
A Experimental Setup410

MNIST. We use the CNN model from Madry et al. [24] and train for 10 epochs with Adam and a411

learning rate of 10−3 reduced to 10−4 after 5 epochs (batch size of 100). To accelerate convergence,412

we train against a weaker adversary in the first epoch (with 1/3 of the perturbation budget). For413

training, we use PGD with 40 iterations for `∞ and 100 iterations for `1 and `2. For rotation-414

translations, we use the attack from [10] that picks the worst of 10 random rotation-translations.415

CIFAR10. We use the same wide ResNet model as [24]. We train for 80k steps of gradient descent416

with batch size 128 (205 epochs). When using the “avg” strategy for wide ResNet models, we had to417

halve the batch size to avoid overflowing the GPU’s memory. We accordingly doubled the number of418

training steps and learning rate schedule. We use a learning rate of 0.1 decayed by a factor 10 after419

40k and 60k steps, a momentum of 0.9, and weight decay of 0.0002. Except for the RT attack, we420

use standard data augmentation with random padding, cropping and horizontal flipping (see [10] for421

details). We extract 1,000 points from the CIFAR10 test as a validation set for early-stopping.422

For training, we use PGD with 10 iterations for `∞, and 20 iterations for `1. 4 For rotation-translations,423

we also use the attack from [10] that trains on the worst of 10 randomly chosen rotation-translations.424

B Performance of the Sparse `1-Descent Attack425

In Figure 2, we compare the performance of our new Sparse `1-Descent Attack (SLIDE) for different426

choices of gradient sparsity. We also compare to the standard PGD attack with the steepest-descent427

update rule, as well as a recent attack proposed in [19] that adapts the Frank-Wolfe optimization428

algorithm for finding `1-bounded adversarial examples. As we explained in Section 3, we expect our429

attack to outperform PGD as the steepest-descent vector is too sparse in the `1-case, and we indeed430

observe a significant improvement by choosing denser updates.431

The subpar performance of the Frank-Wolfe algorithm is also intriguing. We believe it is due to the432

attack’s linearly decreasing step-size (the kth iteration has a step-size of O(1/k), see [19] for details).433

While this choice is appropriate for optimizing convex functions, in the non-convex case it overly434

emphasizes the first steps of the attack, which intuitively should increase the likelihood of landing in435

a local minima.436
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Figure 2: Performance of the Sparse `1-Descent Attack on MNIST (left) and CIFAR10 (right)
for different choices of descent directions. We run the attack for up to 1,000 steps and plot the
evolution of the cross-entropy loss, for an undefended model. We vary the sparsity of the gradient
updates (controlled by the parameter q), and compare to the standard PGD attack that uses the steepest
descent vector, as well as the Frank-Wolfe `1-attack from [19]. For appropriate q, our attack vastly
outperforms PGD and Frank-Wolfe.

4Our new attack `1-attack, described in Section 3, has a parameter q to controls the sparsity of the gradient
updates. When leaving this parameter constant during training, the model overfits and fails to achieve general
robustness. To resolve this issue, we sample q ∈ [80%, 99.5%] at random for each attack during training. We
also found that 10 iterations were insufficient to get a strong attack and thus increased the iteration count to 20.
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C Breakdown of `p-Attacks on Adversarially Trained Models437

Tables 4 and 5 below give a more detailed breakdown of each model’s accuracy against each `p attack438

we considered. For each model and attack, we evaluate the attack on 1,000 test points and report439

the accuracy. For each individual perturbation type (i.e., `∞, `1, `2), we further report the accuracy440

obtained by choosing the worst attack for each input. Finally, we report the accuracy against the441

union of all attacks (1−Rmax
adv ) as well as the average accuracy across perturbation types (1−Ravg

adv).442

Table 4: Breakdown of all attacks on MNIST models. For `∞, we use PGD and the Boundary
Attack++ (BAPP) [7]. For `1, we use our new Sparse `1-Descent Attack (SLIDE), EAD [8] and the
Pointwise Attack (PA) [30]. For `2, we use PGD, C&W [6] and the Boundary Attack (BA) [3].

`∞ `1 `2

Model Acc. PGD BAPP All `∞ SLIDE EAD PA All `1 PGD C&W BA All `2 1−Rmax
adv 1−Ravg

adv

Nat 99.4 0.0 13.0 0.0 13.0 18.8 72.1 12.4 11.0 10.4 31.0 8.5 0.0 7.0

Adv∞ 99.1 91.1 98.5 91.1 66.9 58.4 15.0 12.1 78.1 78.4 14.0 11.3 6.8 38.2
Adv1 98.9 0.0 43.5 0.0 78.6 81.0 91.6 78.5 53.0 52.0 69.7 50.6 0.0 43.0
Adv2 98.5 0.4 78.5 0.4 70.4 69.3 89.7 68.0 74.7 74.5 81.7 71.8 0.4 46.7

Advavg 97.3 76.7 98.0 76.7 66.3 62.4 68.6 53.9 77.7 72.3 64.6 58.3 49.9 63.0
Advmax 97.2 71.7 98.5 71.7 72.1 70.0 69.6 62.6 75.7 71.8 59.7 56.0 52.4 63.4

Table 5: Breakdown of all attacks on CIFAR10 models. For `∞, we use PGD. For `1, we use our
new Sparse `1-descent attack (SLIDE), EAD [8] and the Pointwise Attack (PA) [30].

`∞ `1

Model Acc. PGD All `∞ SLIDE EAD PA All `1 1−Rmax
adv 1−Ravg

adv

Nat 95.7 0.0 0.0 0.2 0.0 29.6 0.0 0.0 0.0

Adv∞ 92.0 71.0 71.0 19.4 17.6 52.7 16.4 16.4 44.9
Adv1 90.8 53.4 53.4 66.6 66.6 84.7 66.2 53.1 60.0

Advavg 91.1 64.1 64.1 61.1 61.5 81.7 60.8 59.4 62.5
Advmax 91.2 65.7 65.7 63.1 63.0 83.4 62.5 61.1 64.1

D Gradient Masking as a Consequence of `∞-Robustness on MNIST.443

Multiple works have reported on a curious phenomenon that affects the `∞-adversarially trained444

model of Madry et al. [24] on MNIST. This model achieves strong robustness to the `∞ attacks it445

was trained on, as one would expect. Yet, on other `p-norms (e.g., `1 [8, 30] and `2 [22, 30]), its446

robustness is no better—or even worse—than for an undefended model. Some authors have referred447

to this effect as overfitting, a somewhat unfair assessment of the work of [24], as their model actually448

achieves exactly what it was trained to do—namely resist `∞-bounded attacks. Moreover, as our449

theoretical results suggest, this trade-off may be inevitable (a similar point was made in [20]).450

The more intriguing aspect of Madry et al.’s MNIST model is that, when attacked by `1 or `2451

adversaries, first-order attacks are sub-optimal. This was previously observed in [30] and in [22],452

where decision-based or second-order attacks vastly outperformed gradient descent for finding `1 or453

`2 adversarial examples. Li et al. [22] argue that this effect is due to the gradients of the adversarially454

trained model having much smaller magnitude than in a standard model. Yet, this fails to explain455

why first-order attacks appear to be optimal in the `∞-norm that the model was trained against.456

A natural explanation for this discrepancy follows from an inspection of the robust model’s first layer457

(as done in [24]). All kernels of the model’s first convolutional layer have very small norm, except458

for three kernels that have a single large weight. This reduces the convolution to a thresholding filter,459

which we find to be of one of two forms: either ReLU(α · (x − 0.3)) or ReLU(α · (x − 0.7)) for460

constant α > 0.5 Thus, the model’s first layer forms a piece-wise function with three distinct regimes,461

depending on the value of an input pixel xi: (1) for xi ∈ [0, 0.3], the output is only influenced by the462

5Specifically, for the “secret” model of Madry et al., the three thresholding filters are approximately
ReLU(0.6 · (x− 0.3)), ReLU(1.34 · (x− 0.3)) and ReLU(0.86 · (x− 0.7)).
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Figure 3: Gradient masking in an `∞-adversarially trained model on MNIST, evaluated against
`1-attacks (left) and `2-attacks (right). The model is trained against an `∞-PGD adversary with
ε = 0.3. For a randomly chosen data point x, we compute an adversarial perturbation rPGD using
PGD and rGF using a gradient-free attack. The left plot is for `1-attacks with ε = 10 and the right plot
is for `2-attacks with ε = 2. The plots display the loss on points of the form x̂ := x+α·rPGD+β ·rGF,
for α, β ∈ [0, ε]. The loss surface behaves like a step-function, and gradient-free attacks succeed in
finding adversarial examples where first-order methods failed.

low-weight kernels. For xi ∈ [0.3, 1], the ReLU(α · (x− 0.3)) filters become active, and override the463

signal from the low-weight kernels. For xi ∈ [0.7, 1], the ReLU(α · (x− 0.7)) filters are also active.464

As most MNIST pixels are in {0, 1}, `∞-attacks operate in a regime where most perturbed pixels465

are in [0, 0.3] ∪ [0.7, 1]. The model’s large-weight ReLUs thus never transition between active and466

inactive, which leads to a smooth, albeit flat loss that first-order methods navigate effectively.467

For `1 and `2 attacks however, one would expect some of the ReLUs to be flipped as the attacks can468

make changes larger that 0.3 to some pixels. Yet, as most MNIST pixels are 0 (the digit’s background),469

nearly all large-weight ReLUs start out inactive, with gradients equal to zero. A first-order adversary470

thus has no information on which pixels to focus the perturbation budget on.471

Decision-based attacks sidestep this issue by disregarding gradients entirely. Figure 3 shows two472

examples of input points where a decision-based attack (Pointwise Attack for `1 [30] and Boundary473

Attack for `2 [3]) finds an adversarial example in a direction that is orthogonal to the one explored by474

PGD. The loss surface exhibits sharp thresholding steps, as predicted by our analysis.475

When we explicitly train against first-order `1 or `2 adversaries (models Adv1 and Adv2 in Table 1,476

left), the resulting model is robust (at least empirically) to `1 or `2 attacks. Note that model Adv∞477

actually achieves higher robustness to `2-PGD attacks than Adv2 (due to gradient-masking). Thus,478

the Adv2 model converged to a sub-optimal local minima of its first-order adversarial training479

procedure (i.e., learning the same thresholding mechanism as Adv∞ would yield lower loss). Yet,480

this sub-optimal local minima generalizes much better to other `2 attacks.481

Models trained against `∞, `1 and `2 attacks (i.e., Advall and Advmax) in Table 1, left) also learn to482

use thresholding to achieve robustness to `∞ attacks, while masking gradients for `1 and `2 attacks.483
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E Examples of Affine Combinations of Perturbations484

In Figure 4, we display examples of `1, `∞ and rotation-translation attacks on MNIST and CIFAR10,485

as well as affine attacks that interpolate between two attack types.486

β=1.0 0.75 0.5 0.25 0.0

ℓ∞RT

β=1.0 0.75 0.5 0.25 0.0

ℓ∞RT

β=1.0 0.75 0.5 0.25 0.0

ℓ∞ℓ1

Figure 4: Adversarial examples for `∞, `1 and rotation-translation (RT) attacks, and affine
combinations thereof. The first column in each subplot shows clean images. The following five
images in each row linearly interpolate between two attack types, as described in Section 2.5. Images
marked in red are mis-classified by a model trained against both types of perturbations. Note that
there are examples for which combining a rotation-translation and `∞-attack is stronger than either
perturbation type individually.

F Proof of Theorem 1 (Robustness trade-off between `∞ and `1- norms)487

Our proof follows a similar structure to the proof of Theorem 2.1 in [39], although the analysis is488

slightly simplified in our case as we are comparing two perturbation models, an `∞-bounded one and489

an `1-bounded one, that are essentially orthogonal to each other. With a perturbation of size ε = 2η,490

the `∞-bounded noise can “flip” the distribution of the features x1, . . . , xd to reflect the opposite491

label, and thus destroy any information that a classifier might extract from those features. On the492

other side, an `1-bounded perturbation with ε = 2 can flip the distribution of x0. By sacrificing some493

features, a classifier can thus achieve some robustness to either `∞ or `1 noise, but never to both494

simultaneously.495

For y ∈ {−1,+1}, let Gy be the distribution over feature x0 conditioned on the value of y. Similarly,496

letHy be the conditional distribution over features x1, . . . , xd. Consider the following perturbations:497

r∞ = [0,−2yη, . . . ,−2yη] has small `∞-norm, and r1 = [−2x0, 0, . . . , 0] has small `1-norm. The498

`∞ perturbation can changeHy toH−y , while the `1 perturbation can change Gy to G−y .499

Let f(x) be any classifier from Rd+1 to {−1,+1} and define:500

p+− = Pr
x∼(G+1,H−1)

[f(x) = +1] , p−+ = Pr
x∼(G−1,H+1)

[f(x) = +1] .

The accuracy of f against the r∞ perturbation is given by:501

Pr[f(x+ r∞) = y] = Pr[y = +1] · p+− + Pr[y = −1] · (1− p−+) =
1

2
· (1 + p+− − p−+) .

Similarly, the accuracy of f against the r1 perturbation is:502

Pr[f(x+ r1) = y] = Pr[y = +1] · p−+ + Pr[y = −1] · (1− p+−) =
1

2
· (1 + p−+ − p+−) .

Combining these, we get Pr[f(x+ r∞) = y] + Pr[f(x+ r1) = y] = 1.503

As r∞ and r1 are two specific `∞- and `1-bounded perturbations, the above is an upper-bound on the504

accuracy that f achieves against worst-case perturbation within the prescribed noise models, which505

concludes the proof.506

507
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G Proof of Theorem 2 (Robustness trade-off between `∞ and spatial508

perturbations)509

The proof of this theorem follows a similar blueprint to the proof of Theorem 1. Recall that an `∞510

perturbation with ε = 2η can flip the distribution of the features x1, . . . , xn to reflect an opposite label511

y. The tricky part of the proof is to show that a small rotation or translation can flip the distribution512

of x0 to the opposite label, without affecting the marginal distribution of the other features too much.513

Recall that we model rotations and translations as picking a permutation π from some fixed set Π514

of permutations over the indices in x, with the constraint that feature x0 be moved to at most N515

different positions for all π ∈ Π .516

We again define Gy as the distribution of x0 conditioned on y, and Hy for the distribution of517

x1, . . . , xd. We know that a small `∞-perturbation can transform Hy into H−y. Our goal is to518

show that a rotation-translation adversary can change (Gy,Hy) into a distribution that is very close519

to (G−y,Hy). The result of the theorem then follows by arguing that no binary classifier f can520

distinguish, with high accuracy, between `∞-perturbed examples with label y and rotated examples521

with label −y (and vice versa).522

We first describe our proof idea at a high level. We define an intermediate “hybrid” distribution Zy523

where all d + 1 features are i.i.d N(yη, 1) (that is, x0 now has the same distribution as the other524

weakly-correlated features). The main step in the proof is to show that for samples from either525

(Gy,Hy) or (G−y,Hy), a random rotation-translation yields a distribution that is very close (in total526

variation) to Zy . From this, we then show that there exists an adversary that applies two rotations or527

translations in a row, to first transform samples from (Gy,Hy) into samples close to Zy, and then528

transform those samples into ones that are close to (G−y,Hy).529

We will need a standard version of the Berry-Esseen theorem, stated hereafter for completeness.530

Theorem 5 (Berry-Esseen [2]). Let X1, . . . , Xn be independent random variables with E[Xi] = µi,531

E[X2
i ] = σ2

i > 0, and E[|Xi|3] = ρi <∞, where the µi, σi and ρi are constants independent of n.532

Let Sn = X1 + · · · +Xn, with Fn(x) the CDF of Sn and Φ(x) the CDF of the standard normal533

distribution. Then,534

sup
x∈R

∣∣∣∣∣Fn(x)− Φ
(
x− E[Sn]√
Var [Sn]

)∣∣∣∣∣ = O(1/
√
n) .

For distributions P,Q, let ∆TV(P,Q) denote their total-variation distance. The below lemma is the535

main technical result we need, and bounds the total variation between a multivariate Gaussian P and536

a special mixture of multivariate Gaussians Q.537

Lemma 6. For k > 1, let P be a k-dimensional Gaussians with mean µP = [λP , . . . , λP ] and538

identity covariance. For all i ∈ [k], let Qi be a multivariate Gaussian with mean µi and diagonal539

covarianceΣi where (µi)j =

{
λQ if i = j

λP otherwise
and (Σi)(j,j) =

{
σ2
Q if i = j

1 otherwise
.540

Define Q as a mixture distribution of the Q1, . . . ,Qk with probabilities 1/k. Assuming that541

λP , λQ, σQ are constants independent of k, we have ∆TV(P,Q) = O(1/
√
k).542

Proof. 6 Let p(x) and q(x) denote, respectively, the pdfs of P and Q. Note that q(x) =543 ∑k
i=1

1
k qi(x), where qi(x) is the pdf of Qi. We first compute:544

q(x) =
k∑

i=1

1

k

1√
(2π)k · |Σi|

· e− 1
2 (x−µi)TΣ

−1
i (x−µi)

=
e−

1
2 (x−µP )T (x−µP )

√
(2π)k

· 1

k · σ2
Q

·
k∑

i=1

e−
1
2 t(xi)

= p(x) · 1

k · σ2
Q

·
k∑

i=1

e−
1
2 t(xi) ,

6We thank Iosif Pinelis for his help with this proof (https://mathoverflow.net/questions/325409/).
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where545

t(xi) := (σ−2Q − 1)x2i − (2λQσ
−2
Q − 2λP )xi + (λ2Qσ

−2
Q − λ2P ) . (3)

Thus we have that546

q(x) < p(x) ⇐⇒ 1

k · σ2
Q

·
k∑

i=1

e−
1
2 t(xi) < 1 .

The total-variation distance between P and Q is then ∆TV(P,Q) = p1 − p2, where547

p1 := Pr
[
Sk < k · σ2

Q

]
, p2 := Pr

[
Tk < k · σ2

Q

]
, (4)

Sk :=

k∑

i=1

Ui , Tk := Sk−1 + Vk , Ui := e−
1
2 t(Zi) , Vn := e−

1
2 t(Wn) ,

and the Zi ∼ N (λP , 1), Wn ∼ N (λQ, σ
2
Q) and all the Zi and Wn are mutually independent.548

It is easy to verify that E[Ui] = σ2
Q, Var[Ui] = O(1), E[U3

i ] = O(1), E[Wn] = O(1), Var[Wn] =549

O(1),E[W 3
n ] = O(1). Then, applying the Berry-Esseen theorem, we get:550

p1 = Pr
[
Sk < k · σ2

Q

]
= Φ (0) +O

(
1√
k

)
=

1

2
+O

(
1√
k

)
,

p2 = Pr
[
Tk < k · σ2

Q

]
= Φ

(
k · σ2

Q − E[Tk]√
Var[Tk]

)
+O

(
1√
k

)
= Φ

(
O

(
1√
k

))
+O

(
1√
k

)

=
1

2
+O

(
1√
k

)
.

And thus,551

∆TV(P,Q) = p1 − p2 = O(1/
√
k) . (5)

552

We now define a rotation-translation adversaryAwith a budget ofN . It samples a random permutation553

from the set Π of permutations that switch position 0 with a position in [0, N − 1] and leave all other554

positions fixed (note that |Π| = N ). Let A(Gy,Hy) denote the distribution resulting from applying555

A to (Gy,Hy) and define A(G−y,Hy) similarly. Recall that Zy is a hybrid distribution which has556

all features distributed as N (yη, 1).557

Claim 7. ∆TV (A(Gy,Hy),Zy) = O(1/
√
N) and ∆TV (A(G−y,Hy),Zy) = O(1/

√
N)558

Proof. For the first N features, samples output by A follow exactly the distribution Q from559

Lemma (6), for k = N and λP = y · η, λQ = y, σ2
Q = α−2. Note that in this case, the distri-560

bution P has each feature distributed as in Zy. Thus, Lemma (6) tells us that the distribution of561

the first N features is the same as in Zy, up to a total-variation distance of O(1/
√
N). As fea-562

tures xN . . . , xd are unaffected by A and thus remain distributed as in Zy, we conclude that the563

total-variation distance between A’s outputs and Zy is O(1/
√
N).564

The proof for A(G−y,Hy) is similar, except that we apply Lemma (6) with λQ = −y.565

Let Z̃y be the true distribution A(G−y,Hy), which we have shown to be close to Zy. Consider the566

following “inverse” adversary A−1. This adversary samples z ∼ Z̃y and returns π−1(z), for π ∈ Π ,567

with probability568

1

|Π| ·
f(G−y,Hy)(π

−1(z))

fZ̃y (z)
,

where f(G−y,Hy) and fZ̃y are the probability density functions for (G−y,Hy) and for Z̃y .569

Claim 8. A−1 is a RT adversary with budget N that transforms Z̃y into (G−y,Hy).570

16



Proof. Note that A−1 always applies the inverse of a perturbation in Π . So feature x0 gets sent to at571

most N positions when perturbed by A−1.572

Let Z be a random variable distributed as Z̃y and let h be the density function of the distribution573

obtained by applying A−1 to Z. We compute:574

h(x) =
∑

π∈Π
fZ̃y (π(x)) · Pr

[
A−1 picks permutation π | Z = π(x)

]

=
∑

π∈Π
fZ̃y (π(x)) ·

1

|Π| ·
f(G−y,Hy)(π(π

−1(x)))

fZ̃y (π(x))
=
∑

π∈Π

1

|Π| · f(G−y,Hy)(x)

= f(G−y,Hy)(x) ,

so applying A−1 to Z̃y does yield the distribution (G−y,Hy).575

We can now finally define our main rotation-translation adversary, A∗. The adversary first applies A576

to samples from (Gy,Hy), and then applies A−1 to the resulting samples from Z̃y .577

Claim 9. The adversary A∗ is a rotation-translation adversary with budget N . Moreover,578

∆TV (A∗(Gy,Hy), (G−y,Hy)) = O(1/
√
N).579

Proof. The adversary A∗ first switches x0 with some random position in [0, N − 1] by applying A.580

Then, A−1 either switches x0 back into its original position or leaves it untouched. Thus, A∗ always581

moves x0 into one of N positions. The total-variation bound follows by the triangular inequality:582

∆TV
(
A∗(Gy,Hy), (G−y,Hy)

)

= ∆TV
(
A−1(A(Gy,Hy)), (G−y,Hy)

)

≤ ∆TV
(
A−1(Zy), (G−y,Hy)

)
+∆TV (Zy,A(Gy,Hy))

≤ ∆TV

(
A−1(Z̃y), (G−y,Hy)

)

︸ ︷︷ ︸
0

+∆TV

(
Z̃y, (G−y,Hy)

)

︸ ︷︷ ︸
O(1/

√
N)

+∆TV (Zy,A(Gy,Hy))︸ ︷︷ ︸
O(1/

√
N)

= O(1/
√
N) .

583

To conclude the proof, we define:584

p+− = Pr
x∼(G+1,H−1)

[f(x) = +1] , p−+ = Pr
x∼(G−1,H+1)

[f(x) = +1] ,

p̃−+ = Pr
x∼A∗(G+1,H+1)

[f(x) = +1] , p̃+− = Pr
x∼(G−1,H−1)

[f(x) = +1] .

Then,585

Pr[f(x+ r∞) = y] + Pr[f(A∗(x)) = y] =
1

2
p+− +

1

2
(1− p−+) +

1

2
p̃−+ +

1

2
(1− p̃+−)

= 1 +
1

2
(p+− − p̃+−) +

1

2
(p−+ − p̃−+)

≤ 1−O(1/
√
N) .

586

G.1 Numerical Estimates for the Robustness Trade-off in Theorem 2587

While the robustness trade-off we proved in Theorem 2 is asymptotic in N (the budget of the RT588

adversary), we can provide tight numerical estimates for this trade-off for concrete parameter settings:589

Remark 10. Let d ≥ 200, α = 2 and N = 49 (e.g., translations by ±3 pixels). Then, there exists a590

classifier withRadv(f ;S∞) < 10%, as well as a (distinct) classifier withRadv(f ;SRT) < 10%. Yet,591

any single classifier satisfiesRavg
adv(f ;S∞, SRT) ' 0.425.592
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We first show the existence of classifiers withRadv < 10% for the given `∞ and RT attacks.593

Let f(x) = sign(x0) and let r = [−yε, 0, . . . , 0] be the worst-case perturbation with ‖r‖ ≤ ε. Recall594

that ε = 2η = 4/
√
d. We have595

Pr[f(x+ r) 6= y] = Pr
[
N (1, 1/4)− 4/

√
d < 0

]
≤ Pr

[
N (1− 4/

√
200, 1/4) < 0

]
≤ 8% .

Thus, f achievesRadv < 10% against the `∞-perturbations.596

Let g(x) = sign(
∑d
i=N xi) be a classifier that ignores all feature positions that a RT adversary A597

may affect. We have598

Pr[g(A(x)) 6= y] = Pr[g(x) 6= y] = Pr [N ((d−N + 1) · η, d−N + 1) < 0]

≤ Pr
[
N (2
√
d− 48/

√
d, 1) < 0

]
≤ 5% .

Thus, g achievesRadv < 10% against RT perturbations.599

We upper-bound the adversarial risk that any classifier must incur against both attacks by numerically600

estimating the total-variation distance between the distributions induced by the RT and `∞ adversaries601

for inputs of opposing labels y. Specifically, we generate 100,000 samples from the distributions602

G+1,G−1 andH+1 as defined in the proof of Theorem 2, and obtain an estimate of the total-variation603

distance in Lemma (9). For this, we numerically estimate p1 and p2 as defined in Equation (4).604

H Proof of Claim 3 (Affine combinations of `p- perturbations do not affect605

linear models)606

Let607

max
r∈SU

wTr = vmax, and min
r∈SU

wTr = vmin .

Let SU := Sp ∪Sq . Note that any r ∈ Saffine is of the form βr1+(1−β)r2 for β ∈ [0, 1]. Moreover,608

we have r1 ∈ Sp ⊂ SU and r2 ∈ Sq ⊂ SU. Thus,609

max
r∈Saffine

wTr = vmax, and min
r∈Saffine

wTr = vmin .

Let h(x) = wTx+ b, so that f(x) = sign(h(x)). Then, we get610

Pr
D

[∃r ∈ Saffine : f(x+ r) 6= y] =
1

2
Pr
D

[
∃r ∈ Saffine : w

Tr < −h(x) | y = +1
]

+
1

2
Pr
D

[
∃r ∈ Saffine : w

Tr > h(x) | y = −1
]

=
1

2
Pr
D

[vmin < −h(x) | y = +1] +
1

2
Pr
D

[vmax > h(x) | y = −1]

=
1

2
Pr
D

[
∃r ∈ SU : wTr < −h(x) | y = +1

]

+
1

2
Pr
D

[
∃r ∈ SU : wTr > h(x) | y = −1

]

= Pr
D

[∃r ∈ SU : f(x+ r) 6= y] .

611

I Affine combinations of `p- perturbations can affect non-linear models612

In Section 2.5, we showed that for linear models, robustness to a union of `p-perturbations implies613

robustness to an affine adversary that interpolates between perturbation types. We show that this need614

not be the case when the model is non-linear. In particular, we can show that for the distribution615

D introduced in Section 2, non-linearity is necessary to achieve robustness to a union of `∞ and616

`1-perturbations (with different parameter settings than for Theorem 1), but that at the same time,617

robustness to affine combinations of these perturbations is unattainable by any model.618
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Theorem 11. Consider the distribution D with d ≥ 200, α = 2 and p0 = 1 − Φ(−2). Let S∞ be619

the set of `∞-bounded perturbation with ε = (3/2)η = 3/
√
d and let S1 be the set of `1-bounded620

perturbations with ε = 3. Define Saffine as in Section 2.5. Then, there exists a non-linear classifier g621

that achievesRmax
adv (g;S∞, S1) ≤ 35%. Yet, for all classifiers f we haveRadv(f ;Saffine) ≥ 50%.622

Proof. We first prove that no classifier can achieve accuracy above 50% (which is achieved by the623

constant classifier) against Saffine. The proof is very similar to the one of Theorem 1.624

Let β = 2/3, so the affine attacker gets to compose an `∞-budget of 2/
√
d and an `1-budget of 1.625

Specifically, for a point (x, y) ∼ D, the affine adversary will apply the perturbation626

r = [−x0,−y
2√
d
, . . . ,−y 2√

d
] = [−x0,−yη, . . . ,−yη] .

Let G0,0 be the following distribution:627

y
u.a.r∼ {−1,+1}, x0 = 0, x1, . . . , xd

i.i.d∼ N (0, 1) .

Note that in G0,0, x is independent of y so no classifier can achieve more than 50% accuracy on G0,0.628

Yet, note that the affine adversary’s perturbation r transforms any (x, y) ∼ D into (x, y) ∼ G0,0.629

We now show that there exists a classifier that achieves non-trivial robustness against the set of630

perturbations S∞ ∪ S1, i.e., the union of `∞-noise with ε = 3/
√
d and `1-noise with ε = 3. Note631

that by Claim 3, this classifier must be non-linear. We define632

f(x) = sign

(
3 · sign(x0) +

d∑

i=1

2√
d
· xi
)
.

The reader might notice that f(x) closely resembles the Bayes optimal classifier for D (which would633

be a linear classifier). The non-linearity in f comes from the sign function applied to x0. Intuitively,634

this limits the damage caused by the `1-noise, as sign(x0) cannot change by more than ±2 under635

any perturbation of x0. This forces the `1 perturbation budget to be “wasted” on the other features636

x1, . . . , xd, which are very robust to `1 attacks.637

As a warm-up, we compute the classifier’s natural accuracy on D. For (x, y) ∼ D, let X =638

y ·∑d
i=1

2√
d
· xi be a random variable. Recall that η = 2/

√
d. Note that X is distributed as639

y ·
d∑

i=1

2√
d
· N (yη, 1) =

d∑

i=1

2√
d
· N

(
2√
d
, 1

)
=

d∑

i=1

N
(
4

d
,
4

d

)
= N (4, 4) .

Recall that x0 = y with probability p0 = 1− Φ(−2) ≈ 0.977. We get:640

Pr
D
[f(x) = y] = Pr

D

[
y ·
(
3 · sign(x0) +

d∑

i=1

2√
d
· xi
)
> 0

]

= Pr
D
[x0 = y] · Pr

D
[3 · y · sign(x0) +X > 0 | x0 = y]

+ Pr
D
[x0 6= y] · Pr

D
[3 · y · sign(x0) +X > 0 | x0 6= y]

= p · Pr [3 +N (4, 4) > 0] + (1− p) · Pr [−3 +N (4, 4) > 0] ≈ 99% .

We now consider an adversary that picks either an `∞-perturbation with ε = 3/
√
d or an `1-641

perturbation with ε = 3. It will suffice to consider the case where x0 = y. Note that642

the `∞ classifier cannot meaningfully perturb x0, and the best perturbation is always r∞ =643

[0,−y3/
√
d, . . . ,−y3/

√
d]. Moreover, the best `1-bounded perturbation is r1 = [−2y,−y, 0, . . . , 0].644

We have f(x+ r∞) = sign(y · (3 +X − 6)) and f(x+ r1) = sign(y · (−3 +X − 2/
√
d)). We645

now lower-bound the classifier’s accuracy under the union SU := S∞ ∪ S1 of these two perturbation646

models:647

Pr
D
[f(x+ r) = y,∀r ∈ SU] ≥ Pr

D
[x0 = y] · Pr

D
[f(x+ r) = y,∀r ∈ SU | x0 = y]

≥ p · Pr
D

[
(3 +X − 6 > 0) ∧ (−3 +X − 2/

√
d) > 0)

]

= p · Pr
[
N (4, 4) > 3 + 2/

√
d
]
≥ 65% (for d ≥ 200) .

648
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J Proof of Theorem 4 (Affine combinations of `∞- and spatial perturbations649

can affect linear models)650

Note that our definition of affine perturbation allows for a different weighting parameter β to be651

chosen for each input. Thus, the adversary that selects perturbations from Saffine is at least as powerful652

as the one that selects perturbations from S∞ ∪ SRT. All we need to show to complete the proof is653

that there exists some input x that the affine adversary can perturb, while the adversary limited to the654

union of spatial and `∞ perturbations cannot.655

Without loss of generality, assume that the RT adversary picks a permutation that switches x0 with a656

position in [0, N − 1], and leaves all other indices untouched. The main idea is that for any input657

x where the RT adversary moves x0 to position j < N − 1, the RT adversary with budget N is no658

more powerful than one with budget j + 1. The affine adversary can thus limit its rotation-translation659

budget and use the remaining budget on an extra `∞ perturbation.660

We now construct an input x such that: (1) x cannot be successfully attacked by an RT adversary661

(with budget N ) or by an `∞-adversary (with budget ε); (2) x can be attacked by an affine adversary.662

Without loss of generality, assume that w1 = min{w1, . . . , wN−1}, i.e., among all the features that663

x0 can be switched with, x1 has the smallest weight. Let y = +1, and let x1, . . . , xN−1 be chosen664

such that argmin{x1, . . . , xN−1} = 1. We set665

x0 :=
ε · ‖w‖1
w0 − w1

+ x1 .

Moreover, set xN , . . . , xd such that666

wTx+ b = 1.1 · ε · ‖w‖1 .
Note that constructing such an x is always possible as we assumed w0 > wi > 0 for all 1 ≤ i ≤ d.667

We now have an input (x, y) that has non-zero support under D. Let r be a perturbation with668

‖r‖∞ ≤ ε. We have:669

wT (x+ r) + b ≥ wTx+ b− ε · ‖w‖1 = 0.1 · ε · ‖w‖1 > 0 ,

so f(wT (x+ r) + b) = y, i.e., x cannot be attacked by any ε-bounded `∞-perturbation.670

Define x̂i as the input x with features x0 and xi switched, for some 0 ≤ i < N . Then,671

wT x̂i + b = wTx+ b− (w0 − wi) · (x0 − xi)
≥ wTx+ b− (w0 − w1) · (x0 − x1)
= wTx+ b− ε · ‖w‖1 = 0.1 · ε · ‖w‖1 > 0 .

Thus, the RT adversary cannot change the sign of f(x) either. This means that an adversary that672

chooses from S∞ ∪ SRT cannot successfully perturb x.673

Now, consider the affine adversary, with β = 2/N that first applies an RT perturbation with budget674
2
N ·N = 2 (i.e., the adversary can only flip x0 with x1), followed by an `∞-perturbation with budget675

(1− 2
N ) · ε. Specifically, the adversary flips x0 and x1 and then adds noise r = −(1− 2

N ) · ε · sign(w).676

Let this adversarial example by x̂affine. We have677

wT x̂affine + b = wTx+ b− (w0 − w1) · (x0 − x1)−
(
1− 2

N

)
· ε · ‖w‖1

= 1.1 · ε · ‖w‖1 − ε · ‖w‖1 −
(
1− 2

N

)
· ε · ‖w‖1

= −
(
0.9− 2

N

)
· ε · ‖w‖1

< 0 .

Thus, f(x̂affine) = −1 6= y, so the affine adversary is strictly stronger that the adversary that is678

restricted to RT or `∞ perturbations.679
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