
A Efficient Shortest Path Computation466

Algorithm 2 Inputs are the current state s, the goal state
g, the replay buffer B, and the value function V . Returns
the length and first waypoint of the shortest path.

function SHORTESTPATH(s, sg,B, V)
// Matrices: Dπ, DB→B, Ds→sg ∈ R|B|×|B|

// Vectors: Ds→B, DB→g ∈ R|B|
Dπ ← −V (B,B) . cached
DB→B ← FLOYDWARSHALL(Dπ) . cached
Ds→B ← −V (s,B)
DB→g ← −V (B, g)
Ds→g ← Ds→B +DB→B + (DB→g)

T

sw1 ← arg min
u,v∈B

Ds→g

return sw1

Our policy solves a shortest path problem467

every time it recomputes a new waypoint.468

Naı̈vely running Dijkstra’s algorithm to469

compute a shortest path among the states in470

our active set B requires O(|B|2) queries471

of our value function. While the search472

algorithm itself is fast, it is expensive to473

evaluate the value function on each pair474

of states at every time step. In our imple-475

mentation (Algorithm 2), we amortize this476

computation across many calls to the pol-477

icy. We periodically periodically evaluate478

the value function on each pair of nodes in479

the replay buffer, and then used the Floyd480

Warshall algorithm to compute the shortest481

path between all pairs. This takes O(|B|3)482

time, but only O(|B|2) calls to the value483

function. Let D ∈ R|B|×|B| be the result-484

ing matrix storing the shortest path distances between all pairs of states in the active set. Now, given485

a start state s and goal state g, the shortest path distance is486

dsp(s, g) = min

(
min
u,v∈T

d(s, u) +D[u, v] + d(v, g), d(s, g)

)
This computation requires O(|B|) calls to the value function, substantially better than the O(|B|2)487

calls required with the naı̈ve implementation.488

B Environments489

We used two simple navigation environments, Point-U and Point-FourRooms, shown in Figure 4a.490

In both environments, the observations are the location of the agent, s = (x, y) ∈ R2. The agent’s491

actions a = (dx, dy) ∈ [−1, 1]2 are added to the agents current position at every time step. We tuned492

the environments so that the goal-conditioned algorithm (which we will use as a baseline) would493

perform as well as possible. Observing that the agent would get stuck at corners, we modified the494

environment to automatically add Gaussian noise to the agents action. The resulting dynamics were495

st+1 = proj(st + at + εt) where εt ∼ N (0, σ2)

where proj() handles collisions with walls by projecting the state to the nearest free state. We used496

σ2 = 1.0 for Point-U, and σ2 = 0.1 for the (larger) Point-FourRooms environment.497

B.1 Visual Navigation498

We ran most experiments on SunCG house 0bda523d58df2ce52d0a1d90ba21f95c. We499

repeated all experiments on SunCG house 0601a680273d980b791505cab993096a, with500

nearly identical results. We manually choose houses using the following criteria (1) single story,501

(2) no humans, and (3) included multiple rooms to make planning challenging. During training, we502

sampled “nearby” goal states (within 4 steps) for 80% of episodes, and sampled goals uniformly at503

random for the remaining 20% of episodes. We tuned these parameters to make goal-conditioned504

RL work as well as possible. We implemented goal-relabelling [21, 4], choosing between the (1)505

originally sampled goal, the (2) current state, and (3) a future state in the same trajectory, each with506

probability 33%. The agent’s actions space was to move North/South/East/West. Observations were507

panoramic images, created by concatenating the first-person views from each of the cardinal directions.508

We used ensembles of 3 value functions, each with entirely independent weights. For all neural509

networks conditioned on both the current observation and the goal observation, we concatenated the510

current observation and goal observation along their last channel. For RGB images, this resulted511

in an input with dimensions H ×W × 6. For depth images, the concatenated input had dimension512

H ×W × 2.513

13

C Ablation Experiments514

(a) Replay buffer size (b) Maximum edge length

Figure 10: Sensitivity to Hyperparameters: (Left) While we used a buffer of 1000 observations
for most of our experiments, decreasing the buffer size has little effect on the method’s success rate.
(Right) When constructing our graph, we ignore edges that are longer than some distance, MAXDIST.
We find that this hyperparameter is important to the success of our method.

Because SoRB plans over a fixed replay buffer, one potential concern is that performance might515

degrade if the replay buffer is too small. To test this concern, we ran an experiment varying the size516

of the replay buffer. As shown in Figure 10a, decreasing the replay buffer by a factor of 10x led to no517

discernible drop on performance. While we do expect performance to drop if we further decrease the518

size of the replay buffer, the requirement of storing 100 states (even high-resolution images) seems519

relatively minor. In a second ablation experiment, we varied the MAXDIST hyperparameter that520

governs when we stop adding new edges to the graph. As shown in Figure 10b, SoRB is sensitive to521

this hyperparameter, with values too large and too smaller leading to worse performance. When the522

MAXDIST parameter is too small, graph search fails to find a path to the goal state. As we increase523

MAXDIST, we increase the probability of underestimating the distance between pairs of states. We524

expect that improvements in uncertainty quantification in RL will improve the stability of our method525

w.r.t. this hyperparameter.526

D Hyperparameters527

Unless otherwise noted, all baselines use the same hyperparameters as our method. Unless otherwise528

noted, parameters were noted tuned.529

14

D.1 Search on the Replay Buffer530

parameter value comments
learning rate 1e-4 Initially tried 1e-3 but failed

to converge. Lower val-
ues also worked, but training
took longer. Same for actor
and critic.

training iterations 1 million environment steps Performance changed little
after 200k steps

batch size 64
train steps per environment step 1:1
random steps at start of training 1000
NN architecture (images) Conv(16, 8, 4) + Conv(32, 4,

4) + FC(256)
Same for depth and RGB im-
ages.

optimizer Adam We used the default Ten-
sorflow settings for β1, β2, ε.
Same for actor and critic.

MaxDist 3 See Figure 10
replay buffer size (training) 100k
replay buffer size (search) 1k See Figure 10
gamma / discount 1
ε, exploration parameter for discrete
actions

0.1 Used for visual navigation
task

OU-stddev, OU-damping, explo-
ration parameter for continuous ac-
tions

1.0, 2.0 Used for didactic 2D naviga-
tion

reward scale factor 0.1 Tuned for the DDPG base-
line on the didactic 2D navi-
gation environment.

target network update frequency every 5 steps
target network update rate (τ) 0.05

Figure 11: Hyperparameters for SoRB

D.2 Semi-Parametric Topological Memory531

We first tuned the l parameter on goal-reaching without search. Setting l to the best found value, we532

performed a massive (over 1000 experiments) grid search over M , sreach, and the threshold for adding533

edges.534

parameter value comments
threshold for adding edges 0.9 Tuned over [0.1, 0.2, 0.5, 0.7,

0.9]
sreach, threshold for choosing the
next waypoint along the shortest
path

0.5 Tuned over [0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
0.95, 1.0]

NN architecture Conv(16, 8, 4) + Conv(32, 4,
4) + FC(256)

Same architecture (but differ-
ent weights) for the retrival
and locomotor networks.

l, threshold for sampling nearby
states in trajectory

8 Tuned over [1, 2, 4, 8]

M , margin between “close” and
“far” states

1 Tuned over [1, 2, 4]

Figure 12: Hyperparameters for SPTM [46]

15

D.3 Value Iteration Networks535

parameter value comments
number of iterations 50 Tuned over [1, 2, 5, 10, 20,

50]. Little effect.
hidden units in VI block 100 Tuned over [10, 30, 100,

300]. Little effect

Figure 13: Hyperparameters for VIN [58]

E Tricks for Learning Distances with RL536

1. Small learning rates: Especially for the image-based tasks, we found that RL completely537

failed with using a critic learning rate larger than 1e-4. Smaller learning rates work too, but538

take longer to converge.539

2. Distributional RL: The value function update for distributional RL has a particularly nice540

form when values correspond to distances. Additionally, distributional RL implicitly clips541

the values, preventing the critic to predict that unreachable states are infinitely far away.542

3. Termination Condition: Carefully consider whether you set done = True at the end of543

each episode. In our setting the agent received a reward of -1 at each time step, so the value544

of each state was negative. An optimal agent therefore attempts to terminate the episode545

as quickly as possible. We only set done = True when the agent reached the goal state,546

not when the maximum number of time steps was reached or when it reached some other547

absorbing state.548

4. Ensembles of Value Functions: Predicted distances from a single value function can be549

inaccurate for unseen (state, goal) pairs. When performing search using these predicted550

distances, these inaccurately-short predictions result in “wormholes” through the environ-551

ment, where the agent mistakenly believes that two distant states are actually nearby. To552

mitigate this, we trained multiple, independent critics in parallel on the same data, and then553

aggregated predictions from each before doing search. Surprisingly, we found that taking554

the average predicted distance over the ensemble worked as well as taking the maximum555

predicted distance. We tried accelerating training by using shared convolutional layers for all556

critics in the ensemble, but found that this resulted in highly-correlated distant predictions557

that exhibited the “wormhole” problem.558

F Failed Experiments559

1. Goal Relabelling: As mentioned above, we tried to combine our method with off-policy560

goal relabelling [4, 43]. Surprisingly, we found that this hurt performance of the non-search561

policy, and had no effect on the search policy.562

2. Lower-bounds on Q-values: We attempted to use the search path to obtain a lower bound563

on the target Q-values during training. In the Bellman update, we replaced the distance564

predicted by the target Q-values with the minimum of (1) the distance predicted by the565

target Q-network and (2) the distance of the shortest search path. This can be interpreted566

as a generalization of the single-step lower bound from Kaelbling [21]. Initial experiments567

showed this approach slowed down learning, and in some cases prevented the algorithm568

from converging. We hypothesize that Q-learning is must more sensitive to error in the569

relative values of two actions, rather than the absolute value of any particular action. While570

our lower-bound method likely decreased the absolute error, it did not decrease the relative571

error (and may have even increased it).572

3. TD3-style Ensemble Aggregation: In our main experiments, we aggregated distance predic-573

tions from the ensemble of distributional critics by first computing the expected distance574

of each critic, and then averaging the predicted means. This approach ignores the fact that575

our critics are distributional. Inspired by the stability of TD3, we attempted to apply a576

similar approach to aggregating predictions from the ensemble of distributional critics. The577

naı̈ve approach of taking the minimum for each atom does not work because the resulting578

16

distribution will not sum to one. Instead, we first compute the cumulative density function579

(CDF) of each critic and then take the pointwise maximum over the CDFs. Note that critics580

correspond to negative distance, so the maximum corresponds to being pessimistic. Fi-581

nally, we convert the resulting CDF back into a PDF and return the corresponding expected582

distance. While this method has neat connections to second-order stochastic dominance583

and risk-averse expected utility maximizers [19], we found that it worked quite poorly in584

practice.585

17

