νλ(x0)√

ε

)⌋
approximate Newton steps computations have been performed,

and νλ(xt) ≤
√
ε, fλ(x)− fλ(x?λ) ≤ ε.
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Proof. Apply Proposition 4 with ε0 = 0 and ρ = 1
7 , since if ρ ≤ 1

7 , then a fortiori the approximation
satisfies the condition for ρ = 1

7 . The last point clearly states that

∀t ∈ N,
νλ(xt)

νλ(x0)
,
ν̃λ(xt)

ν̃λ(x0)
≤
(

10

21

)t
≤ 2−t.

From this, using Lemma 6 for the third point, the first three points are easily proven.
For the last point, note that since ∆̃t ∈ LinApprox(Hλ(xt),∇fλ(xt), ρ), the following holds:
∇fλ(xt) · ∆̃t = νλ(xt)

2 +∇fλ(xt) ·
(

∆̃t −H−1
λ (xt)∇fλ(xt)

)
. Now bound

|∇fλ(xt) ·
(

∆̃t −H−1
λ (xt)∇fλ(xt)

)
| ≤ νλ(xt) ‖∆̃t −H−1

λ (xt)∇fλ(xt)‖Hλ(xt) ≤ ρνλ(xt)
2.

Thus:
(1− ρ)νλ(xt)

2 ≤ ∇fλ(xt) · ∆̃t ≤ (1 + ρ)νλ(xt)
2.

Since ρ = 1
7 , we see that if ∇fλ(xt) · ∆̃t ≤ 6

7ε, then νλ(xt)
2 ≤ ε. Moreover, since we stop at the

first t where ∇fλ(xt) · ∆̃t ≤ 6
7ε, then if t denotes the time at which we stop,

6

7
ε < ∇fλ(xt−1) · ∆̃t−1 ≤

8

7
νλ(xt−1)2 =⇒ νλ(xt−1)2 ≥ 3

4
ε.

Since νλ(xt−1)2 ≤ 2−2(t−1)νλ(x0)2, this implies in turn that t − 1 ≤ log2

(√
4
3
νλ(x0)√

ε

)
. Thus,

necessarily, t ≤ 1 +
⌊
log2

(√
4
3
νλ(x0)√

ε

)⌋
, and since we compute approximate Newton steps for

s = 0, ..., t, we finally have that the number of approximate Newton steps is bounded by

2 +

⌊
log2

(√
4

3

νλ(x0)√
ε

)⌋
.

Last but not least, we summarize all these theorem in the following simple result.

Lemma 11. Let λ > 0, c ≤ 1/7, let fλ be generalized self-concordant and x ∈ Dλ(c). It holds:
1
4νλ(x)2 ≤ fλ(x) − fλ(x?λ) ≤ νλ(x)2. Moreover, the full Newton method starting from x0 has
quadratic convergence, i.e. if xt is obtained via t ∈ N steps of the Newton method Eq. (2), then
νλ(xt) ≤ 2−(2t−1)νλ(x0). Finally, the approximate Newton method starting from x0 has linear con-
vergence, i.e. if xt is obtained via t ∈ N steps of Eq. (3), with ∆̃t ∈ LinApprox(Hλ(xt),∇fλ(xt), ρ)
and ρ ≤ 1/7, then νλ(xt) ≤ 2−tνλ(x0).

Proof. The three points are obtained in the following lemmas, assuming x ∈ Dλ(1/7).

• For 1
4νλ(x)2 ≤ fλ(x)− fλ(x?λ) ≤ νλ(x)2, see Lemma 6 in Appendix A.1.

• The convergence rate of the full Newton method starting in Dλ(1/7) is obtained in
Lemma 10.

• The convergence rate of the approximate Newton method starting in Dλ(1/7) is obtained in
Proposition 5.

B.4 Sketching the Hessian only once in each Dikin ellispoid

In this section, we provide a lemma which shows in essence that if we are in a small Dikin ellipsoid,
then we can keep the Hessian of the starting point and compute approximations of H−1

λ (x0)∇fλ(xt);
they will be good approximations to H−1

λ (xt)∇fλ(xt) as well.
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Lemma 12. Let c < 1 and x0 ∈ Dλ(c) be fixed.

Let H̃ be an approximation of the Hessian at x0, approximation wich we quantify with

t := ‖H−1/2
λ (x0)

(
Hλ(x0)− H̃

)
H
−1/2
λ (x0)‖.

Assume
1 + t < 2(1− c)2.

Let b ∈ H. If ∆̃ ∈ LinApprox(H̃λ, b, ρ̃), then

∀x ∈ Dλ(c), ∆̃ ∈ LinApprox(Hλ(x), b, ρ), ρ =
(ρ̃− 1)(1− c)2 + (1 + t)

2(1− c)2 − (1 + t)
.

In particular, if c ≤ 1
30 , x0 ∈ Dλ(c),

∀x ∈ Dλ(c), ∀b ∈ H, ∆̃ ∈ LinApprox(Hλ(x0), b,
1

20
) =⇒ ∆̃ ∈ LinApprox(Hλ(x), b,

1

7
).

Proof. First, start with a general theoretical result.

1. Let A and B be two positive semi-definite hermitian operators. Let λ > 0, b ∈ H and
∆̃ ∈ LinApprox(Bλ, b, ρ̃). Decompose

‖A−1
λ b− ∆̃‖Aλ

≤ ‖A−1
λ b−B−1

λ b‖Aλ
+ ‖B−1

λ b− ∆̃‖Aλ

≤ ‖A1/2
λ (A−1

λ −B−1
λ )A

1/2
λ ‖ ‖b‖A−1

λ
+ ‖A1/2

λ B
−1/2
λ ‖ ‖B−1

λ b− ∆̃‖Bλ .

Now using the fact that A−1
λ −B−1

λ = B−1
λ (B−A)A−1

λ ,

‖A1/2
λ (A−1

λ −B−1
λ )A

1/2
λ ‖ ≤ ‖A

−1/2
λ (B−A)A

−1/2
λ ‖ ‖A1/2

λ B−1
λ A

1/2
λ ‖

= ‖A−1/2
λ (B−A)A

−1/2
λ ‖ ‖A1/2

λ B
−1/2
λ ‖2.

Moreover,
‖B−1

λ b− ∆̃‖Bλ ≤ ρ̃‖b‖B−1
λ
≤ ‖A1/2B−1/2‖ ‖b‖A−1

λ
.

Putting things together, and noting that from Lemma 21, ‖A1/2B−1/2‖2 ≤ 1

1−‖A−1/2
λ (B−A)A

−1/2
λ ‖

as soon as ‖A−1/2
λ (B−A)A

−1/2
λ ‖ < 1, it holds:

∆̃ ∈ LinApprox(Aλ, b, ρ), ρ =
ρ̃+ ‖A−1/2

λ (B−A)A
−1/2
λ ‖

1− ‖A−1/2
λ (B−A)A

−1/2
λ ‖

.

The aim is now to apply this lemma to A = H(x) and B = H̃.

2. Let x, x0 ∈ Dλ(c). Using Lemma 22, we see that

1 + ‖H−1/2
λ (x)(H̃−H(x))H

−1/2
λ (x)‖ ≤ (1 + t)(1 + ‖H−1/2

λ (x)(H(x0)−H(x))H
−1/2
λ (x)‖).

Using Eq. (17), it holds:

(e−t(x−x0) − 1)I � H
−1/2
λ (x)(H(x0)−H(x))H

−1/2
λ (x) � (et(x0−x) − 1)I.

Thus,

‖H−1/2
λ (x)(H(x0)−H(x))H

−1/2
λ (x)‖ ≤ max(1− e−t(x−x0), et(x−x0) − 1) = et(x−x0) − 1.

Finally, using the fact that x0, x ∈ Dλ(c) for c < 1 yields t(x− x0) ≤ 2 log 1
1−c . Hence

1 + ‖H−1/2
λ (x)(H(x0)−H(x))H

−1/2
λ (x)‖ ≤ 1

(1− c)2
.

Thus,

‖H−1/2
λ (x)(H̃−H(x))H

−1/2
λ (x)‖ ≤ 1 + t

(1− c)2
− 1.

The result then follows.
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C Proof of bounds for the globalization scheme

In this section, we prove that the scheme of decreasing µ towards λ converges.

C.1 Main technical lemmas

Lemma 13 (Next µ). Let µ > 0, c < 1.

νµ(x) ≤ c

3

√
µ

R
=⇒ νµ̃(x) ≤ c

√
µ̃

R
, µ̃ := q µ, q ≥

1
3 +

R
√
µ‖x‖

H
−1
µ (x)

c

1 +
R
√
µ‖x‖

H
−1
µ (x)

c

.

x ∈ Dµ
( c

3

)
=⇒ x ∈ Dµ̃ (c) , µ̃ := q µ, q ≥

1
3 +

µ‖x‖
H
−1
µ (x)

c rµ(x)

1 +
µ‖x‖

H
−1
µ (x)

c rµ(x)

.

Proof. For any µ̃ < µ, note that

∀x ∈ H, ‖H−1/2
µ̃ (x)H1/2

µ (x)‖ =

√
λmin(H(x)) + µ

λmin(H(x)) + µ̃
≤
√
µ/µ̃.

This shows that ‖ · ‖H−1
µ̃

(x) ≤
√

µ
µ̃ ‖ · ‖H−1

µ (x), and in particular that 1
rµ̃(x) ≤

√
µ/µ̃ 1

rµ(x) .

Using this fact, it holds:

ν̃µ̃(x) =
‖∇fµ̃(x)‖H−1

µ̃
(x)

rµ̃(x)

=
‖∇fµ(x)− (µ− µ̃)x‖H−1

µ̃
(x)

rµ̃(x)

≤ µ

µ̃

‖∇fµ(x)‖H−1
µ (x)

rµ(x)
+

(
µ

µ̃
− 1

) ‖µx‖H−1
µ (x)

rµ(x)
.

Hence, if ν̃µ(x) ≤ c
3 , a condition to obtain ν̃µ̃(x) ≤ c is the following:

µ

µ̃

( c
3

+ t
)
≤ c + t⇔ µ̃ ≥ µc/3 + t

c + t
t =
‖µx‖H−1

µ (x)

rµ(x)
.

This yields the second point of the lemma. The analysis is completely analoguous for the first.

Lemma 14 (Useful bounds for q). Let µ > 0. Then the following hold:

∀x ∈ H,
µ‖x‖H−1

µ (x)

rµ(x)
≤ R√µ‖x‖H−1

µ (x) ≤ R‖x‖.

Moreover, we can bound all of these quantities using x?µ:

• For any c < 1, x ∈ H, if x ∈ Dµ(c/3), then the following holds:

µ‖x‖H−1
µ (x)

c rµ(x)
≤ 1

3

(
1 +

1

1− c/3

)
+

1

1− c/3

‖µx?µ‖H−1
µ (x?µ)

c rµ(x?µ)
.

• For any c < 1, x ∈ H, if Rνµ(x)√
µ ≤ c

3 , then the following holds:

R
√
µ‖x‖H−1

µ (x)

c
≤
(

1 +
1

1− c/3

)
1

3
+

√
1

1− c/3

R
√
µ‖x?µ‖H−1

µ (x?µ)

c
.

Likewise, it can be shown that under the same conditions:
R‖x‖
c
≤
R‖x?µ‖

c
+

1

3
φ(− log(1− c/3)).

25



Proof. The first bound is obvious. Moreover, the fact that ν̃µ(x) ≤ c
3 implies that t(x − x?µ) ≤

log 1
1−c/3 . Thus, we get the classical bounds on the Hessian using Eq. (14):

e−t(x−x
?
µ)H(x) � H(x?µ) � et(x−x

?
µ)H(x).

1. Bound on µ‖x‖H−1
µ (x). Using Eqs. (17) and (18),

µ‖x‖H−1
µ (x) = ‖∇fµ(x)−∇f(x) +∇f(x?µ)−∇f(x?µ)‖H−1

µ (x)

≤ νµ(x) +

∫ 1

0

‖Hµ(x)−1/2H(xt)(x− x?µ)‖ dt+ ‖∇f(x?µ)‖Hµ(x), xt = tx+ (1− t)x?µ.

Now bound ‖Hµ(x)−1/2H(xt)(x − x?µ)‖ ≤ ‖Hµ(x)−1/2 Hµ(xt)
1/2‖ ‖x − x?µ‖H(xt) and use

Eq. (17) and Eq. (14) to get:

‖Hµ(x)−1/2H(xt)(x− x?µ)‖ ≤ et t(x−x
?
µ)‖x− x?µ‖H(x).

Integrating this yields:∫ 1

0

‖Hµ(x)−1/2H(xt)(x− x?µ)‖ dt ≤ φ(t(x− x?µ)) ‖x− x?µ‖H(x) ≤ et(x−x
?
µ) νµ(x).

Where the last inequality is obtained using the bounds between gradient and hessian distance Eq. (18).
Finally, using the bound on t(x− x?µ),

µ‖x‖H−1
µ (x) ≤

(
1 +

1

1− c/3

)
νµ(x) +

√
1

1− c/3
‖∇f(x?µ)‖H−1

µ (x?µ).

2. Bound on R‖x‖. Start by decomposing

R‖x‖ ≤ R‖x?µ‖+R‖x− x?µ‖.

Now bound
R‖x− x?µ‖ ≤

R
√
µ
‖x− x?µ‖Hµ(x).

Using Eq. (17), ‖x− x?µ‖Hµ(x) ≤ φ(− log(1− c/3))νµ(x). Hence:

R‖x‖ ≤ R‖x?µ‖+ φ(− log(1− c/3))
Rνµ(x)
√
µ

.

3. Now assume x ∈ Dµ(c/3). Using the bound on µ‖x‖H−1
µ (x), and noting that

1

rµ(x)
≤ et(x−x

?
µ)/2 1

rµ(x?µ)
,

it holds:
µ‖x‖H−1

µ (x)

c rµ(x)
≤ 1

3

(
1 +

1

1− c/3

)
+

1

1− c/3

‖µx?µ‖H−1
µ (x?µ)

c rµ(x?µ)
.

4. Now assume Rνµ(x)√
µ ≤ c

3 . . We know that in particular, x ∈ Dµ(c/3) and hence:

R
√
µ‖x‖H−1

µ (x) ≤
(

1 +
1

1− c/3

)
Rνµ(x)
√
µ

+

√
1

1− c/3

Rµ‖x?µ‖H−1
µ (x?µ)

√
µ

≤
(

1 +
1

1− c/3

)
c

3
+

√
1

1− c/3
R
√
µ‖x?µ‖H−1

µ (x?µ).
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Hence
R
√
µ‖x‖H−1

µ (x)

c
≤
(

1 +
1

1− c/3

)
1

3
+

√
1

1− c/3

R
√
µ‖x?µ‖H−1

µ (x?µ)

c
.

Likewise:
R‖x‖
c
≤
R‖x?µ‖

c
+

1

3
φ(− log(1− c/3)).

We can get the following simpler bounds.
Corollary 3 (Application to c = 1

7 ). Applying Lemma 14 to c = 1
7 , we get the following bounds. Let

µ > 0.

• For any x ∈ H, if x ∈ Dµ(c/3), then the following holds:

7µ‖x‖H−1
µ (x)

rµ(x)
≤ 1 +

8‖µx?µ‖H−1
µ (x?µ)

rµ(x?µ)
.

• For any c < 1, x ∈ H, if Rνµ(x)√
µ ≤ c

3 , then the following hold:

7R
√
µ‖x‖H−1

µ (x) ≤ 1 + 8R
√
µ‖x?µ‖H−1

µ (x?µ).

7R‖x‖ ≤ 7R‖x?µ‖+ 1.

C.2 Proof of main theorems

In this section, we bound the number of iterations of our scheme in different cases.

Recall the proposed globalization scheme in the paper, where ANMρ(f, x, t) is a method performing t
successive ρ-relative approximate Newton steps of f starting at x.

Proposed Globalization Scheme
Phase I: Getting in the Dikin ellispoid of fλ

Start with x0 ∈ H, µ0 > 0, t, T ∈ N and (qk)k∈N ∈ (0, 1].
For k ∈ N

xk+1 ← ANMρ(fµk , xk, t)
µk+1 ← qk+1µk

Stop when µk+1 < λ and set xlast ← xk. K ← k

Phase II: reach a certain precision starting from inside the Dikin ellipsoid

Return x̂← ANMρ(fλ, xlast, T )

Throughout this section, we will denote with K the value of k when the scheme stops, i.e. the first
value of k such that µk+1 < λ.

Adaptive methods We start by presenting an adaptive way to select µk+1 from µk, with theoretical
guarantees. The main result is the following.
Proposition 6 (Adaptive, simple version). Assume that we perform phase I starting at x0 such that

Rνµ0(x0)
√
µ0

≤ 1

7
.

Assume that at each step k, we compute xk+1 using t = 2 iterations of the ρ-relative approximate
Newton method. Then if at each iteration, we set:

µk+1 = qk+1 µk, qk+1 :=
1
3 + 7R‖xk+1‖
1 + 7R‖xk+1‖

.

Then the following hold:
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1. ∀k ≤ K + 1,
Rνµk (xk)
√
µk

≤ 1
7 .

2. The decreasing parameter qk+1 is bounded above before reaching K:

∀k ≤ K, qk+1 ≤
4
3 + 7R‖x?µk‖
2 + 7R‖x?µk‖

≤
4
3 + 7R‖x?λ‖
2 + 7R‖x?λ‖

.

3. K is finite,

K ≤

 log µ0

λ

log
2+7R‖x?λ‖
4
3 +7R‖x?λ‖

 ≤ ⌊(3 + 11R‖x?λ‖) log
µ0

λ

⌋
,

and Rνλ(xK+1)√
λ

≤ 1
7 .

Proof. Let us prove the three points one by one.

1. This is easily proved by induction, the keys to the induction hypothesis being:

• Using the induction hypothesis, xk ∈ Dµk(c) and hence, using Proposition 5 shows that
after two iterations of the approximate Newton scheme, νµk (xk+1)

νµk (xk) ≤ 1
3 which implies

Rνµk (xk+1)
√
µk

≤ c
3 .

• Now using Lemma 13, we see that that since

7R‖xk+1‖ =
R‖xk+1‖

c
≥
R
√
µk‖xk+1‖H−1

µk
(xk+1)

c
,

the hypotheses to guarantee the bound for qk+1 hold, hence

Rνµk+1
(xk+1)

√
µk+1

≤ c.

2. Using the second bullet point of Cor. 3, we see that the previous point implies

∀k ≤ K, 7R‖xk+1‖ ≤ 7R‖x?µk‖+ 1 =⇒ qk+1 ≤
4/3 + 7R‖x?µk‖
2 + 7R‖x?µk‖

.

Now using the fact that for any k ≤ K, µk > λ, we can use the simple fact that ‖x?λ‖ ≥ ‖x?µk‖ to
get the desired bound for qk+1.

3. Using the previous point clearly shows the following bound:

∀k ≤ K + 1, µk ≤
( 4

3 + 7R‖x?λ‖
2 + 7R‖x?λ‖

)k
µ0.

As this clearly converges to 0 when k goes to infinity, K is necessarily finite. Applying this for
k = K, we see that:

λ ≤ µK ≤
( 4

3 + 7R‖x?λ‖
2 + 7R‖x?λ‖

)K
µ0.

This shows that K ≤ log
µ0
λ

log
2+7R‖x?

λ
‖

4
3
+7R‖x?

λ
‖

.

The final bound is obtained noting that

2 + 7R‖x?λ‖
4
3 + 7R‖x?λ‖

= 1 +
1

t
, t = 2 +

21

2
R‖x?λ‖,
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and using the classical bound:
1

log(1 + 1
t )
≤ t+ 1.

Finally, the fact that Rνλ(xK+1)√
λ

≤ c is just a consequence of the fact that µK+1 ≤ λ ≤ µK and thus
that λ = qµK with q ≥ qK+1, which is shown to satisfy the condition in Lemma 13. Hence, the
lemma holds not only for µK+1 but also for λ.

Remark 2 (µ0). In the previous proposition, we assume start at x0, µ0 such that

Rνµ0(x0)
√
µ0

≤ 1

7
.

A simple way to have such a pair is simply to select:

x0 = 0, µ0 = 7R‖∇f(0)‖,

since Rνµ0 (x0)√
µ0

=
R‖∇f(0)‖

H
−1
µ0

(0)
√
µ0

≤ R‖∇f(0)‖
µ0

.

Alternatively, if one can approximately compute ‖x‖H−1
µ (x), one can propose the following variant,

whose proof is completely analogous.
Proposition 7 (Adaptive, small variant version). Assume that we perform phase I starting at x0 such
that

Rνµ0
(x)

√
µ0

≤ 1

7
.

Then if at each iteration, we set:

tk+1 = 7

√
7

6
R
√
µk
√
xk+1 · sk+1, sk+1 ∈ LinApprox(Hµk(xk+1), xk+1,

1

7
),

and

µk+1 = qk+1 µk, qk+1 :=
1
3 + tk+1

1 + tk+1
.

Then the following hold:

1. ∀k ≤ K, Rνµk (xk)
√
µk

≤ 1
7 .

2. The decreasing parameter qk+1 is bounded above before reaching K:

∀k ≤ K, qk+1 ≤ sup
µ0≥µ≥λ

7
3 + 10R

√
µ‖x?µ‖H−1

µ (x?µ)

3 + 10R
√
µ‖x?µ‖H−1

µ (x?µ)

≤
7
3 + 10R‖x?λ‖
3 + 10R‖x?λ‖

.

3. K is finite,

K ≤

(
9

2
+ 15 sup

λ≤µ≤µ0

R
√
µ‖x?µ‖H−1

µ (x?µ)

)
log

µ0

λ
,

and Rνλ(xK+1)√
λ

≤ 1
7 .

Proof. The main thing to note is that because of the properties of 1
7 -approximations, if sk+1 ∈

LinApprox(Hµk(xk+1), xk+1,
1
7 ),

(1− 1

7
)‖xk+1‖2H−1

µk
(xk+1)

≤ xk+1 · sk+1 ≤ (1 +
1

7
)‖xk+1‖2H−1

µk
(xk+1)

.

Hence,

‖xk+1‖H−1
µk

(xk+1) ≤
√

7

6

√
xk+1 · sk+1 ≤

√
4

3
‖xk+1‖H−1

µk
(xk+1).
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Hence, tk+1 ≥ 7R
√
µk‖xk+1‖H−1

µk
(xk+1), and we can apply Lemma 13 to get the first point.

To get the second point, we bound tk+1 above:

tk+1 ≤ 7

√
4

3
R
√
µk‖xk+1‖H−1

µk
(xk+1).

Now use Cor. 3 to find:

tk+1 ≤
√

4

3

(
1 + 8R

√
µk‖x?µk‖H−1

µk
(x?µk

)

)
≤ 2 + 10R

√
µk‖x?µk‖H−1

µk
(x?µk

).

Thus,

qk+1 ≤
7
3 + 10R

√
µk‖x?µk‖H−1

µk
(x?µk

)

3 + 10R
√
µk‖x?µk‖H−1

µk
(x?µk

)

.

Note that as long as k ≥ K,

qk+1 ≤ sup
µ≥λ

7
3 + 10R

√
µ‖x?µ‖H−1

µ (x?µ)

3 + 10R
√
µ‖x?µ‖H−1

µ (x?µ)

≤
7
3 + 10R‖x?λ‖
3 + 10R‖x?λ‖

.

This guarantees convergence.

For the last point, the proof is exactly the same as in the previous proposition.

General non-adaptive result. As mentioned in the core of the article, in practice, we do not select
qk+1 at each iteration using a safe adaptative value, but rather decrease µk+1 = qµk with a constant
q, which we see as a parameter to tune. The following result shows that for q large enough, this is
justified, and that the lower bound we get for q depends on the radius of the Dikin ellipsoid rµ(x),
instead of

√
µ

R in the previous bounds, which is somewhat finer and shows that if the data is structured
such that this radius is very big, then q might actually be very small.

Proposition 8 (Fixed q). Assume that we perform phase I starting at x0 such that

x0 ∈ Dµ0(
1

7
).

Assume we perform the method with a fixed qk+1 = q, satisfying

q ≥ sup
λ≤µ≤µ0

4
3 + 8

µ‖x?µ‖H−1
µ (x?µ)

rµ(x?µ)

2 + 8
µ‖x?µ‖H−1

µ (x?µ)

rµ(x?µ)

.

Then the following hold:

1. ∀k ≤ K + 1, xk ∈ Dµk( 1
7 ).

2. K is finite,

K ≤ 1

1− q
log

µ0

λ
,

and xK+1 ∈ Dλ( 1
7 ).

Proof. Let us prove the two points.
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1. Let us prove the result by induction. The initialization is trivial. Now assume xk ∈ Dµk( 1
7 ).

Performing two iterations of the approximate Newton method guarantees that

xk+1 ∈ Dµk(
1

21
),

as show in Proposition 5. Now using Lemma 13, we see that xk+1 ∈ Dqµk( 1
7 ), provided that

q ≥
1
3 +

7µk‖xk+1‖H−1
µk

(xk+1)

rµk (xk+1)

1 +
7µk‖xk+1‖H−1

µk
(xk+1)

rµk (xk+1)

.

Now using Cor. 3, we get that

7µk‖xk+1‖H−1
µk

(xk+1)

rµk(xk+1)
≤ 1 +

8µk‖x?µk‖H−1
µk

(x?µk
)

rµk(x?µk)
≤ 1 + 8 sup

λ≤µ≤µ0

µ‖x?µ‖H−1
µ (x?µ)

rµ(x?µ)
.

Hence the result.

2. This point just follows, using the bound 1
log 1

q

≤ 1
1−q .

C.3 Proof of Thm. 1

Using Remark 2, the fact that x0 = 0 and µ0 = 7R‖∇f(0)‖, as well as the hypotheses of the
theorem, we can apply Proposition 6, and show that the number of steps K performed in the first
phase is bounded:

K ≤ b(3 + 11R‖x?λ‖) log(7R‖∇f(0)‖/λ)c .
Moreover, this proposition also shows that Rνλ(xlast)/

√
λ ≤ 1

7 . Hence, we can use Proposition 5: if

t ≥ T =

⌈
log2

√
λε−1

R2

⌉
≥
⌈

log2

νλ(xlast)√
ε

⌉
,

then it holds νλ(x̂) ≤
√
ε and fλ(x̂)− fλ(x?λ) ≤ ε.
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D Non-parametric learning with generalized self-concordant functions

In this section, the aim is to provide a fast algorithm in the case of Kernel methods which achieves
the optimal statistical guarantees.

D.1 General setting and assumptions, statistical result for regularized ERM.

In this section, we consider the supervised learning problem of learning a predictor f : X → Y from
training samples (xi, yi)1≤i≤n which we assume to be realisations from a certain random variable
Z = (X,Y ) ∈ Z = X × Y whose distribution is ρ. In what follows, for simplification purposes, we
assume Y = R; however, this analysis can easily be adapted (although with heavier notations) to the
setting where Y = Rp. Our aim is to compute the predictor of minimal generalization error

inf
f∈H

L(f) := Ez∼ρ [`z(f(x))], (29)

whereH is a space of candidate solutions and `z : R→ R is a loss function comparing the prediction
f(x) to the objective y.

Kernel methods. Kernel methods consider a space of functionsHK implicitly constructed from
a symmetric positive semi-definite Kernel K : X × X → and whose basic functions are the
Kx : t ∈ X 7→ K(x, t) and the linear combinations of such functions f =

∑m
j=1 αjKxj .

It is endowed with a scalar product such that: ∀x1, x2 ∈ X , Kx1 · Kx2 = K(x1, x2), and as a
consequence,HK satisfies the self-reprocucing property:

∀x ∈ X , ∀f ∈ H, f(x) = 〈f,Kx〉H.

In order to find a good predictor for Eq. (29), the following estimator, called the regularized ERM
estimator, is often computed:

f̂λ := arg min
f∈H

L̂λ(f) :=
1

n

n∑
i=1

`zi(f(xi)) +
λ

2
‖f‖2H.

The properties of this estimator have been studied in [13] for the square loss and [23] for generalized
self-concordant functions. In Appendix H, we recall the full setting of [23], and extend it to include
the statistical properties of the projected problem.

Assumptions In this section, we will make the following assumptions, which are reformulations of
the assumptions of [23], which we recall in Appendix H, in order to have the statistical properties of
the regularized ERM. First, we assume that the (xi, yi) are i.i.d. samples.

Assumption 1 (i.i.d. data). The samples (zi)1≤i≤n = (xi, yi)1≤i≤n ∈ Zn are independently and
identically distributed according to ρ.

In the case where Y = R, we make the following assumptions on the loss, which leads to the self
concordance of the mappings f 7→ `z(f(x)) and that of L, L̂...

Assumption 2 (Technical assumptions). The mapping (z, t) ∈ Z × R 7→ `z(t) is measurable.
Moreover,

• there exists R` <∞ such that for all z ∈ supp(Z),

∀t ∈ R, |`(3)
z (t)| ≤ R``

′′
z (t),

• the random variables |`Z(0)|, |`′Z(0)|, |`′′Z(0)| are are bounded;

• The kernel is bounded, i.e. ∀x ∈ supp(X), K(x, x) ≤ κ2 for a certain κ.

Using these assumptions, we see that the following properties are satisfied. DefineLz(f) := `z(f(x)).
Then the Lz satisfy the following properties:
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• For any z ∈ Z , (Lz, {R`Kx}) is a generalized self-concordant function in the sense of
Definition 4.

• The mapping (z, f) ∈ Z ×H 7→ Lz(f) is measurable;
• the random variables ‖LZ(0)‖, ‖∇LZ(0)‖,Tr(∇2LZ(0)) are bounded by |`Z(0)|, κ|`′Z(0)|,
κ2|`′′Z(0)|;

• G := {R`Kx : z ∈ supp(Z)} is a bounded subset ofH, bounded by R = R`κ.

This shows that Assumption 7 and Assumption 8 are satisfied by the Lz and hence, using Proposi-
tion 16 in the next appendix, L is well-defined, generalized self-concordant with G. Moreover, the
empirical loss

L̂ =
1

n

n∑
i=1

Lzi ,

is also generalized self-concordant with Ĝ := {R`Kxi : 1 ≤ i ≤ n}.

Finally, as in Appendix H, we make an assumption on the regularity of the problem; namely, we
assume that a solution to the learning problem exists inH.
Assumption 3 (Existence of a minimizer). There exists f? ∈ H such that L(f?) = inff∈H L(f).

We adopt all the notations from Appendix H, doing the distinction between expected an empirical
problems by adding a ·̂ over the quantities related to the empirical problem. We continue using the
standard notations for L: for any f ∈ H and λ > 0,

Lλ(f) = L(f) +
λ

2
‖f‖2, L̂λ(f) = L̂(f) +

λ

2
‖f‖2

H(f) = ∇2L(f), Hλ(f) = ∇2Lλ(f) = H(f) + λI

Ĥ(f) = ∇2L̂(f), Ĥλ(f) = ∇2L̂λ(f) = Ĥ(f) + λI

Recall that f̂λ is defined as the minimizer of L̂λ.

Define the following bounds on the second order derivatives:

∀f ∈ H, b2(f) = sup
z∈supp(Z)

`′′z (f(x)).

Statistical properties of the estimator The statistical properties of the estimator f̂λ have been
studied in [23] in the case of generalized self concordance, an are reported in the main lines in
Appendix H. The statistical rates of this estimator and the optimal choice of λ is determined by two
parameters, defined in Proposition 17 and which we adapt to the Kernel problem here.

• the bias bλ = ‖Hλ(f?)−1/2∇Lλ(f?)‖ = λ‖f?‖H−1
λ (f?), which characterizes the regular-

ity of the optimum. The faster bλ decreases to zero, the more regular f? is.
• the effective dimension

dfλ = E
[
‖Hλ(f?)−1/2∇LZ(f?)‖2

]
. (30)

This quantity characterizes the size of the spaceH with respect to the problem; the slower it
explodes as λ goes to zero, the smaller the size ofH.

For more complete explanations on the meaning of these quantities, we refer to [23].

Moreover, as mentioned in Proposition 17, one can define

B?1 := sup
z∈supp(Z)

‖∇Lz(f?)‖, B?2 := sup
z∈supp(Z)

Tr(∇2Lz(f
?)), Q? =

B?1√
B?2
, b?2 = b2(f?). (31)

We assume the following regularity condition on the minimizer f?, in order to get statistical bounds.

33



Assumption 4 (Source condition). There exists r > 0 and g ∈ H such that f? = Hr(f?)g. This
implies the following decrease rate of the bias:

bλ ≤ Lλ1/2+r, L = ‖g‖H.

This is a stronger assumption than the existence of the minimizer as r > 0 is crucial for our analysis.

We also quantify the effective dimension dfλ: (however, since it always holds for α = 1, this is not,
strictly speaking, an additional assumption).

Assumption 5 (Effective dimension). The effective dimension decreases as dfλ ≤ Qλ−1/α.

If these two assumptions hold, define:

β =
α

1 + α(1 + 2r)
, γ =

(1 + 2r)α

1 + α(1 + 2r)
.

Under these assumptions, one can obtain the following statistical rates (which can be found in [23] or
in Cor. 4).
Proposition 9. Let δ ∈ (0, 1/2]. Under Assumptions 1 to 5, when n ≥ N and λ = (C0/n)β , then
with probability at least 1− 2δ,

L(f̂λ)− L(f?) ≤ C1n
−γ log

2

δ
,

with C0 = 256(Q/L)2, C1 = 8(256)γ (Qγ L1−γ)2 and N defined in [23], and satisfying N =
O(poly(B?1,B

?
2, L,Q, R, log(1/δ))).

D.2 Reducing the dimension: projecting on a subspace using Nyström sub-sampling.

Computations Using a representer theorem, one of the key properties of Kernel spaces is that,
owing to the reproducing property,

f̂λ ∈ Hn :=

{
n∑
i=1

αiKxi : (αi) ∈ Rn
}
.

This means that solving the regularized empirical problem can be turned into a finite dimensional
problem in α. Indeed f̂λ =

∑n
i=1 αiKxi where α = (αi)1≤i≤n is the solution to the following

problem:

α = arg min
α∈Rn

1

n

n∑
i=1

`zi(α
>Knnei) +

λ

2
α>Knnα, Knn = (K(xi, xj))1≤i,j≤n ∈ Rn×n.

The previous problem is usually too costly to solve directly for large values of n, both in time and
memory, because of the operations involving Knn. A solution consists in looking for a solution
in a smaller dimensional sub-spaceHM constructed from sub-samples of the data {x̃1, ..., x̃M} ⊂
{x1, ..., xn}:

HM :=


M∑
j=1

α̃jKx̃j : α̃ ∈ RM
 .

In this case, the minimizer f̂M,λ = arg minf∈HM L̂λ(f) can be written f̂M,λ =
∑M
j=1 α̃jKx̃j ,

where α̃ is the solution to the following problem:

α̃ = arg min
α∈RM

1

n

n∑
i=1

`zi(α
>KMnei) +

λ

2
α>KMMα,

where

KnM = (K(xi, x̃j)) 1≤i≤n
1≤j≤M

, KMn = K>nM , KMM := (K(x̃i, x̃j))1≤i,j≤M .
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Let T be an upper triangular matrix such that T>T = KMM . One can re-parametrize the previous
problem in the following way. For any β ∈ RM , define fβ =

∑M
j=1 [T†β]j Kx̃j . This implies in

particular that ‖fβ‖H = ‖β‖RM . Then f̂M,λ = fβM,λ , where

βM,λ = arg min
β∈RM

L̂M,λ(β) :=
1

n

n∑
i=1

`zi(e
>
i KnMT†β) +

λ

2
‖β‖2.

Using the properties the `z , one easily shows that β 7→ `zi(e
>
i KnMT†β) is

{
R`T

−>KMnei
}

generalized self-concordant, and ‖R`T−>KMnei‖ ≤ R`
√
K(xi, xi). Thus, L̂M is also generalized

self-concordant, and the associated ĜM is bounded by R = R`κ. It will therefore be possible to apply
the second order scheme presented in this paper to approximately compute βM,λ.

Statistics Let ν̂λ,M (β) denote the Newton decrement of L̂λ,M at point β and PM denote the
orthogonal projection onHM . Then the following statistical result shows that provided β is a good
enough approximation of the optimum, and provided HM is large enough, then fβ has the same
generalization error as the empirical risk minimizer f̂λ.

Recall the following result proved in Proposition 19 in Appendix H.3.
Proposition 10 (Behavior of an approximation to the projected problem). Suppose that Assumptions 1
to 3 are satisfied. Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, C1

√
dfλ ∨ (Q?)2

n
log

2

δ
≤ λ1/2

R
, C1bλ ≤

λ1/2

R
,

if

‖H1/2(f?)(I−PM )‖2 ≤ λ
√

2

480
, 126ν̂M,λ(β) ≤ λ1/2

R
,

the following holds, with probability at least 1− 2δ.

L(fβ)− L(f?) ≤ K1 b2
λ + K2

dfλ ∨ (Q?)2

n
log

2

δ
+ K3 ν̂

2
M,λ(β), R‖fβ − f?‖H ≤ 10,

where K1 ≤ 6.0e4, K2 ≤ 6.0e6 and K3 ≤ 810, C1 is defined in Lemma 19, and the other constants
are defined in Thm. 8.

In particular, if we apply the previous result for a fixed λ, the following theorem holds (for a proof,
see Appendix H.4).
Theorem 5 (Quantitative result with source r > 0). Suppose that Assumptions 1 to 5 are satisfied.

Let n ≥ N and δ ∈ (0, 1
2 ]. If λ =

((
Q
L

)2 1
n

) α
α(1+2r)+1

, and if

‖H1/2(f?)(I−PM )‖2 ≤ λ
√

2

480
, ν̂M,λ(β) ≤ Qγ L1−γn−γ/2,

then with probability at least 1− 2δ,

L(fβ)− L(f?) ≤ K
(
Qγ L1−γ)2 1

nγ
log

2

δ
, R‖fβ − f?‖ ≤ 10,

where N is defined in Eq. (42) and K ≤ 7.0e6.

The proof of the previous result is quite technical and can be found in Appendix H, in Thm. 9.

D.3 A note on sub-sampling techniques

Let Z be a random variable on a Polish space Z and (vz)z∈Z be a family of vectors inH such that
||v||L∞(Z) := supz∈supp(Z) ‖vz‖ <∞ is bounded. Assume that z1, ..., zn are i.i.d. samples from Z.
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Define the following trace class Hermitian operators:

A = E [vZ ⊗ vZ ] , Â =
1

n

n∑
i=1

vzi ⊗ vzi .

Define

NA(λ) := Tr(A−1
λ A), NA

∞(λ) := sup
z∈supp(Z)

‖A−1/2
λ vz‖2. (32)

We typically have:

NA(λ) ≤ NA
∞(λ) ≤

‖v‖2L∞(Z)

λ
.

We define the leverage scores associated to the points zi and A:

∀1 ≤ i ≤ n, ∀t > 0, lAi (t) = ‖Â−1/2
t vzi‖2 = n

(
(Gnn + tnI)−1Gnn

)
ii
, (33)

where Gnn = (vzi · vzj )1≤i,j≤n denotes the Gram matrix associated to the family vzi .

As in [28], definition 1, we give the following definition for leverage scores.

Definition 5 (q-approximate leverage scores). given t0, a family (l̃Ai (t))1≤i≤n is said to be a family
of q-approximate leverage scores with respect to A if

∀1 ≤ i ≤ n, ∀t ≥ t0,
1

q
lAi (t) ≤ l̃Ai (t) ≤ q lAi (t).

We say that a subset of m points {z̃1, ..., z̃m} ⊂ {zi : 1 ≤ i ≤ n} is:

• Sampled using q-approximate leverage scores for t if the z̃j = zij where the ij are m

i.i.d. samples from {1, ..., n} using the probability vector pi =
l̃Ai (t)∑n
ĩ=1

l̃A
ĩ

(t)
. In that case, we

define Âm := 1
m

∑m
j=1

1
npij

vz̃j ⊗ vz̃j .

• Sampled uniformly if the {ij : 1 ≤ j ≤ m} is a uniformly chosen subset of {1, ..., n} of
size m. In this case, we define Âm := 1

m

∑m
j=1 vz̃j ⊗ vz̃j .

In Appendix I.1, we present technical lemmas which allow us to show that if m is large enough, the
following hold:

• ‖Aη(I−Pm)‖2 ≤ 3η, where Pm is the orthogonal projection on the subspace induced by
the vz̃j ;

• Âm,λ is equivalent to Âλ.
Remark 3 (cost of computing q-approximate leverage scores). In [30], one can show that
the complexity of computing q-approximate leverage scores can be achieved in: csamp =
O(q2NA(λ)2 min(n, 1/λ)) time (where a unit of time is a scalar product evaluation) and
O(NA(λ)2 + n) in memory.

D.4 Selecting the M Nyström points

In order for Thm. 5 to hold, we must subsample the M points such as to guarantee ‖H1/2(f?)(I−
PM )‖2 ≤

√
2λ

480 .

Since we must sub-sample the M points a priori, i.e. before performing the method, it is necessary
to have sub-sampling schemes which do not depend heavily on the point. Define the covariance
operator:

Σ = E [KX ⊗KX ] .

Since H(f?) = E [`′′Z(f(X)) KX ⊗KX ], it is easy to see that H(f?) � b?2Σ. Note that for Σ,
since Σ̂ = 1

n

∑n
i=1Kxi ⊗Kxi , the leverage scores have the following form:

∀1 ≤ i ≤ n, lΣi (t) = n
(
(Knn + λnI)−1Knn

)
ii
.
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Proposition 11 (Selecting Nyström points). Let δ > 0. Let η = min(‖Σ‖, λ
√

2
1440(b?2∨1) ). Assume the

samples {x̃1, ..., x̃M} are obtained with one of the following.
1. n ≥M ≥

(
10 + 160NΣ

∞(η)
)

log 8κ2

ηδ using uniform sampling;

2. M ≥
(
6 + 486q2NΣ(η)

)
log 8κ2

ηδ using q-approximate leverage scores with respect to Σ for

t = η, t0 ∨ 19κ2

n log n
2δ < η, n ≥ 405κ2 ∨ 67κ2 log 12κ2

δ .
Then it holds, with probability at least 1− δ:

‖Σ1/2
η (I−PM )‖ ≤ 3η =⇒ ‖H1/2(f?)(I−PM )‖2 ≤ λ

√
2

480
.

Proof. The proof is a direct application of the lemmas in Appendix I.1. Indeed, note that since
Σ = E [KX ⊗KX ], then the results can be applied with Z ← X and vz ← Kx. Indeed, from
Assumption 2, it holds:

sup
x∈supp(X)

‖Kx‖2 ≤ κ2.

We can now combine Proposition 11 and Proposition 10 to obtain the following statistical bounds for
the optimizer of the projected Nyström problem βM,λ.

Theorem 6. Suppose that Assumptions 1 to 3 are satisfied. Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤
B?2 ∧ 720

√
2(b?2 ∨ 1)‖Σ‖. Assume

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, C1

√
dfλ ∨ (Q?)2

n
log

2

δ
≤ λ1/2

R
, C1bλ ≤

λ1/2

R
,

Let η = λ
√

2
1440(b?2∨1) . Assume the samples {x̃1, ..., x̃M} are obtained with one of the following.

1. n ≥M ≥
(
10 + 160NΣ

∞(η)
)

log 8κ2

ηδ using uniform sampling;

2. M ≥
(
6 + 486q2NΣ(η)

)
log 8κ2

ηδ using q-approximate leverage scores with respect to Σ for

t = η, t0 ∨ 19κ2

n log n
2δ < η, n ≥ 405κ2 ∨ 67κ2 log 12κ2

δ .
The following holds, with probability at least 1− 3δ.

L(fβM,λ)− L(f?) ≤ K1 b2
λ + K2

dfλ ∨ (Q?)2

n
log

2

δ
, R‖βM,λ‖ ≤ R‖f?‖+ 10,

where K1 ≤ 6.0e4, K2 ≤ 6.0e6 and K3 ≤ 810, C1 is defined in Lemma 19, and the other constants
are defined in Thm. 8.

Proof. This is simply a reformulation of Proposition 10, noting that ν̂M,λ(βM,λ) = 0 and that
Proposition 11 implies the condition on the Hessian at the optimum.

Provided source condition holds with r > 0, the conditions of this theorem are not void.

D.5 Performing the globalization scheme to approximate βM,λ

In order to apply Proposition 10, one needs to control ν̂M,λ(β).

We will apply our general scheme to L̂M,λ in order to obtain such a control.

D.5.1 Performing approximate Newton steps

The key element in the globalization scheme is to be able to compute 1
7 -approximate Newton steps.

Note that at a given point β and for a given µ > 0 the Hessian is of the form:

ĤM,µ(β) =
1

n
T−>KMnDn(β)KnMT−1 + µIM ,
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where Dn(β) = diag((di(β))1≤i≤n) is a diagonal matrix whose elements are given by di(β) =
`′′zi(e

>
i KnMT−1β).

Note that we can always write

ĤM,µ(β) =
1

n

n∑
i=1

ui(β)ui(β)> + µI, ui(β) =
√
di(β)T−>KMnei

The gradient can be put in the following form:

∇L̂M,µ(β) =
1

n
T−>KMnv + µβ, v = (`′zi(e

>
i KnMT−1β))1≤i≤n.

Computing the gradient at one point therefore costs O(nM +M2), this being the cost of computing
KnM times a vector costs O(nM) and computing T−1 times a vector takes O(M2) since T is
triangular. Moreover, the cost in memory is O(M2 + n), M2 being needed for the saving of T and n
for the saving of the gradient; KnM times a vector can also be done in O(n) memory, provided we
compute it by blocks.

On the other hand, computing the full Hessian matrix would cost nM2 operations, which is un-
tractable. However, computing a Hessian vector product can be done in O(nM +M2) time, as for
the gradient, which suggest using an iterative solver with preconditioning.

Computing x ∈ LinApprox(A, b, ρ) through pre-conditioned conjugate gradient descent. As-
sume we wish to solve the problem Ax = b where A ∈ RM×M is a positive definite matrix and b is
a vector of RM . If one uses the conjugate gradient method starting from zero, then if xk denotes the
k-the iterate of the conjugate gradient algorithm, Theorem 6.6 in [31] shows that

xk ∈ LinApprox(A, b, ρ), ρ = 2

(√
Cond(A)− 1√
Cond(A) + 1

)k
.

where Cond(A) is the condition number of the matrix A, namely the ratio λmax(A)
λmin(A) . If Cond(A) is

large, this convergence can be very slow. The idea of preconditioning is to compute an approximation
matrix Ã such that

1

2
Ã � A � 3

2
Ã. (34)

We then compute B a triangular matrix such that B>B = Ã using a cholesky decomposition, which
can be done in O(M3), and note that B−>AB−1 is very well conditioned; indeed, its condition
number is bounded by 3.

Perform a conjugate gradient method to solve the pre-conditioned problem B−>AB−1z = B−>b,
and denote with zτ the τ -th iteration of this method. Then using the bound on the condition number,
we find

zτ ∈ LinApprox(B−>AB−1,B−>b, ρ), ρ = 2

(√
3− 1√
3 + 1

)τ
,

which in turn implies that by setting xτ := B−1zτ ,

xτ ∈ LinApprox(A, b, ρ), ρ = 2

(√
3− 1√
3 + 1

)τ
.

This shows that after at most τ = 3 iterations, provided Ã satisfies Eq. (34), xτ ∈
LinApprox(A, b, 1

7 ). The cost of this method is therefore O(M3 + nM) in time, and O(n+M2)
due to the computing of the preconditioner and computing matrix vector products by block. This
does not include the cost of finding a suitable Ã.
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Computing a suitable approximation of ĤM,µ(β) To compute a good pre-conditioner, we will
subsample Q points i1, ..., iQ points from {1, ..., n}, and sketch the Hessian using these Q points.

Proposition 12 (Computing approximate newton steps). Let δ > 0. Let β ∈ RM and µ ≥ λ,
and assume 19b2(fβ)κ2

n log n
2δ < λ and n ≥ 405b2(fβ)κ2 ∨ 67b2(fβ)κ2 log

12b2(fβ)κ2

δ . Let µ̃ =
min(µ, ‖H(fβ)‖). Assume one of the following properties is satisfied

1. Q ≥
(

10 + 160NH(fβ)
∞ (µ̃)

)
log

8b2(fβ)κ2

µ̃δ with uniform sampling of the {i1, ..., iQ}. We set

DQ = diag(`′′zij
(fβ(xij )))1≤j≤Q

2. Q ≥
(
6 + 486q2NH(fβ)(µ̃)

)
log

8b2(fβ)κ2

µ̃δ using q-approximate leverage scores associated to

H(fβ) for t = µ̃. We set DQ = diag

(
`′′zij

(fβ(xij ))

pij

)
, where the pij are the probabilities computed

from the leverage scores.

Assume we use a pre-conditioner B such that

B>B =
1

Q
T−>KMQDQKQMT−1 + µIM , KQM = (K(xij , x̃k)) 1≤j≤Q

1≤k≤M
.

If we perform τ = log(ρ/2)/ log((
√

3 + 1)/
√

3− 1) iterations of the conjugate gradient descent
on the pre-conditioned Newton system using B as a preconditioner, then with probability at least
1− δ, this procedure is returns ∆̃ ∈ LinApprox(ĤM,λ(β),∇L̂M,λ(β), ρ), and the computational
time is of order O(τ(Mn+M2Q+M3 + csamp)), and the memory requirements can be reduced
to O(M2 + n). Here csamp stands for the complexity of computing Nystrom leverage scores, and
using Remark 3 or [30], csamp = O(1) if uniform sampling is used, and csamp = O(NH(fβ)(µ̃)2/λ)
if Nystrom sub-sampling is used. Note that for τ = 3, ρ = 1

7 .

Proof. Start by defining the following operators:

• Kn : f ∈ H → (f(xi))1≤i≤n ∈ Rn;

• KM : f ∈ H → (f(x̃j))1≤j≤M ∈ RM ;

• V = K∗MT−1, where T is an upper triangular matrix such that T>T = KMM = KMK
∗
M .

Note that KnV = KnMT−1.

Now note that

∀f ∈ H, H(f) = E [vz ⊗ vz] , Ĥ(f) =
1

n

n∑
i=1

vzi ⊗ vzi , vz =
√
`′′z (f(x))Kx.

Since for any f ∈ H, Ĥ(f) = 1
nK
∗
nDn(f)Kn, where Dn(f) = diag(`′′zi(f(xi))), we see that

ĤM,µ(β) = V ∗Ĥ(fβ)V + µIM .

Thus, the last lemma of Appendix I.1 can be applied, using the fact that ‖vz‖2 ≤ b2(f)κ2, to get that
in both cases of the proposition, under the corresponding assumptions:

1

2

(
1

Q
T−>KMQDQKQMT−1 + µIM

)
� ĤM,µ(β) � 3

2

(
1

Q
T−>KMQDQKQMT−1 + µIM

)
.

The rest of the proposition follows from the previous discussion.
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D.5.2 Applying the globalization scheme to control ν̂M,λ(β)

In order to apply Proposition 12 to each point β in our method, we need to have a globalized version
of the condition of this proposition.

First, we start by localizing the different values of β we will visit throughout the algorithm.
Definition 6 (path of regularized solutions). Let λ > 0, ε > 0. Define the path of regularized
solutions

Γ̂Mλ := {βM,µ : µ ≥ λ} . (35)

And the ε approximation of this path:

Γ̂Mλ,ε :=
{
β ∈ RM : d(β, Γ̂Mλ ) ≤ ε

}
. (36)

Note that we always have Γ̂Mλ ⊂ BRM (‖βM,λ‖). We now state a lemma proving that all the values
visited during the algorithm will lie in an approximation of this path.

Lemma 15. Define Let β ∈ RM such that ν̂M,µ(β) ≤ µ1/2

7R for some µ ≥ λ. Then the following
holds:

β ∈ Γ̂Mλ, 1
6R
.

Proof. Bound

R‖β − βM,µ‖ ≤
R

µ1/2
‖β − βM,µ‖ĤM,µ(β) ≤

1

φ(tM (β − βM,µ))

Rν̂M,µ(β)

µ1/2
.

Just apply Eq. (18) to obtain R‖β − βM,µ‖ ≤ 1
6 .

We now introduce the following quantities which will allow to control the number of sub-samples
throughout the whole algorithm.
Definition 7. Define

• b2 := supβ∈Γ̂M
λ,1/6R

b2(fβ).

• NH
(λ) = supβ∈Γ̂M

λ,1/6R
NH(fβ)(λ).

• NH

∞(λ) = supβ∈Γ̂M
λ,1/6R

NH(fβ)
∞ (λ).

• ‖H‖ = minβ∈Γ̂M
λ,1/6R

‖H(fβ)‖.

Proposition 13 (Performance of the globalization scheme). Let ε > 0, δ > 0, λ̃ = min(λ, ‖H‖).
Assume 19b2κ

2

n log n
2δ < λ̃ and n ≥ 405b2κ

2 ∨ 67b2κ
2 log 12b2κ

2

δ .

Assume we perform the globalization scheme with the parameters in Thm. 1, where in order to
compute any ρ approximation of a regularized Newton step, we use a conjugate gradient descent on
the pre-conditioned system, where the pre-conditioner is computed as in Proposition 12 using
1. Q ≥

(
10 + 160NH

∞(λ̃)
)

log 8b2κ
2

λ̃δ
if using uniform sampling

2. Q ≥
(

6 + 486q2NH
(λ̃)
)

log 8b2κ
2

λ̃δ
if using Nyström leverage scores

Recall that t denotes the number of approximate Newton steps performed at for each µ in Phase
I and T denotes the number of approximate Newton steps performed in Phase II, and that using
Thm. 1, t = 2 and T = dlog2

√
1 ∨ (λε−1/R2)e. Moreover, recall that K denotes the number of

steps performed in Phase I. Define

Nns := 2
⌊
(3 + 11R‖βM,λ‖) log2(7R‖∇L̂M (0)‖/λ)

⌋
+ dlog2

√
1 ∨ (λε−1/R2)e.

Then with probability at least (1− δ)Nns :
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• The method presented in Proposition 12 returns a 1/7- approximate Newton step at each
time it is called in the algorithm.

• If β denotes the result of the method, ν̂M,λ(β) ≤
√
ε.

• The number of approximate Newton steps computed during the algorithm is bounded by
Nns; the complexity of the method is therefore of order O(Nns(M

2 max(M,Q) + nM +
csamp(λ))) in time and O(MQ+M2 + n) in memory, where csamp(λ) is a bound on the
complexity associated to the computing of leverage scores (see [30] for details).

The algorithm is detailed in Appendix E, in algorithm 1. Note however that the notations are those of
the main paper, which are slightly different from the ones used here.

Proof. If we take the globalization scheme, using the parameters of Thm. 1. Assume that all previous
approximate Newton steps have been computed in a good way. Then the β at which we are belongs
to Γ̂Mλ,1/6R. Thus, the hypotheses of this proposition imply that the hypothesis of Proposition 12 are
satisfied; and hence, up to a (1 − δ) probability factor, we can assume that the next approximate
Newton step is performed correctly, continuing the globalization scheme in the right way. Thus, the
globalization scheme converges as in Thm. 1.

D.6 Statistical properties of the algorithm

The following theorem describes the computational and statistical behavior of our algorithm.
Proposition 14 (Behavior of an approximation to the projected problem). Suppose that Assumptions 1
to 3 are satisfied.
Let n ∈ N, ε > 0, δ ∈ (0, 1/2], 0 < λ ≤ B?2.
Define λ̃ = min(λ, ‖H‖) and assume 19b2κ

2

n log n
2δ < λ̃, n ≥ 405b2κ

2 ∨ 67b2κ
2 log 12b2κ

2

δ , and

n ≥ 41
B?2
λ log

8�2
1B
?
2

λδ . Assume

C1

√
dfλ ∨ (Q?)2

n
log

2

δ
≤ λ1/2

R
, C1bλ ≤

λ1/2

R
, 126

√
ε ≤ λ1/2

R
.

Assume that the M points x̃1, ..., x̃M are obtained through Nyström sub-sampling using η = ‖Σ‖ ∧
λ
√

2
1440(b?2∨1) , with either

1. M ≥
(
10 + 160NΣ

∞(η)
)

log 8κ2

ηδ if using uniform sampling;

2. M ≥
(
6 + 486q2NΣ(η)

)
log 8κ2

ηδ if using q-approximate leverage scores for η, associated to the
co-variance operator Σ.

Assume we perform the globalization scheme as in Proposition 13, i.e. with the parameters in
Thm. 1, where in order to compute any ρ approximation of a regularized Newton step, we use a
conjugate gradient descent on the pre-conditioned system, where the pre-conditioner is computed as
in Proposition 12 using
1. Q ≥

(
10 + 160NH

∞(λ̃)
)

log 8b2κ
2

λ̃δ
if using uniform sampling

2. Q ≥
(

6 + 486q2NH
(λ̃)
)

log 8b2κ
2

λ̃δ
if using Nyström leverage scores

LetNns be defined as in Proposition 13. RecallNns is an upper bound for the number of approximate
Newton steps performed in the algorithm. One can bound

Nns ≤ 2

⌊
(113 + 11R‖f?‖) log2

7R‖∇L̂M (0)‖
λ

⌋
+

⌈
log2

λ1/2

Rε

⌉
.

Moreover, with probability at least 1− (Nns + 2)δ, the following holds:

L(fβ)− L(f?) ≤ K1 b2
λ + K2

dfλ ∨ (Q?)2

n
log

2

δ
+ K3 ε.

where K1 ≤ 6.0e4, K2 ≤ 6.0e6 and K3 ≤ 810, C1 is defined in Lemma 19, and the other constants
are defined in Thm. 8.
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Proof. This is a simple combination between Propositions 10, 11 and 13. To bound the number of
Newton steps Nns, one simply uses the fact that under the conditions of the theorem, R‖βM,λ‖ ≤
10 +R‖f?‖.

Remark 4 (Complexity). Let L = b2κ
2. The complexity of the previous method using leverage

scores computed for Σ for the Nystrom projections and for H(fβ) for choosing the Q points at the
different stages is the following. The total complexity in time will be of order:

O
(
Nns

(
nNH(λ) log(Lλ−1δ−1) + b

3

2NΣ(λ)3 log3(Lλ−1δ−1) + L/λ b
2

2NΣ(λ)2
))

.

The memory complexity can be bounded by

O(b
2

2NΣ(λ)2 log2(Lλ−1δ−1) + n).

Here, we use the fact that H ≤ b2Σ.

We can now write down the previous proposition by classifying problems using Assumptions 4 and 5
and in order to get optimal rates.

Theorem 7 (Performance of the scheme using pre-conditioning). Let δ > 0. Assume Assumptions 1

to 5 are satisfied. Let n ≥ Ñ , where Ñ is characterized in the proof, λ =
((

Q
L

)2 1
n

) α
α(1+2r)+1

.
Assume that the M points x̃1, ..., x̃M are obtained through Nyström sub-sampling using η =

λ
√

2
1440(b?2∨1) , with either

1. M ≥
(
10 + 160NΣ

∞(η)
)

log 8κ2

ηδ if using uniform sampling;

2. M ≥
(
6 + 486q2NΣ(η)

)
log 8κ2

ηδ if using q-approximate leverage scores for η, associated to the
co-variance operator Σ.

Assume we perform the globalization scheme as in Proposition 13, i.e. with the parameters in
Thm. 1, where in order to compute any ρ approximation of a regularized Newton step, we use a
conjugate gradient descent on the pre-conditioned system, where the pre-conditioner is computed as
in Proposition 12 using
1. Q ≥

(
10 + 160NH

∞(λ)
)

log 8b2κ
2

λδ if using uniform sampling

2. Q ≥
(

6 + 486q2NH
(λ)
)

log 8b2κ
2

λδ if using Nyström leverage scores
LetNns be defined as in Proposition 13. RecallNns is an upper bound for the number of approximate
Newton steps performed in the algorithm. One can bound

Nns ≤ (227 + 22R‖f?‖)
(⌈

log2

(
7R‖∇L̂M (0)‖

)⌉
+

⌈
log2

nL2

Q2

⌉
+

⌈
log2

1

RL

⌉)
.

Moreover, with probability at least 1− (Nns + 2)δ, the following holds:

• all of the approximate Newton methods yield 1
7 -approximate Newton steps

• The scheme finishes, and the number of approximate Newton steps is bounded by Nns. The
total complexity of the method is therefore

O((nM +M3 +M2Q+ csamp)Nns) in time , O(n+M2) in memory.

• The returned β is statistically optimal:

L(fβ)− L(f?) ≤ K
(
Qγ L1−γ)2 1

nγ
log

2

δ
,

where K is defined in Thm. 5.

Proof. The proof consists mainly of combining Propositions 11 and 13 and Thm. 5.

Recall that we set λ =
(

Q2

L2
1
n

) α
α(1+2r)+1

.
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1. Start by defining Ñ such that:

• Ñ ≥ N where N is defined in Thm. 5;

• ∀n ≥ Ñ , λ ≤ ‖H‖. This is possible as α
α(1+2r)+1 is a strictly positive exponent.

• ∀n ≥ Ñ , 19b2∨1 κ2

n log n
2δ < λ; this is possible as soon as α

α(1+2r)+1 < 1, i.e. this is
satisfied since r > 0;

• Ñ ≥ 405b2 ∨ 1 κ2 ∨ 67b2 ∨ 1 κ2 log 12b2∨1 κ2

δ ;

• ∀n ≥ Ñ , λ
√

2
1440(b?2∨1) ≤ ‖Σ‖.

We see that such a Ñ can be defined explicitly.

2. Combining the assumptions on Ñ with the ones on M , we see that all the assumptions of
Proposition 11 are satisfied and thus that with probability at least 1− δ, all the hypotheses for Thm. 5
are satisfied except the bound on ν̂M,λ(β).

3. Applying Proposition 13, taking
√
ε = Qγ L1−γn−γ/2 and λ =

(
Q2

L2
1
n

) α
α(1+2r)+1

, we see that
under these hypotheses,

Nns := 2

⌊
(3 + 11R‖βM,λ‖) log2

(
7R‖∇L̂M (0)‖

(
nL2

Q2

) α
α(1+2r)+1

)⌋
+

⌈
log2

(
1

RL

(
nL2

Q2

) rα
α(1+2r)+1

)⌉
.

Now we can bound this harshly:

Nns ≤ (7 + 22R‖βM,λ‖)
(⌈

log2

(
7R‖∇L̂M (0)‖

)⌉
+

⌈
log2

nL2

Q2

⌉
+

⌈
log2

1

RL

⌉)
.

Now bounding R‖βM,λ‖ ≤ 10 +R‖f?‖, we get

Nns ≤ (227 + 22R‖f?‖)
(⌈

log2

(
7R‖∇L̂M (0)‖

)⌉
+

⌈
log2

nL2

Q2

⌉
+

⌈
log2

1

RL

⌉)
.

4. Finally, we use a union bound to conclude.
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E Algorithm

Algorithm 1 Algorithm efficient non-parametric learning for generalized self-concordant losses with
optimal statistical guarantees discussed in Sec. 4 of the main paper.

Input: (xi, yi)
n
i=1, n ∈ N, ` loss function, k kernel function and λ > 0.

Return: estimated function ĝ : X → R
Parameters: Q,M, T ∈ N, µ0 > 0, (qk)k∈N.
Fixed parameters: t = 2 from Thm. 1, τ = 3 from Proposition 12 in Appendix D.5.1.
(x̄j)

M
j=1 ← leverage-scores-sampling((xi)

n
i=1,M, λ, k)

K← kernel-matrix((x̄j)
M
j=1, (x̄j)

M
j=1)

T← cholesky-upper-triangular(K)
define the function v(·) = (k(x̄1, ·), . . . , k(x̄M , ·)) ∈ RM

define compute-preconditioner:
Input: α ∈ RM , λ > 0

ci ←
√
`(2)(v(xi)>T−1α, yi) for all i = 1, . . . , n

define the function k′(◦, •) as k′(◦, •) := c◦ × c• × k(x◦, x•) for ◦, • ∈ {1, . . . , n}
(hs)Qs=1 ← leverage-scores-sampling((i)ni=1, Q, λ, k

′)

G← kernel-matrix((x̄j)
M
i=1, (xhs)

Q
s=1, k)

H← T−> ×G× diag((c2lh)Qh=1)×G> ×T−1

B← cholesky-upper-triangular( 1
Q
H + λI)

return B

define preconditioned-conj-grad:
Input: α ∈ RM , µ > 0, r ∈ RM , τ ∈ N,B ∈ RM×M

p← r, s0 ← ‖r‖2, β ← 0
For i = 1, . . . , τ

z ← µB−>B−1p+ 1
n

∑n
i=1 `

(2)(v(xi)
>T−1α, yi) (v(xi)

>T−1B−1p) B−>T−>v(xi)

a← s0/(p
>z)

β ← β + ap
r ← r − az, s1 ← ‖r‖2
p← r + (s1/s0)p
s0 ← s1

return β

define appr-linear-solver:
Input: α ∈ RM , µ > 0, g ∈ RM

B← compute-preconditioner(α, µ)
u← preconditioned-conjugate-gradient(α, µ,B−>g, τ = 3,B)
return B−1u

define approximate-Newton:
Input: α0 ∈ RM , µ > 0, t ∈ N
For j = 1, . . . , t

g ← µαj−1 + 1
n

∑n
i=1 `

(1)(v(xi)
>T−1αj−1, yi) T

−>v(xi)
αj ← αj−1 − appr-linear-solver(αj−1, µ, g)

return αt

α0 ← 0
For k ∈ N

αk+1 ← approximate-Newton(αk, µk, t = 2)
µk+1 ← qk+1µk

Stop when µk+1 < λ and set αlast ← αk

α̂← approximate-Newton(αlast, λ, T )
return ĝ(·) := v(·)>T−1α̂

Let N,M ∈ N with M ≤ N . In Alg. 1, leverage-scores-sampling((zi)
N
i=1,M, k, λ)

returns a subset of (zi)
N
i=1 of cardinality M sampled by using (approximate) leverage scores at

scale λ > 0 and computed using the kernel k. An explicit example of an algorithm computing
leverage-scores-sampling is in [30]. Moreover kernel-matrix((xi)

N
i=1, (x

′
i)
M
i=1, k)

computes the kernel matrix K ∈ RN×M where Kij = k(xi, x
′
j), with N,M ∈ N.
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F Experiments

We present our algorithm’s performance for logistic regression on two large scale data sets: Higgs and
Susy. We have implemented our method using pytorch, and performed computations on one node of a
Tesla P100-PCIE-16GB GPU. Recall that in the case of logistic regression, `(x,y)(t) = log(1 + e−yt).

In what follows, denote with n the cardinality of the data set and d the number of features of this
data set. The error is measured in terms of classification error for both data sets. In both cases, we
pre-process the data by substracting the mean and dividing by the standard deviation for each feature.
The data sets are the following.

Susy (n = 5× 106, d = 18, binary classification). We always use a Gaussian Kernel with σ = 5
for logistic loss (obtained through a grid search; note that in [29], σ = 4 is used for the square loss),
and will always use 104 Nystrom points.

Higgs (n = 1.1 × 107, d = 28, binary classification). We then apply a Gaussian Kernel with
σ = 5, as in [29] (we have also performed a grid search).

For these data sets, we do not have a fixed test set, and thus set apart 20% of the data set at random to
be the test set, and use the rest of the 80% to train the classifier.

In practice, we perform our globally convergent scheme with the following parameters.

• We use Q = M uniform random features to compute the pre-conditioner for each approxi-
mate Newton step;

• In the first phase, we decrease µ in a very fast way to λ by starting at µ = 1 and dividing
µ by 1000 after performing only a single approximate Newton step (using 2 iterations of
conjugate gradient descent);

• In the second phase, we perform 10 approximate Newton steps (each ANS is computed
using 8 iterations of conjugate gradient descent).

Selection of λ In the introduction, we claim that in many a learning problem, the parameter λ
obtained through cross validation is often much smaller than the ones obtained in statistical bounds
which are usually of order 1√

n
. This leads to very ill conditioned problems.

For both data sets, we select λ (and σ, but we omit the double tables from this paper) by computing
the test loss and classification errors for different values of λ, and report the evolution of these losses
as a function of the parameter λ in Fig. 2 for the Higgs data set, and Fig. 3 for the Susy data set. We
see that the optimal λ yield strongly ill-conditioned problems.
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Figure 2: (Left) Classification error as a function of the regularization parameter and (Right)
test loss as a function of the regularization parameter, when performing a logistic regression with
M = 2× 104 Nyström features on the entire Higgs data set; we select λ = 10−9.
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Figure 3: (Left) Classification error as a function of the regularization parameter and (Right) test loss
as a function of the regularization parameter, when performing a logistic regression with M = 104

Nyström features on the entire Susy data set; we select λ = 10−10.

Comparison with accelerated methods Given the M Nystrom points, our aims to minimize
L̂M,λ. From an optimization point of view, i.e. from a point of view where the aim is to minimize
L̂M,λ, we compare our method with a large mini-batch version of Katyusha accelerated SVRG (see
[4]).
Indeed, we perform this method using batch sizes of size M ; the theoretical bounds pro-
vided in [4] show that the algorithm has linear convergence, with a time complexity of order

O(nM + M3 + M2
√

L
λ ) log 1

ε to reach precision ε. In the following plots, we compare both
methods in terms of passes and time.

By pass, we mean the following.

• In the case of our second-order scheme, we define a pass on the data to be one step of the
conjugate gradient descent used to compute approximate newton steps.

• In the case of Katyusha SVRG, we define a pass on the data to be either a full gradient
computation or n/M computations of the type KτMT

−1β where T is an upper triangular
matrix, and KτM is a M ×M kernel matrix, associated to one batch gradient.

We use this notion to measure the speed of our method as they both correspond to natural O(nM)
operations, and incorporate the essential of the computing time. However, the second point is often
much slower to compute than the first, due to the solving of the triangular system. Thus, the notion of
passes is to take with precaution, as a pass for the accelerated SVRG algorithm takes much longer to
run that a pass for our method. This is confirmed by the time plots (see Fig. 5 for in instance).

Comparison between the two methods - Due to the running time of K-SVRG, we compare both
methods for M = 10000 Nyström points for both data sets. We compare the performance of these
two algorithm with respect to the distance to the optimum in function values as well as classification
error Fig. 4 for the Higgs data set, and in Fig. 5 for the Susy data set.

Note on the need for precise optimization - As noted in the introduction, we see in both Fig. 5 and
Fig. 4 that precise optimization of the objective function is needed in order to get a good classification
error. This justifies a posteriori the use of a second order method. In particular, in Fig. 5, one notes
the difference in behavior between the two methods : the second order method converges linearly in
a fast way while the first order method slows down because of the condition number.

Note on ill-conditioning - First note that in order to optimize test error, one gets very poorly con-
ditioned problems. As predicted by the rates, we observe that K-SVRG is more sensible to ill-
conditioning than our second order scheme. Indeed, in Fig. 6, we have plotted the results for Susy
for a smaller condition number with λ = 10−8, compared to λ = 10−10 to get optimal test error in
Fig. 5. We see that the difference in number of passes needed to reach a certain precision is much
lower when λ = 10−8 in Fig. 6, confirming that K-SVRG behaves better when the condition number
is smaller.
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Figure 4: (Left) Distance to optimum as a function of time and (Right) distance to optimum and
classification error as a function of the number of passes on the data when performing our second
order scheme and K-SVRG to minimize the train loss on Higgs, with 1.0× 104 Nyström points and
λ = 10−9.
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Figure 5: (Left) Distance to optimum as a function of time and (Right) distance to optimum and
classification error as a function of the number of passes on the data when performing our second
order scheme and K-SVRG to minimize the train loss on Susy, with 1.0× 104 Nyström points and
λ = 10−10.

Performance of our method. In Table 1, we record the performance of the following methods,
taking the λ values we have obtained previously for the different data sets.

For FALKON (see [29]), we take the parameters suggested in the paper (except for the number of
Nyström points needed for Higgs, as our computational capacity is limited).

Method Susy Higgs
c-error M time(m) c-error M time(m)

Logistic regression with Katyusha SVRG 19.64% 104 230 27.82 % 104 500
Logistic regression with our scheme 19.5% 104 15 26.9 % 2.5× 104 65

Ridge Regression with FALKON ([29]) 19.7% 104 5 27.16 % 2.5× 104 60

Table 1: Classification error of different methods
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Figure 6: (Left) Distance to optimum as a function of time and (Right) distance to optimum and
classification error as a function of the number of passes on the data when performing our second
order scheme and K-SVRG to minimize the train loss on Susy, with 1.0× 104 Nyström points and
λ = 10−8.

G Solving a projected problem to reduce dimension

G.1 Introduction and notations

In this section, we give ourselves a generalized self-concordant function f whose associated sub-
set we denote with G. Once again, we will always omit the subscript f in the notations associated to f .

The aim of this section is the following. Given f and λ > 0, computing an approximate solution to

x?λ = arg min
x∈H

fλ(x),

is often too costly. Instead, we look for a solution in a small subset ofH which we see as the image
of a certain orthogonal projector P and which we denote HP. Usually, this subset will be finite
dimensional and admit an easy parametrization. Thus we will compare an approximation of x?λ to an
approximation of

x∗P,λ = arg min
x∈HP

fλ(x) = arg min
x∈H

f(Px) +
λ

2
‖x‖2.

Denote with fP the mapping x ∈ H 7→ f(Px). It is easy to see that, as f is a gener-
alized self-concordant function with G, fP is naturally a generalized self-concordant with
GP := PG = {Pg : g ∈ G}. Moreover, x∗P,λ = x?fP,λ.

We will adopt the following notations for the quantities related to the generalized self-concordant
function fP. Essentially, we always replace fP simply by P from our definitions in appendix.

• For the regularized function :

∀x ∈ H, ∀λ > 0, fP,λ(x) = fP(x) +
λ

2
‖x‖2.

• For the Hessians

∀x ∈ H, λ > 0, HP,λ(x) = HfP,λ(x) = PH(Px)P + λI.

• ∀h ∈ H, tP(h) := tfP(h) = t(Ph).
• For the Newton decrement:

∀x ∈ H, λ > 0, νP,λ(x) = νfP,λ(x) = ‖∇fP,λ‖H−1
P,λ(x) = ‖P∇f(Px) + λx‖H−1

P,λ(x).

• For the Dikin ellipsoid radius:

∀λ > 0, ∀x ∈ H, rP,λ(x) := rfP,λ(x) =
1

supg∈G ‖Pg‖H−1
λ,P(x)

;
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• For the Dikin ellipsoid:

∀λ > 0, ∀c ≥ 0, DP,λ(c) := DfP,λ(c).

Note that for any x ∈ HP, rP,λ(x) ≥ rλ(x).

We will now introduce the key quantities in order to compare an approximation of x∗P,λ to an
approximation of x?λ.
Definition 8 (key quantities). Define the following quantities

• For any λ > 0, the source term sλ := λ‖x?λ‖H−1
λ (x?λ) = ‖∇f(x?λ)‖H−1

λ (x?λ);

• Given an orthogonal projector P, λ > 0, and x ∈ H, the capacity of the projector
CP(x, λ) := ‖H(x)1/2(I−P)‖2

λ .

G.2 Relating the projected to the original problem

Given x ∈ HP, our aim is to bound νλ(x) given νλ,P(x) and sλ.
Proposition 15. Let x ∈ HP. If

sλ
rλ(x?λ)

≤ 1

4
, CP(x?λ, λ) ≤ 1

120
, νP,λ(x) ≤ rP,λ(x)

2
,

Then it holds:
νλ(x) ≤ 3(νP,λ(x) + sλ).

Moreover, under these conditions,

• ‖x− x?λ‖ ≤ 7λ−1/2(νP,λ(x) + sλ);

• λ‖x‖H−1
P,λ(x) ≤ 7νP,λ(x) + 9sλ.

Proof. In this proof, introduce the following auxiliary quantity:

γλ :=
sλ

rλ(x?λ)
.

1) Start by bounding t(Px?λ − x?λ). It holds:

t(Px− x?λ) = sup
g∈G
|g · (I−P)x?λ|

≤ 1

rλ(x?λ)
‖(I−P)x?λ‖Hλ(x?λ)

≤ 1

rλ(x?λ)
‖Hλ(x?λ)1/2(I−P)Hλ(x?λ)1/2‖ ‖H−1/2

λ (x?λ)x?λ‖

= (1 + CP(x?λ, λ))
λ‖H−1/2

λ (x?λ)x?λ‖
rλ(x?λ)

= (1 + CP(x?λ, λ)) γλ.

2) Then bound t(x∗P,λ −Px?λ) First, bound νP,λ(Px?λ):

νP,λ(Px?λ) = ‖P∇fλ(Px?λ)‖Hλ,P(Px?λ)−1

≤ ‖∇fλ(Px?λ)‖Hλ(Px?λ)−1 .

Using Eq. (17), we get ‖∇fλ(Px?λ)‖Hλ(Px?λ)−1 ≤ et((I−P)x?λ)/2νλ(Px?λ). Using Eq. (20), we can
bound

νλ(Px?λ) ≤ φ(t((I−P)x?λ)) ‖(I−P)x?λ‖Hλ(x?λ) ≤ φ(t((I−P)x?λ)) (1 + CP(x?λ, λ))sλ.
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Putting things together,

νP,λ(Px?λ) ≤ et((I−P)x?λ)/2φ(t((I−P)x?λ)) (1 + CP(x?λ, λ))sλ.

Now
1

rP,λ(Px?λ)
≤ 1

rλ(Px?λ)
≤ et((I−P)x?λ)/2 1

rλ(x?λ)
.

Hence,

νP,λ(Px?λ)

rP,λ(Px?λ)
≤ et̃λφ(t̃λ) t̃λ, t̃λ = (1 + CP(x?λ, λ))γλ.

Since t 7→ etφ(t) t is an increasing function whose value in 0 is 0, we find numerically that for
t = 3

10 , etφ(t) t ≤ 1
2 . Hence, if (1 + CP(x?λ, λ))γλ ≤ 3

10 , then νP,λ(Px?λ)
rP,λ(Px?λ) ≤

1
2 . Using Lemma 5,

this shows that
tP(Px?λ − x∗P,λ) = t(Px?λ − x∗P,λ) ≤ log 2.

3) Getting a bound for t(x− x?λ). To do so, combine the two previous bounds with the fact that if
νP,λ(x) ≤ rP,λ(x)

2 , then using Lemma 5 with fP, tP(x− x∗P,λ) = t(x− x∗P,λ) ≤ log 2. Thus, if

(1 + CP(x?λ, λ))γλ ≤
3

10
, νP,λ(x) ≤ rP,λ(x)

2
,

then it holds
t(x− x?λ) ≤ 3

10
+ 2 log 2.

4) A technical result to bound ‖Hλ(x)−1/2HP,λ(x)1/2‖ . Using the fact that Px = x, and
Lemma 23, applied to A = H(x), we get

‖Hλ(x)−1/2HP,λ(x)1/2‖ ≤ 1 +
√
CP(x, λ).

Then, one can easily bound CP(x, λ) ≤ et(x−x?λ)CP(x?λ, λ).

5) Let us now bound νλ(x). First, decompose the term
νλ(x) = ‖∇fλ(x)‖H−1

λ (x) ≤ ‖P∇fλ(x)‖H−1
λ (x) + ‖(I−P)∇f(x)‖H−1

λ (x).

Since x ∈ HP, ‖P∇fλ(x)‖H−1
λ (x) = ‖∇fP,λ(x)‖H−1

λ (x), and using the previous point, we get

‖P∇fλ(x)‖H−1
λ (x) ≤

(
1 + et(x−x

?
λ)/2

√
CP(x?λ, λ)

)
νP,λ(x).

Let us now bound the second term. We divide it into two terms:
‖(I−P)∇f(x)‖H−1

λ (x) ≤ ‖(I−P) (∇f(x)−∇f(x?λ)) ‖H−1
λ (x) + ‖(I−P)∇f(x?λ)‖H−1

λ (x).

The second term can be bounded in the following way:

‖(I−P)∇f(x?λ)‖H−1
λ (x) ≤

1√
λ
‖(I−P)H

1/2
λ (x?λ)‖ ‖∇f(x?λ)‖H−1

λ (x?λ) ≤
√

1 + CP(x?λ, λ) sλ.

For the first term, we proceed in the following way.

‖(I−P) (∇f(x)−∇f(x?λ)) ‖H−1
λ (x) = ‖

∫ 1

0

H
−1/2
λ (x)(I−P)H(xt)(x− x?λ) dt‖

≤ 1√
λ

∫ 1

0

‖(I−P)H1/2(xt)‖ ‖H1/2(xt)(x− x?λ)‖ dt

≤
√
CP(x?λ, λ) φ(t(x− x?λ)) ‖x− x?λ‖H(x?λ)

≤
√
CP(x?λ, λ) et(x−x

?
λ)νλ(x).
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Hence the final bound:

(
1−

√
CP(x?λ, λ) et(x−x

?
λ)

)
νλ(x) ≤

(
1 + et(x−x

?
λ)/2

√
CP(x?λ, λ)

)
νP,λ(x)+

√
1 + CP(x?λ, λ) sλ.

Now if CP(x?λ, λ) ≤ 1
120 , we see that

√
CP(x?λ, λ) et(x−x

?
λ) ≤ 1

2 , and hence, using the bound on
t(x− x?λ),

νλ(x) ≤ 3(νP,λ(x) + sλ).

6) Showing the last two points . We leverage the fact that νλ(x) ≤ 3(νP,λ(x) + sλ) and t(x −
x?λ) ≤ 3

10 + 2 log 2.
To show the first bound, we plug in the previous results in the following equation:

‖x− x?λ‖ ≤ λ−1/2‖x− x?λ‖Hλ(x) ≤
1

φ(t(x− x?λ))
λ−1/2νλ(x).

The last inequality is obtained using Eq. (18).

To show the second point, we use the fact that x ∈ HP to show that

λ‖x‖H−1
P,λ(x) ≤ λ‖x‖H−1

λ (x) ≤ λ‖x− x
?
λ‖Hλ(x) + λ‖x?λ‖H−1

λ (x).

Then applying Eq. (17) and Eq. (18):

λ‖x‖H−1
P,λ(x) ≤

1

φ(t(x− x?λ))
νλ(x) + et(x−x

?
λ)/2sλ.

We then use the previous results to conclude.

G.3 Finding a good projector

Lemma 16. If for a certain η ≤ λ and for a certain constant C, ‖H1/2
η (x)(I−P)‖2 ≤ Cη, then

CP(x, λ) ≤ Cη

λ
.

Proof. This is completely direct, using the fact that H1/2(x) � H
1/2
η (x).
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H Relations between statistical problems and empirical problem.

In this section, we recall and reformulate the framework from [23].

H.1 Statistical problem and ERM estimator

Let Z be a Polish space and Z be a random variable on Z with distribution ρ. LetH be a separable
Hilbert space, with norm ‖ · ‖, and let (fz)z∈Z be a family of functions onH. Our goal is to minimize
the expected risk with respect to x ∈ H:

inf
x∈H

f(x) := E [fZ(x)] .

Given (zi)
n
i=1 ∈ Zn, we define the empirical risk:

f̂(x) :=
1

n

n∑
i=1

fzi(x),

and consider the following estimator based on regularized empirical risk minimization given λ > 0
(note that the minimizer is unique in this case):

x̂?λ = arg min
x∈H

f̂λ(x) := f̂(x) +
λ

2
‖x‖2,

where we assume the following.
Assumption 6 (i.i.d. data). The samples (zi)1≤i≤n are independently and identically distributed
according to ρ.

We make the following assumption on the family (fz) (this is a reformulation of Assumption 8 in
[23])
Assumption 7 (Generalized self-concordance). For any z ∈ Z , there exists an associated subset
Gz ⊂ H such that (fz,Gz) is generalized self-concordant in the sense of Definition 3.

Moreover we require the following technical assumption to guarantee that f and and its derivatives
are well defined for any x ∈ H (this is a reformulation of Assumptions 3 and 4 in [23], and the
necessary conditions to obtain Proposition 3).
Assumption 8 (Technical assumptions). The mapping (z, x) ∈ Z × H 7→ fz(x) is measurable.
Moreover,

• the random variables ‖fZ(0)‖, ‖∇fZ(0)‖,Tr(∇2fZ(0)) are are bounded;

• G :=
⋃
z∈supp(Z) Gz is a bounded subset ofH.

The assumptions above are usually easy to check in practice. In particular, if the support of ρ is
bounded, the mappings z 7→ `z(0),∇`z(0),Tr(∇2`z(0)) are continuous, and z 7→ Gz is uniformly
bounded on bounded sets, then they hold.

Proposition 16. Under Assumptions 7 and 8, the function (f,G) (or simply f ) is generalized self-
concordant.

Moreover, under Assumption 6, define

Ĝ :=

n⋃
i=1

Gzi .

Then (f̂ , Ĝ) (or simply f̂ ) is generalized self-concordant. Moreover, note that Ĝ ⊂ G.

The main regularity assumption we make on our statistical problems follows (see Assumption 5 in
[23]).
Assumption 9 (Existence of a minimizer). There exists x? ∈ H such that f(x?) = infx∈H f(x).
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Notations We adopt all the notations from Appendix A for f and f̂ , which are generalized self-
concordant functions with associated subsets given in Proposition 16 with the following conventions:

• For all quantities relating to f , we omit the subscript f as usual;

• For all quantities relating to f̂ , we omit the subscript f̂ and instead put a hat over all these
quantities. For instance:

Ĥ(x) := Hf̂ (x) =
1

n

n∑
i=1

∇2fzi(x), r̂λ(x) := rf̂ ,λ(x) =
1

supg∈Ĝ ‖g‖Ĥ−1
λ (x)

, etc...

Recall the two main quantities introduced in [23] to establish the quality of our estimator x̂?λ (in [23],
this is a mix between Proposition 2 and Definition 3).
Proposition 17 (Bias, degrees of freedom). Suppose Assumptions 7 to 9 are satisfied. The following
key quantities are well defined:

• the bias bλ = ‖Hλ(x?)−1/2∇fλ(x?)‖;

• the effective dimension dfλ = E
[
‖Hλ(x?)−1/2∇fZ(x?)‖2

]
.

Moreover, we also introduce the following quantities:

B?1 := sup
z∈supp(Z)

‖∇fz(x?)‖, B?2 := sup
z∈supp(Z)

Tr(∇2fz(x
?)), Q? =

B?1√
B?2
.

We can now recall the main theorem of [23] (Theorem 4), which quantifies the behavior of the ERM
estimator:
Theorem 8 (Bound for the ERM estimator). Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
,

√
42

dfλ ∨ (Q?)2

n
log

2

δ
≤ rλ(x?), 2bλ ≤ rλ(x?),

then with probability at least 1− 2δ, it holds

f(x̂?λ)− f(x?) ≤ Cbias b
2
λ + Cvar

dfλ ∨ (Q?)2

n
log

2

δ
, (37)

where Cbias,Cvar,�1 ≤ 414, 41, 42 ≤ 5184.

H.2 Link between a good approximation of x̂?λ and x?

In this paper, we provide an algorithm which can effectively compute a good approximation of x̂?λ
(as it is a finite sum problem which can be solved). This algorithm will return a certain x ∈ H,
whose precision with respect to the empirical problem will be characterized by ν̂λ(x). The aim of the
following lemma is to see how this approximation x behaves with respect to the statistical problem.
Lemma 17. Suppose the conditions for Thm. 8 are satisfied, i.e. let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2
and suppose

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
,

√
42

dfλ ∨ (Q?)2

n
log

2

δ
≤ rλ(x?), 2bλ ≤ rλ(x?).

Let x be an approximation of x̂?λ characterized by its Newton decrement ν̂λ(x). If

ν̂λ(x) ≤ r̂λ(x)

2
, ν̂λ(x) ≤ rλ(x?)

2
,

then with probability at least 1− 2δ, it holds

f(x)− f(x?) ≤ 14(f(x̂?λ)− f(x?)) + 30ν̂λ(x)2.

Proof. Using Eq. (16),
f(x)− f(x̂?λ) ≤ 〈∇f(x̂?λ), x− x̂?λ〉H + ψ(t(x− x̂?λ))‖x− x̂?λ‖2Hλ(x̂?λ)

≤ 1

2
‖∇f(x̂?λ)‖2

H−1
λ (x̂?λ)

+

(
ψ(t(x− x̂?λ)) +

1

2

)
‖x− x̂?λ‖2Hλ(x̂?λ).
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1. Let us bound ‖∇f(x̂?λ)‖H−1
λ (x̂?λ)

‖∇f(x̂?λ)‖H−1
λ (x̂?λ) ≤

∫ 1

0

‖H−1/2
λ (x̂?λ)H(xt)(x̂

?
λ − x?)‖ dt, xt = (1− t)x̂?λ + tx?

≤
∫ 1

0

‖H−1/2
λ (x̂?λ)H1/2(xt)‖ ‖H1/2(xt)(x̂

?
λ − x?)‖ dt.

Now using equation Eq. (14)

H(xt) � ett(x̂
?
λ−x

?)H(x̂?λ), H(xt) � e(1−t)t(x̂?λ−x
?).

Thus:

‖∇f(x̂?λ)‖H−1
λ (x̂?λ) ≤ e

t(x̂?λ−x
?)/2 ‖x̂?λ − x?‖H(x?).

Finally, using equation Eq. (16)

‖∇f(x̂?λ)‖H−1
λ (x̂?λ) ≤

et(x̂
?
λ−x

?)/2

ψ(−t(x̂?λ − x?))1/2
(f(x̂?λ)− f(x?))

1/2
.

2. Let us bound the terms involving ‖x − x̂?λ‖Hλ(x̂?λ) Note that using Eq. (18) and Eq. (17)

applied to f̂ ,

‖x− x̂?λ‖Hλ(x̂?λ) ≤ ‖H
1/2
λ (x̂?λ)Ĥ

−1/2
λ (x̂?λ)‖ êt(x−x̂

?
λ)/2

φ(̂t(x− x̂?λ))
ν̂λ(x).

This also leads to:

t(x− x̂?λ) ≤ 1

rλ(x̂?λ)
‖H1/2

λ (x̂?λ)Ĥ
−1/2
λ (x̂?λ)‖ ‖x− x̂?λ‖Ĥλ(x̂?λ)

≤ 1

rλ(x̂?λ)
‖H1/2

λ (x̂?λ)Ĥ
−1/2
λ (x̂?λ)‖ êt(x−x̂

?
λ)/2

φ(̂t(x− x̂?λ))
ν̂λ(x).

3. Putting things together In the end, we get

f(x)− f(x?) ≤
(

1 +
et(x̂

?
λ−x

?)

ψ(−t(x̂?λ − x?))

)
(f(x̂?λ)− f(x?))

+

(
ψ(t(x− x̂?λ)) +

1

2

)(
et(x̂

?
λ−x

?
λ)/2‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ êt(x−x̂

?
λ)/2

φ(̂t(x− x̂?λ))

)
ν̂λ(x)2.

Moreover, we bound

t(x− x̂?λ) ≤ e(t(x?−x̂?λ)+t(x̂?λ−x
?
λ))/2 ‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ êt(x−x̂

?
λ)/2

φ(̂t(x− x̂?λ))

ν̂λ(x)

rλ(x?)
.

4. Plugging in previous results Under the assumptions of this lemma, which include the assump-
tions of Theorem 4. in [23], we get the following bounds.

• In [23],the assumptions of Theorem 4 imply that we can use Lemma 9, which uses Lemma
8 in which we show that with probability at least 1− δ,

‖Ĥ−1/2
λ (x?λ)Hλ(x?λ)1/2‖2 ≤ 2.
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• Still using the assumptions of Theorem 4, we see in the proof of this theorem that the
assumptions of Theorem 7 of [23] are satisfied in the case where bλ ≤ rλ(x?)

2 , and thus that

t(x̂?λ − x?λ) ≤ log 2, t(x?λ − x?) ≤ log 2.

Plugging in all these bounds, we get

(
1 +

et(x̂
?
λ−x

?)

ψ(−t(x̂?λ − x?))

)
≤ 14, t(x− x̂?λ) ≤ 6,

(
ψ(t(x− x̂?λ)) +

1

2

)(
et(x̂

?
λ−x

?
λ)/2‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ êt(x−x̂

?
λ)/2

φ(̂t(x− x̂?λ))

)
≤ 30.

H.3 Bounds when we solve a projected empirical problem

In this section, we place ourselves in the setting of Appendix G. In this section, we had argued that for
computational purposes, it was less costly to compute an approximate solution to a projected problem.

In this section, we assume that we are going to project the regularized empirical problem, that is solve
approximately

x ≈ arg min
x∈H

f̂P,λ(x) = f̂(Px) +
λ

2
‖x‖2.

for a given orthogonal projection P. Recall from Appendix G that there is a natural way of seeing f̂P

as a generalized self-concordant function. We import all the notations from this section, keeping a ·̂
over all notations to mark the fact that we are projecting f̂ and not f .

To quantify the quality of the approximation x, we will use the Newton decrement for the empirical
projected problem ν̂P,λ(x) := νf̂P,λ(x).

As we see in Proposition 15, under certain conditions, bounding ν̂λ(x) amounts to bounding two
terms:

• The empirical source ŝλ := λ‖x̂?λ‖Ĥ−1
λ (x̂?λ),

• The projected empirical Newton decrement ν̂P,λ(x).

1. Bounding the empirical source term ŝλ Start by bounding the source empirical source term
using quantities we know.

Lemma 18 (Empirical source). Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
,

√
42

dfλ ∨ (Q?)2

n
log

2

δ
≤ rλ(x?), 2bλ ≤ rλ(x?).

The following holds, with probability at least 1− 2δ.

ŝλ ≤ 8 bλ + 80

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Moreover, we also have the following bound :

‖x̂?λ − x?‖ ≤ 3 λ−1/2 bλ + 8 λ−1/2

√
dfλ ∨ (Q?)2 log 2

δ

n
.
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Proof. We first decompose the source term into two terms, and then apply different bounds from [23]
to effectively bound it. We will use the following quantity:

v̂λ := ‖H1/2
λ (x?λ)Ĥ

−1/2
λ (x?λ)‖2 ‖∇f̂λ(x?λ)‖H−1

λ (x?λ).

It is also defined in equation (23) in [23].

1. Dividing ŝλ into two controllable terms . Decompose

ŝλ = ‖λx̂?λ‖Ĥ−1
λ (x̂?λ) ≤ ‖Ĥ

−1/2
λ (x̂?λ)H

1/2
λ (x̂?λ)‖ ‖λx̂?λ‖H−1

λ (x̂?λ)

≤ ‖Ĥ−1/2
λ (x̂?λ)H

1/2
λ (x̂?λ)‖

(
‖∇fλ(x̂?λ)‖H−1

λ (x̂?λ) + ‖∇f(x̂?λ)‖H−1
λ (x̂?λ)

)
.

On the one hand, from the previous proof, we get

‖∇f(x̂?λ)‖H−1
λ (x̂?λ) ≤ e

t(x̂?λ−x
?)/2 ‖x̂?λ − x?‖H(x?)

≤ et(x̂
?
λ−x

?)/2
(
et(x

?
λ−x

?)‖x̂?λ − x?λ‖Hλ(x?λ) + ‖x?λ − x?‖Hλ(x?)

)
≤ et(x̂

?
λ−x

?)/2

(
et(x

?
λ−x

?)

φ(t(x̂?λ − x?λ))
v̂λ +

1

φ(t(x?λ − x?))
bλ

)
.

In the last line, we use the fact that ‖x̂?λ − x?λ‖Hλ(x?λ) ≤ ‖H
1/2
λ (x?λ)Ĥ

−1/2
λ (x?λ)‖ ‖x̂?λ − x?λ‖Ĥλ(x?λ)

and then bound it using Eq. (18) applied to f̂ to get

‖x̂?λ − x?λ‖Ĥλ(x?λ) ≤
1

φ(̂t(x?λ − x̂?λ))
‖∇f̂λ(x?λ)‖Ĥ−1

λ (x?λ)

≤ 1

φ(t(x?λ − x̂?λ))
‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ ‖∇f̂λ(x?λ)‖H−1

λ (x?λ).

On the other hand, apply successively Eq. (18) to f and f̂ using the fact that t̂ ≤ t to get

‖∇fλ(x̂?λ)‖H−1
λ (x̂?λ) = ‖∇fλ(x̂?λ)−∇fλ(x?λ)‖H−1

λ (x̂?λ)

≤ et(x̂
?
λ−x

?
λ)/2φ(t(x̂?λ − x?λ)) ‖x̂?λ − x?λ‖Hλ(x?λ)

≤ et(x̂
?
λ−x

?
λ)/2φ(t(x̂?λ − x?λ)) ‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ ‖x̂?λ − x?λ‖Ĥλ(x?λ)

≤ et(x̂
?
λ−x

?
λ)/2φ(t(x̂?λ − x?λ))

φ(t(x̂?λ − x?λ))
‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖2 ‖∇f̂λ(x?λ)‖Hλ(x?λ)

= e3t(x̂?λ−x
?
λ)/2v̂λ.

Putting things together:

ŝλ ≤ ‖Ĥ−1/2
λ (x̂?λ)H

1/2
λ (x̂?λ)‖

(
e3t(x?λ−x̂

?
λ)/2

(
1 +

1

φ(t(x?λ − x̂?λ))

)
v̂λ +

et(x
?
λ−x̂

?
λ)/2

φ(t(x?λ − x?))
bλ

)
.

2. We now import the results from [23] . The following hypotheses imply those of Thms 4 and 7
in [23]:

Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, n ≥ 42

dfλ ∨ (Q?)2

rλ(x?)2
log

2

δ
, bλ ≤

rλ(x?)

2
.

In particular, they imply that with probability at least 1− 2δ:
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• v̂λ ≤ 1
2bλ + 4�1

√
dfλ∨(Q?)2 log 2

δ

n ;

• ‖H1/2
λ (x?λ)Ĥ

−1/2
λ (x?λ)‖ ≤

√
2;

• t(x? − x?λ) ≤ log 2;

• t(x̂?λ − x?λ) ≤ log 2.

Hence, plugging these bounds in the previous equation, we get

ŝλ ≤ 8bλ + 80

√
dfλ ∨ (Q?)2 log 2

δ

n
.

3. Note that in what has been done previously, we can bound:

‖x̂?λ − x?λ‖Hλ(x?λ) ≤
1

φ(t(x?λ − x̂?λ))
v̂λ ≤ bλ + 8

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Moreover,

‖x?λ − x?‖Hλ(x?) ≤
1

φ(t(x?λ − x?))
‖∇fλ(x?)‖H−1

λ (x?) ≤ 2bλ.

Hence:

‖x̂?λ − x?‖ ≤ 3 λ−1/2 bλ + 8 λ−1/2

√
dfλ ∨ (Q?)2 log 2

δ

n
.

2. Final bound for the projected ERM approximation In this paragraph, denote with CP(x, λ)

the quantity ‖H
1/2(x)(I−P)‖2

λ and ĈP(x, λ) the quantity ‖Ĥ
1/2(x)(I−P)‖2

λ

Lemma 19. Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, C1

√
dfλ ∨ (Q?)2

n
log

2

δ
≤ rλ(x?), C1bλ ≤ rλ(x?),

if

CP(x?, λ) ≤
√

2

480
, ν̂P,λ(x) ≤ r̂P,λ(x)

2
∧ rλ(x?)

126
,

the following holds, with probability at least 1− 2δ.

ν̂λ(x) ≤ r̂λ(x)

2
, ν̂λ(x) ≤ rλ(x?)

2
.

Here, C1 = 1008.

Proof. Proceed in the following way.

1. It is easy to see that the conditions of this lemma imply the conditions of Thm. 8. Hence, as in
the previous proofs, the following hold:

• ‖H1/2
λ (x?λ)Ĥ

−1/2
λ (x?λ)‖ ≤

√
2;

• t(x? − x?λ) ≤ log 2;

• t(x̂?λ − x?λ) ≤ log 2.
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2. Let us now apply Proposition 15 to f̂ . If
ŝλ

r̂λ(x̂?λ)
≤ 1

4
, ĈP(x̂?λ, λ) ≤ 1

120
, ν̂P,λ(x) ≤ r̂P,λ(x)

2
,

Then it holds:

ν̂λ(x) ≤ 3(ν̂P,λ(x) + ŝλ), t̂(x− x̂?λ) ≤ 3

10
+ 2 log 2. (38)

where the second bound is obtained in the proof of this proposition. Now since

1

r̂λ(x̂?λ)
≤ êt(x̂

?
λ−x

?
λ)/2 1

r̂λ(x?λ)
Eq. (17)

≤ êt(x̂
?
λ−x

?
λ)/2 ‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ sup

g∈Ĝ
‖g‖H−1

λ (x?λ) Def

≤ et(x̂
?
λ−x

?
λ)/2 ‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ sup

g∈G
‖g‖H−1

λ (x?λ) Ĝ ⊂ G

= et(x̂
?
λ−x

?
λ)/2 ‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ 1

rλ(x?λ)
Def

≤ e(t(x̂?λ−x
?
λ)+t(x?λ−x

?))/2 ‖H1/2
λ (x?λ)Ĥ

−1/2
λ (x?λ)‖ 1

rλ(x?)
Eq. (17)

≤ 2
√

2

rλ(x?)
. previous bounds

In a similar way, we get ĈP(x̂?λ, λ) ≤ 2
√

2CP(x?, λ). Thus, the conditions above are satisfied if the
following conditions are satisfied:

ŝλ
rλ(x?)

≤
√

2

16
, CP(x?, λ) ≤

√
2

480
, ν̂P,λ(x) ≤ r̂P,λ(x)

2
.

Finally, note that under these conditions,

1

r̂λ(x)
≤ êt(x−x̂

?
λ)/2

r̂λ(x)
≤ 7

rλ(x?)
. (39)

using the previous bound and the bound on t̂(x− x̂?λ).

3. Let us assume
ŝλ

rλ(x?)
≤
√

2

16
, CP(x?, λ) ≤

√
2

480
, ν̂P,λ(x) ≤ r̂P,λ(x)

2
.

According to Eq. (39), and to Eq. (38), if

ν̂P,λ(x) + ŝλ ≤
rλ(x?)

42
,

then it holds

ν̂λ(x) ≤ r̂λ(x)

2
, ν̂λ(x) ≤ rλ(x?)

2
.

We simplify this condition as:

ν̂P,λ(x) ≤ rλ(x?)

126
, ŝλ ≤

2rλ(x?)

126
.

4. Now using the fact that under the conditions of this lemma, those of Lemma 18 are satisfied:

ŝλ ≤ 8 bλ + 80

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Thus, ŝλ ≤ 2rλ(x?)
126 holds, provided

bλ ≤
rλ(x?)

C1
, n ≥ C2

1

dfλ ∨ (Q?)2 log 2
δ

rλ(x?)2
,

where C1 = 1008.
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Proposition 18 (Behavior of an approximation to the projected problem). Let n ∈ N, δ ∈ (0, 1/2],
0 < λ ≤ B?2. Let x ∈ HP. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, C1

√
dfλ ∨ (Q?)2

n
log

2

δ
≤ rλ(x?), C1bλ ≤ rλ(x?),

if

CP(x?, λ) ≤
√

2

480
, ν̂P,λ(x) ≤ r̂P,λ(x)

2
∧ rλ(x?)

126
.

The following holds, with probability at least 1− 2δ.

f(x)− f(x?) ≤ K1 b2
λ + K2

dfλ ∨ (Q?)2

n
log

2

δ
+ K3 ν̂

2
P,λ(x),

where K1 ≤ 6.0e4, K2 ≤ 6.0e6 and K3 ≤ 810, C1 are defined in Lemma 19, and the other constants
are defined in Thm. 8.
Remark 5 (Constants). In this result, absolutely huge constants are obtained. They are (of course)
totally sub-optimal. Indeed, this analysis has been simplified by dividing the bound into blocks:
error of the empirical risk minimization with regularization, error of the projection compared to this
empirical risk minimizer. Going back and forth from empirical to statistical, from projected to non
projected induces exponential explosion of the constants. There is a way of doing the analysis directly
by projecting the statistical problem. However, in order to relate to our previous work [23] and avoid
re-doing all of our work we discarded this. If we were to perform this more direct analysis, we could
keep the constants to a reasonable level, of order 102.

Proof. We apply Lemma 17, using the previous lemma to guarantee the conditions.

1. Under the conditions of this proposition, applying Lemma 19, the conditions of Lemma 17 are
satisfied. Thus,

f(x)− f(x?) ≤ 14(f(x̂?λ)− f(x?)) + 30ν̂λ(x)2.

Moreover, from the previous proof,

ν̂λ(x) ≤ 3(ν̂P,λ(x) + ŝλ),

and seeing as Lemma 18 is satisfied,

ŝλ ≤ 8 bλ + 80

√
dfλ ∨ (Q?)2 log 2

δ

n
.

This therefore yields:

ν̂λ(x)2 ≤ 27ν̂P,λ(x)2 + 1726b2
λ + 172600

dfλ ∨ (Q?)2 log 2
δ

n
.

2. Moreover, from Thm. 8, it holds:

f(x̂?λ)− f(x?) ≤ 414 b2
λ + 414

dfλ ∨ (Q?)2

n
log

2

δ
.

3. Putting things together:

f(x)− f(x?) ≤ K1 b2
λ + K2

dfλ ∨ (Q?)2

n
log

2

δ
+ K3 ν̂

2
P,λ(x).

We bound the constants in the theorem.

Lemma 20. Under the conditions of the previous theorem, the following hold:

• 1
r̂P,λ(x) ≤

8
rλ(x?) ;

59



• λ1/2‖x− x?‖ ≤ 7ν̂P,λ(x) + 59bλ + 568

√
dfλ∨(Q?)2 log 2

δ

n ;

• λ‖x‖Ĥ−1
P,λ(x) ≤ 7ν̂P,λ(x) + 72bλ + 720

√
dfλ∨(Q?)2 log 2

δ

n .

In particular,
λ‖x‖

Ĥ
−1
P,λ

(x)

r̂P,λ(x) ≤ 11.

Proof. Let us prove the three statements.

1. Write 1
r̂P,λ(x) = supg∈Ĝ ‖Pg‖Ĥ−1

P,λ(x). Now

sup
g∈Ĝ
‖Pg‖Ĥ−1

P,λ(x) ≤ sup
g∈Ĝ
‖g‖Ĥ−1

λ (x) ≤ ê
t(x−x̂?λ)/2 sup

g∈Ĝ
‖g‖Ĥ−1

λ (x̂?λ).

Now bound

sup
g∈Ĝ
‖g‖Ĥ−1

λ (x̂?λ) ≤ ê
t(x?λ−x̂

?
λ)/2 sup

g∈Ĝ
‖g‖Ĥ−1

λ (x?λ) ≤ ê
t(x?λ−x̂

?
λ)/2 ‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ sup

g∈Ĝ
‖g‖H−1

λ (x?λ).

Finally bound

sup
g∈Ĝ
‖g‖H−1

λ (x?λ) ≤ e
t(x?−x?λ)/2 1

rλ(x?)
.

Now using the fact that under the previous assumptions t(x?−x?λ), t(x?λ− x̂?λ) ≤ log 2, t̂(x− x̂?λ) ≤
3
10 + 2 log 2 and ‖H1/2

λ (x?λ)Ĥ
−1/2
λ (x?λ)‖ ≤

√
2, we get the first equation.

2. In order to bound λ1/2‖x− x?‖, decompose

λ1/2‖x− x?‖ ≤ λ1/2‖x− x̂?λ‖+ λ1/2‖x̂?λ − x?‖.

Now use Proposition 15 to bound λ1/2‖x− x̂?λ‖ ≤ 7(ν̂P,λ(x) + ŝλ). Using Lemma 18, under the
conditions above,

ŝλ ≤ 8 bλ + 80

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Hence

λ1/2‖x− x̂?λ‖ ≤ 7ν̂P,λ(x) + 56bλ + 560

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Moreover, using again Lemma 18

λ1/2‖x̂?λ − x?‖ ≤ 3 bλ + 8

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Combining these two inequalities, we get:

λ1/2‖x− x?‖ ≤ 7ν̂P,λ(x) + 59bλ + 568

√
dfλ ∨ (Q?)2 log 2

δ

n
.
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3. In order to bound λ‖x‖Ĥ−1
P,λ(x), use Proposition 15 to get λ‖x‖Ĥ−1

P,λ(x) ≤ 7ν̂P,λ(x) + 9ŝλ.

Now using Lemma 18, the following bound holds:

λ‖x‖Ĥ−1
P,λ(x) ≤ 7ν̂P,λ(x) + 72bλ + 720

√
dfλ ∨ (Q?)2 log 2

δ

n
.

Proposition 19 (Simplification). Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2. Let x ∈ HP. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, C1

√
dfλ ∨ (Q?)2

n
log

2

δ
≤
√
λ

R
, C1bλ ≤

√
λ

R
,

if

CP(x?, λ) ≤
√

2

480
, ν̂P,λ(x) ≤

√
λ

126R
,

then the following holds, with probability at least 1− 2δ.

f(x)− f(x?) ≤ K1 b2
λ + K2

dfλ ∨ (Q?)2

n
log

2

δ
+ K3 ν̂

2
P,λ(x),

where K1 ≤ 6.0e4, K2 ≤ 6.0e6 and K3 ≤ 810, C1 are defined in Lemma 19, and the other constants
are defined in Thm. 8.

Moreover, in that case, R‖x− x?‖ ≤ 10.

H.4 Optimal choice of λ, specific source conditions

In this part, we continue to assume Assumptions 6 to 9. We present a classification of distributions ρ
and show that we can achieve better rates than the classical slow rates, as presented in Appendix F of
[23].

H.4.1 Classification of distributions and statistical bounds for the ERM

We use the following classification for distributions.

Definition 9 (class of distributions). Let α ∈ [1,+∞] and r ∈ [0, 1/2].
We denote with Pα,r the set of probability distributions ρ such that there exists L,Q ≥ 0,

• bλ ≤ L λ
1+2r

2 ;

• dfλ ≤ Q2 λ−1/α;

where this holds for any 0 < λ ≤ 1. For simplicity, if α = +∞, we assume that Q ≥ Q?.

Note that given our assumptions, we always have

ρ ∈ P1,0, L = ‖x?‖, Q = B?1. (40)

We also define

λ1 =

(
Q

Q?

)2α

∧ 1, (41)

such that

∀λ ≤ λ1, dfλ ∨ (Q?)2 ≤ Q2

λ1/α
.
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Interpretation of the classes

• The bias term bλ characterizes the regularity of the objective x?. In a sense, if r is big,
then this means x? is very regular and will be easier to estimate. The following results
reformulates this intuition.
Remark 6 (source condition). Assume there exists 0 ≤ r ≤ 1/2 and v ∈ H such that

PH(x?)x
? = H(x?)rv.

Then it holds:
∀λ > 0, bλ ≤ L λ

1+2r
2 , L = ‖H(x?)−rx?‖.

• The effective dimension dfλ characterizes the size of the spaceH with respect to the problem.
The higher α, the smaller the space. IfH is finite dimensional for instance, α = +∞.

In this section, for any given pair (α, r) characterizing the regularity and size of the problem, we
associate

β =
1

1 + 2r + 1/α
, γ =

α(1 + 2r)

α(1 + 2r) + 1
.

In [23] (see corollary 3), explicit bounds are given for the performance of the regularized expected
risk minimizer x̂?λ depending on which class ρ belongs to, i.e., as a function of α, r.
Corollary 4. Let δ ∈ (0, 1/2]. Under Assumptions 6 to 9, if ρ ∈ Pα,r with r > 0 , when n ≥ N and
λ = (C0/n)β , then with probability at least 1− 2δ,

f(x̂?λ)− f(x?) ≤ C1n
−γ log

2

δ
,

with C0 = 256(Q/L)2, C1 = 8(256)γ (Qγ L1−γ)2 and N defined in [23], and satisfying N =
O(poly(B?1,B

?
2, L,Q, R, log(1/δ))).

H.4.2 Quantitative bounds for the projected problem

In this part, the aim is to show that if we approximately solve the projected problem up to a certain
precision, then this approximation has the same statistical rates as the regularized ERM with the good
choice of λ. For the sake of simplicity, we will assume that r > 0.

In what follows, we define

N =
Q2

L2
(B?2 ∧ λ0 ∧ λ1)

−1/β ∨
(

2.1e4
1

1− β
A log

(
1.4e6

1

1− β
A2 1

δ

))1/(1−β)

, (42)

where A =
B?2L

2β

Q2β , λ0 = (C1LR log 2
δ )−1/r ∧ 1 and λ1 = Q2α

(Q?)2α .

Theorem 9 (Quantitative result with source r > 0). Let ρ ∈ Pα,r and assume r > 0. Let δ ∈ (0, 1
2 ].

Let P be an orthogonal projection, x ∈ H. If

n ≥ N, λ =

((
Q

L

)2
1

n

)β
, CP(x?, λ) ≤

√
2

480
, ν̂P,λ(x) ≤ Qγ L1−γn−γ/2

then with probability at least 1− 2δ,

f(x)− f(x?) ≤ K
(
Qγ L1−γ)2 1

nγ
log

2

δ
,

where N is defined in Eq. (42) and K ≤ 7.0e6. Moreover, R‖x− x?‖ ≤ 10.

Proof. Using the definition of λ1, as soon as λ ≤ λ1 ,it holds: dfλ ∨ (Q?)2 ≤ Q2λ−1/α.

Let us formulate Proposition 19 using the fact that ρ ∈ Pα,r.
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Let n ∈ N, δ ∈ (0, 1/2], 0 < λ ≤ B?2, x ∈ HP. Whenever

n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
, C1

√
Q2

λ1/αn
log

2

δ
≤ λ1/2

R
,C1 Lλ1/2+r ≤ λ1/2

R
,

if

CP(x?, λ) ≤
√

2

480
, ν̂P,λ(x) ≤ Lλ1/2+r,

The following holds, with probability at least 1− 2δ.

f(x)− f(x?) ≤ (K1 + K3)L2λ1+2r + K2
Q2

λ1/αn
log

2

δ
, R‖x− x?‖ ≤ 10,

where all constants are defined in Proposition 19.

Assume that r > 0 . Define

λ0 = (C1LR log
2

δ
)−1/r ∧ 1.

Then for any λ ≤ λ0:

Lλ1/2+r ≤ 1

C1

√
λ

R
.

1) First, we find a simple condition to guarantee

rλ(x?)2λ1/α ≥ C2 Q2 1

n
log

2

δ
.

We see that if λ ≤ λ0, then rλ ≥ C1Lλ
1/2+r log 2

δ . Hence, this condition is satisfied if

λ ≤ λ0, C2
1L

2λ1+2r+1/α ≥ C2 Q2 1

n
.

Using the fact that C2 = C2
1, we reformulate:

λ ≤ λ0, L2λ1+2r+1/α ≥ Q2 1

n
.

2) Now fix

λ1+2r+1/α =
Q2

L2

1

n
⇐⇒ λ =

(
Q2

L2

1

n

)β
.

where β = 1/(1 + 2r + 1/λ) ∈ [1/2, 1).

Using our restatement of Proposition 18, with probability at least 1− 2δ,

L(x)− L(x?) ≤
(
K1 + K3 + K2 log

2

δ

)
L2λ1+2r ≤ K log

2

δ
L2λ1+2r,

where K = K1 + K3 + K2 ≤ 7.0e6 (see Proposition 18).
This result holds provided

0 < λ ≤ B?2 ∧ λ0 ∧ λ1, n ≥ 41
B?2
λ

log
8�2

1B
?
2

λδ
. (43)

Indeed, it is shown in the previous point that the other conditions are satisfied.

3) Let us now work to guarantee the conditions in Eq. (43).
First, to guarantee n ≥ 41

B?2
λ log

8�2
1B
?
2

λδ , bound

B?2
λ

=
B?2L

2βnβ

Q2β logβ 2
δ

≤ 2
B?2L

2β

Q2β
nβ .
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Then apply lemma 15 from [23] with a1 = 241, a2 = 16�2
1, A =

B?2L
2β

Q2β . Since β ≥ 1/2, using the
bounds in Thm. 8, we find a1 ≤ 10400 and a2 ≤ 64, hence the following sufficient condition:

n ≥
(

2.1e4
1

1− β
A log

(
1.4e6

1

1− β
A2 1

δ

))1/(1−β)

.

Then, to guarantee the condition
λ ≤ B?2 ∧ λ0 ∧ λ1,

we simply need

n ≥ Q2

L2
(B?2 ∧ λ0 ∧ λ1)

−1/β
.

Hence, defining

N =
Q2

L2
(B?2 ∧ λ0 ∧ λ1)

−1/β ∨
(

2.1e4
1

1− β
A log

(
1.4e6

1

1− β
A2 1

δ

))1/(1−β)

,

we see that as soon as n ≥ N , Eq. (43) holds.
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I Multiplicative approximations for Hermitian operators

In this section, we put together useful tools for approximating linear operators and solving linear
systems with regularization.

In this section, A and B will always denote positive semi-definite Hermitian operators on a Hilbert
space H, and P will denote an orthogonal projection operator. Moreover, given a positive semi-
definite operator A, and λ > 0, Aλ will stand for the regularized operator A + λI.

Lemma 21 (Equivalence of Hermitian operators). Let A and B be two semi-definite Hermitian
operators. Let λ > 0. Assume you have access to

t := ‖A−1/2
λ (B−A)A

−1/2
λ ‖.

It holds:
‖A−1/2

λ B
1/2
λ ‖

2 ≤ 1 + t⇔ Bλ � (1 + t)Aλ.

Moreover, if t < 1,

‖B−1/2
λ A

1/2
λ ‖

2 ≤ 1

1− t
⇔ (1− t)Aλ � Bλ.

Proof. For the first point, simply note that:

‖A−1/2
λ B

1/2
λ ‖

2 = ‖A−1/2
λ BλA

−1/2
λ ‖ = ‖I + A

−1/2
λ (B−A) A

−1/2
λ ‖ ≤ 1 + t.

For the second point,

‖B−1/2
λ A

1/2
λ ‖

2 = ‖
(
A
−1/2
λ BλA

−1/2
λ

)−1

‖ = ‖
(
I + A

−1/2
λ (B−A) A

−1/2
λ

)−1

‖.

Moreover, we know that if ‖H‖ < 1 with H a Hermitian operator, then ‖(I + H)−1‖ ≤ 1
1−‖H‖ . The

result follows.

We will now state a technical lemma which describes how combining approximation behaves.

Lemma 22 (Combination of approximations). Let N ≥ 1. Let (Ai)1≤i≤N+1 be a sequence of
positive semi-definite Hermitian operators. Define

ti := ‖A−1/2
i,λ (Ai+1 −Ai)A

−1/2
i,λ ‖.

For any 1 ≤ i, j ≤ N + 1, define

ti:j := ‖A−1/2
i,λ (Aj −Ai)A

−1/2
i,λ ‖.

In particular, ti = ti:i+1. Then the following holds:

∀1 ≤ i ≤ j ≤ N, 1 + ti:j ≤
j−1∏
k=i

(1 + tk)

Moreover, if ti < 1, then it holds:

‖A−1/2
i+1,λ(Ai −Ai+1)A

−1/2
i+1,λ‖ ≤

ti
1− ti

Hence, in that case

∀1 ≤ j ≤ i ≤ N, 1 + tj:i ≤
j−1∏
k=i

1

1− tk

Proof. Let us prove everything for a sequence of three operators; the rest follows by induction. Let
A1,A2,A3 be three positive semi-definite operators.
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1. Bound

t1:3 = ‖A−1/2
1,λ (A1 −A3) A

−1/2
1,λ ‖

≤ ‖A−1/2
1,λ (A1 −A2) A

−1/2
1,λ ‖+ ‖A−1/2

1,λ (A2 −A3) A
−1/2
1,λ ‖

≤ t1:2 + ‖A−1/2
1,λ A

1/2
2,λ‖

2t2:3

≤ t1:2 + (1 + t1:2)t2:3.

The last line comes from Lemma 21. Thus

1 + t1:3 ≤ 1 + t1:2 + t2:3 + t1:2t2:3 = (1 + t1:2)(1 + t2:3).

2. Let us now bound t2:1 knowing t1:2. This will imply the rest of the lemma.

Indeed, simply note that

t2:1 = ‖A−1/2
2,λ (A2 −A1)A

−1/2
2,λ ‖ ≤ ‖A

−1/2
2,λ A

1/2
1,λ‖

2 t1:2.

Using Lemma 21, if t1:2 < 1, ‖A−1/2
2,λ A

1/2
1,λ‖2 ≤

1
1−t1:2 , hence

t2:1 ≤
t1:2

1− t1:2
.

Lemma 23 (Projection of Hermitian operators). For any Hermitian operator A and orthogonal
projection P, the following holds:

‖A−1/2
λ (A−PAP)A

−1/2
λ ‖ ≤

(
1 +
‖A1/2(I−P)‖√

λ

)2

− 1.

In particular,

‖A−1/2
λ (PAP + λI)

1/2 ‖ ≤ 1 +
‖A1/2(I−P)‖√

λ
.

Moreover, if
‖A1/2(I−P)‖√

λ
<
√

2− 1,

then it holds
‖A1/2

λ (PAP + λI)
−1/2 ‖2 ≤ 1

2−
(

1 + ‖A1/2(I−P)‖√
λ

)2 .

We also always have:
‖ (PAP + λI)

−1/2
PA

1/2
λ ‖

2 ≤ 1.

Proof. For any Hermitian operator A, the following computation holds:

‖A−1/2
λ (A−PAP)A

−1/2
λ ‖ = ‖A−1/2

λ (A− (I− (I−P))A(I− (I−P))A
−1/2
λ ‖

≤ 2‖A−1/2
λ (I−P)AA

−1/2
λ ‖+ ‖A−1/2

λ (I−P)A(I−P)A
−1/2
λ ‖

≤ 2‖A1/2(I−P)‖√
λ

+
‖A1/2(I−P)‖2

λ

=

(
1 +
‖A1/2(I−P)‖√

λ

)2

− 1.

Lemma 24 (Relationship between approximations). Let A and B be two positive semi-definite
hermitian operators. Let λ > 0, b ∈ H and ρ > 0. If

‖A−1/2
λ (B−A)A

−1/2
λ ‖ ≤ 1

2
∧ ρ

4
, ∆̃ ∈ LinApprox(Bλ, b, ρ/4),

then it holds:
∆̃ ∈ LinApprox(Aλ, b, ρ).
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Proof. Assume ∆̃ ∈ LinApprox(Bλ, b, ρ̃/4) for a certain ρ̃. Decompose

‖A−1
λ b− ∆̃‖Aλ

≤ ‖A−1
λ b−B−1

λ b‖Aλ
+ ‖B−1

λ b− ∆̃‖Aλ

≤ ‖A1/2
λ (A−1

λ −B−1
λ )A

1/2
λ ‖ ‖b‖A−1

λ
+ ‖A1/2

λ B
−1/2
λ ‖ ‖B−1

λ b− ∆̃‖Bλ .

Now using the fact that A−1
λ −B−1

λ = B−1
λ (B−A)A−1

λ ,

‖A1/2
λ (A−1

λ −B−1
λ )A

1/2
λ ‖ ≤ ‖A

−1/2
λ (B−A)A

−1/2
λ ‖ ‖A1/2

λ B−1
λ A

1/2
λ ‖

= ‖A−1/2
λ (B−A)A

−1/2
λ ‖ ‖A1/2

λ B
−1/2
λ ‖2.

Moreover,
‖B−1

λ b− ∆̃‖Bλ ≤ ρ̃‖b‖B−1
λ
≤ ‖A1/2B−1/2‖ ‖b‖A−1

λ
.

Putting things together, and noting that from Lemma 21, ‖A1/2B−1/2‖2 ≤ 1

1−‖A−1/2
λ (B−A)A

−1/2
λ ‖

as soon as ‖A−1/2
λ (B−A)A

−1/2
λ ‖ < 1, it holds:

∆̃ ∈ LinApprox(Aλ, b, ρ), ρ =
ρ̃+ ‖A−1/2

λ (B−A)A
−1/2
λ ‖

1− ‖A−1/2
λ (B−A)A

−1/2
λ ‖

.

Choosing the right values for ρ̃ and ‖A−1/2
λ (B−A)A

−1/2
λ ‖ yields the result.

I.1 Results for Nystrom sub-sampling

Recall the notations from Appendix D.

We write without proof the following lemmas, which are just restatements of lemmas 9 and 10 of
[29].
Lemma 25 (Uniform sampling). Let δ > 0. If {z̃1, ..., z̃m} are sampled uniformly, then if 0 < λ <
‖A‖, m ≤ n and

m ≥
(
10 + 160NA

∞(λ)
)

log
8‖v‖2L∞(Z)

λδ
.

Then it holds, with probability at least 1− δ:

‖A−1/2
λ (Â−A)A

−1/2
λ ‖ ≤ 1

2
, ‖Â−1/2

m,λ (Â− Âm)Â
−1/2
m,λ ‖ ≤

1

2
.

Lemma 26 (Nystrom sampling). Let δ > 0. If {z̃1, ..., z̃m} are sampled using q-approximate

leverage scores for t = λ, then if t0 ∨
19‖v‖2L∞(Z)

n log n
2δ < λ < ‖A‖, and n ≥ 405‖v‖2L∞(Z) ∨

67‖v‖2L∞(Z) log
12‖v‖2L∞(Z)

δ , if

m ≥
(
6 + 486q2NA(λ)

)
log

8‖v‖2L∞(Z)

λδ
.

Then it holds, with probability at least 1− δ:

‖A−1/2
λ (Â−A)A

−1/2
λ ‖ ≤ 1

2
, ‖Â−1/2

m,λ (Â− Âm)Â
−1/2
m,λ ‖ ≤

1

2
.

Lemma 27. Let λ > 0. Assume:

‖A−1/2
λ (Â−A)A

−1/2
λ ‖ ≤ 1

2
, ‖Â−1/2

m,λ (Â− Âm)Â
−1/2
m,λ ‖ ≤

1

2
.

Denote with Pm the projection on span(vz̃j )1≤j≤m. Then the following holds:

‖A1/2
λ (I−Pm)‖2 ≤ 3λ,

and for any partial isometry V ,
1

2

(
V ∗ÂmV + λI

)
� V ∗ÂV + λI � 3

2

(
V ∗ÂmV + λI

)
.
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Proof. For the first point, use the well known fact that

I−Pm ≤ λÂ−1
m,λ,

since the range of Pm contains that of Âm. Thus,

‖A1/2
λ (I−Pm)‖2 ≤ λ‖A1/2

λ Â
−1/2
m,λ ‖

2.

Now using Lemma 22,

‖A−1/2
λ (Â−A)A

−1/2
λ ‖ ≤ 1

2
=⇒ ‖Â−1/2

λ (Â−A)Â
−1/2
λ ‖ ≤ 1.

Hence, again using Lemma 22,

‖Â−1/2
m,λ (Âm −A)Â

−1/2
m,λ ‖ ≤ 2,

and therefore, using Lemma 21,
‖A1/2

λ Â
−1/2
m,λ ‖

2 ≤ 3.

For the second point, this is only a consequence of Lemma 21.

Now state two results which show that
Lemma 28 (Uniform sampling yielding ρ-approximation). Let 0 < ρ ≤ 1 and δ > 0. Let b ∈ H. If
{z̃1, ..., z̃m} are sampled uniformly, 0 < λ < ‖A‖, m ≤ n and

m ≥
(

2 +
48

ρ
+

5000

ρ2
NA
∞(λ)

)
log

8‖v‖2L∞(Z)

λδ
.

Then it holds, with probability at least 1− δ:

x ∈ LinApprox(Âm,λ, b, ρ/4) =⇒ x ∈ LinApprox(Aλ, b, ρ).

In particular, with probability 1− δ,

Â−1
m,λb ∈ LinApprox(Aλ, b, ρ).

Proof. Apply Lemma 9 from [29] with η = ρ
12 <

1
2 . We find that under the conditions above, with

probability at least 1− δ,

‖A−1/2
λ (Â−A)A

−1/2
λ ‖ ≤ η, ‖Â−1/2

m,λ (Â− Âm)Â
−1/2
m,λ ‖ ≤ η.

Now use Lemma 22 to see that

‖A−1/2
λ (Âm −A)A

−1/2
λ ‖ ≤ (1 + η2)− 1 ≤ 3η ≤ ρ/4.

Thus, we can apply Lemma 24 to get the desired result.

Lemma 29 (Leverage scores Nystrom sampling yielding ρ-approximation). Let δ > 0. If {z̃1, ..., z̃m}
are sampled using q-approximate leverage scores for t = λ, then if t0 ∨

19‖v‖2L∞(Z)

n log n
2δ < λ <

‖A‖, and n ≥ 405‖v‖2L∞(Z) ∨ 67‖v‖2L∞(Z) log
12‖v‖2L∞(Z)

δ , if

m ≥
(

2 +
24

ρ
+

13000q2

ρ2
NA(λ)

)
log

8‖v‖2L∞(Z)

λδ
.

Then it holds, with probability at least 1− δ:

x ∈ LinApprox(Âm,λ, b, ρ/4) =⇒ x ∈ LinApprox(Aλ, b, ρ).

In particular, with probability 1− δ,

Â−1
m,λb ∈ LinApprox(Aλ, b, ρ).

Proof. The proof is exactly the same as that of the previous lemma, using Lemma 10 instead of
Lemma 9 in [29].

68


	Introduction
	Comparison to related work

	Background: Newton methods and generalized self concordance
	Globally convergent scheme for ANM algorithms on GSC functions
	Application to the non-parametric setting: Kernel methods
	Experiments
	Main results on generalized self-concordant functions
	Definitions and results on generalized self-concordant functions 
	Comparison between generalized self-concordant functions

	Results on approximate Newton methods
	Main technical results 
	General analysis of an approximate Newton method 
	Main results in the paper 
	Sketching the Hessian only once in each Dikin ellispoid 

	Proof of bounds for the globalization scheme
	Main technical lemmas 
	Proof of main theorems 
	Proof of thm:easyfirstphase 

	Non-parametric learning with generalized self-concordant functions
	General setting and assumptions, statistical result for regularized ERM.
	Reducing the dimension: projecting on a subspace using Nyström sub-sampling.
	A note on sub-sampling techniques
	Selecting the M Nyström points
	Performing the globalization scheme to approximate M,
	Performing approximate Newton steps 
	Applying the globalization scheme to control "0362M,()  

	Statistical properties of the algorithm 

	Algorithm
	Experiments
	Solving a projected problem to reduce dimension
	Introduction and notations
	Relating the projected to the original problem
	Finding a good projector

	Relations between statistical problems and empirical problem.
	Statistical problem and ERM estimator
	Link between a good approximation of x"0362x and x
	Bounds when we solve a projected empirical problem 
	Optimal choice of , specific source conditions 
	Classification of distributions and statistical bounds for the ERM
	Quantitative bounds for the projected problem


	Multiplicative approximations for Hermitian operators
	Results for Nystrom sub-sampling


