
A Proof

Proof of Theorem 1 Let e` be the column vector with 1 in `th coordinate and 0 elsewhere. By the
RKHS reproducing property (7) we have
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The optimization in (8) is hence
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whose solution is �⇤(·) / Ex⇠q [K(·,x)P].

Proof of Lemma 2 This is a basic result of RKHS, which can be found in classical textbooks such
as Paulsen & Raghupathi (2016). The key idea is to show that K(x,x0) satisfies the reproducing
property for H. Recall the reproducing property of H0:
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Taking �(x) = M(x)�0(t(x)), we have
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Proof of Theorem 3

Proof. Note that KL divergence is invariant under invertible variable transforms, that is,

KL(q[✏�] || p) = KL(q[✏�]0 || p0). (20)

where p0 denotes the distribution of x0 = t(x) when x ⇠ p, and q[✏�]0 denotes the distribution of
x
0

0 = t(x0) when x
0 ⇠ q[✏�]. Recall that q[✏�] is defined as the distribution of x0 = x+ ✏�(x) when

x ⇠ q.

Denote by t
�1 the inverse map of t, that is, t�1(t(x)) = x. We can see that x0

0 ⇠ q[✏�]0 can be
obtained by

x
0

0 = t(x0) //x0 ⇠ q[✏�]

= t(x+ ✏�(x)) //x ⇠ q
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, (21)

where we used the definition that �(x) = rt(x)�1
�0(t(x)) in (11), and O(·) is the big-O notation.
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From Theorem 3.1 of Liu & Wang (2016), we have

d

d✏
KL(q[✏�] || p)

����
✏=0

= �Eq[P>
�].

Using Equation (21) and derivation similar to Theorem 3.1 of Liu & Wang (2016), we can show

d
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= �Eq0 [P>

0 �0].

Combining these with (20) proves (11).

Following Lemma 2, when �0 is in H0 with kernel K0(x,x0), � is in H with kernel K(x,x0).
Therefore, maximizing Eq[P>

�] in H is equivalent to Eq0 [P>

0 �0] in H0. This suggests the trajectory
of SVGD on p0 with K0 and that on p with K are equivalent.
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B Toy Examples

Figure 3 and Figure 4 show results of different algorithms on three 2D toy distributions: Star,
Double banana and Sine. Detailed information of these distributions and more results are shown in
Section B.1-B.3.

We can see from Figure 3-4 that both variants of matrix SVGD consistently outperform SVN
and vanilla SVGD. We also find that Matrix SVGD(mixture) tends to outperform Matrix SVGD
(average), which is expected since Matrix SVGD (average) uses a constant preconditioning
matrix for all the particles, and can not capture different curvatures at different locations. Matrix
SVGD (mixture) yields the best performance in general.
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Figure 3: The particles obtained by various methods at the 30/100/30-th iteration on three toy 2D
distributions.
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Figure 4: The MMD vs. training iteration of different algorithms on the three toy distributions.

14



B.1 Sine

The density function of the “Sine” distribution is defined by

p(x1, x2) / exp
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� x2
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2

2�2

◆
,

where we choose ↵ = 1, �1 = 0.003, �2 = 1.
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Figure 5: The particles obtained by various methods on the toy Sine distribution.
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B.2 Double Banana

We use the “double banana” distribution constructed in Detommaso et al. (2018), whose probability
density function is

p(x) / exp

✓
�kxk22
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� (y � F (x))2

2�2

◆
,

where x = [x1, x2] 2 R2 and F (x) = log((1 � x1)2 + 100(x2 � x2
1)

2) and y = log(30), �1 =
1.0,�2 = 0.09.
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Figure 6: The particles obtained by various methods on the double banana distribution.
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B.3 Star

We construct the “star” distribution with a Gaussian mixture model, whose density function is

p(x) =
1

K

KX

i=1

N (x;µi,⌃i),

with x 2 R2
µ1 = [0; 1.5], ⌃1 = diag([1; 1

100 ]), and the other means and covariance matrices are
defined by rotating their previous mean and covariance matrix. To be precise,

µi+1 = Uµi, ⌃i+1 = U⌃iU
>, U =


cos(✓) sin(✓)
� sin(✓) cos(✓)

�
,

with angle ✓ = 2⇡
K . We set the number of component K to be 5.
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Figure 7: The particles obtained by various methods on the star-shaped distribution.
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