
Supplementary information for "Universality and Individuality in neural dynamics across
large populations of recurrent networks"

A RNN Architectures

We examined four RNN architectures that exemplify various degrees of complexity and sophistication.
Vanilla RNNs have been historically favored by computational neuroscientists [4, 13], while LSTM
and GRU networks have been favored by machine learning practitioners due to performance advan-
tages [20]. However, neuroscientists are beginning to utilize gated RNNs as they progress to studying
more complex phenomena [56]. Thus, it is of great interest to determine whether similar mechanisms
arise across this range of model architectures, or if different models give rise to distinct dynamics and
scientific conclusions. These are architectures are summarized below, with W and b respectively
representing trainable weight matrices and bias parameters. All other vectors (c,g, r, i, f ) represent
intermediate quantities; σ() represents a pointwise sigmoid nonlinearity; and f() is either the ReLU
or tanh nonlineary.

Vanilla RNN
ht = f(Whhht−1 + Whxxt + bh) (1)

Update-Gate RNN (UGRNN; [20])

ht = g · ht−1 + (1− g) · c
c = f(Wchht−1 + Wcxxt + bc)

g = σ(Wghht−1 + Wgxxt + bg + bfg)
(2)

Gated Recurrent Unit (GRU; [18])

ht = g · ht−1 + (1− g) · c
c = f(Wch(r · ht−1) + Wcxxt + bc)

g = σ(Wghht−1 + Wgxxt + bg + bfg)

r = σ(Wrhht−1 + Wrxxt + br)

(3)

Long-Short-Term-Memory (LSTM; [17])

ht =

 ct

h̃t


h̃t = f(ct) · σ(Whhh + Whxx + bh)

ct = ft · ct−1 + i · σ(Wchh̃t−1 + Wcxx + bc)

i = σ(Wihh + Wixx + bi)

f = σ(Wfhh + Wfxx + bf + bfg)

(4)

B Non-normal linear dynamical systems analysis

We studied the linearized systems, e.g. ∂F (h∗,x∗)i
∂h∗

j
using the eigenvector decomposition for non-

normal matrices, dropping the dependence on h∗ and x∗ for clarity

J = RΛL =

N∑
a=1

λara`
T
a , (5)

where L = R−1, the columns of R (denoted ra) contain the right eigenvectors of Jrec, the rows of L
(denoted `Ta ) contain the left eigenvectors of Jrec, and Λ is a diagonal matrix containing complex-
valued eigenvalues, λ1 > λ2 > . . . > λN , which are sorted based on their magnitude. Note in
particular there is no requirement that RTR = I, leading to potentially sophisticated locally linear
dynamics.

C Network performance

Below, we include a plot of the final performance of all networks retained for analysis in this paper.
All networks achieve low error for their respective tasks.

14



Figure 5: Histogram of final performance (mean squared error) across all networks used for the analyses in this
paper.

D SVCCA

The input to SVCCA [34] are two matrices, H1 ∈ RP×N1 and H2 ∈ RP×N2 , which hold the state
vector representations of two RNNs over P test inputs. Here, N1 and N2 denote the number of
neurons in each RNN (in general N1 6= N2). First, the singular value decomposition (SVD) is
computed for each matrix: H1 = U1S1V

T
1 and H2 = U2S2V

T
2 . Then, these decompositions are

truncated by taking the top R singular vectors. The value of R is a user-defined hyperparameter.
Let Ṽ1 ∈ RR×N1 and Ṽ2 ∈ RR×N2 denote the truncated right singular vectors. Finally, canonical
correlations analysis (CCA; [57]) is performed to quantify the similarity of Ṽ1 and Ṽ2.

E Centered kernel alignment (CKA)

Centered kernel alignment (CKA; [35]) is a measure of similarity between representations that is
invariant to orthogonal transformation and isotropic scaling, but unlike SVCCA, is not invariant to
invertible linear transformations. It defines a similarity between two representations X ∈ Rm×nx

and Y ∈ Rm×ny where m is the number of examples, and nx and ny are the number of units in the
representations for X and Y , respectively. The measure can be computed (for a linear kernel, see
[35] for details) as:

CKA(X,Y ) =
‖XTY ‖2F

‖XTX‖F ‖Y TY ‖F

Below, we compare representations using both singular vector canonical correlation analysis (SVCCA)
and centered kernel alignment (CKA). Each figure shows comparisons for each of the three studied
tasks. Within each figure, the first row shows the full pairwise distance matrix using either SVCCA
(left column) or CKA (right column). The next two rows show embeddings of a subset of these
pairwise distances in 2D using multi-dimensional scaling, highlighting differences by architecture
(middle row) or activation (bottom row). The key takeaway is that both SVCCA and CKA show
differences between network representations that cluster based on RNN architectures.

15



Figure 6: Comparing SVCCA and CKA for the flip flop task. See Appendix E for description of the panels.

16



Figure 7: Comparing SVCCA and CKA for the sinewave task. See Appendix E for description of the panels.

17



Figure 8: Comparing SVCCA and CKA for the context dependent integration task. See Appendix E for
description of the panels.

18


