
Table 8: Summary of notations

πe(a|x) Target policy
πb(a|x) Exploration policy
β∗ Parameter of interest βπeT
P, E[·] Expectation with respect to a behavior policy
var[·] Variance
Asmse[·] Asymptotic variance
Pn, En Empirical approximation based on a set of samples from a behavior policy
Gn Empirical process

√
n(Pn − P)

q(x, a; τ) Model for Q-function with parameter τ
ωt1:t2 Cumulative importance ratio

∏t2
t=t1

πe(at|xt)/πb(at|xt)
ζ Parameter in m(x) for REG, SNREG
ξ Parameter in m(x) for EMP
Rmax An upper bound of the reward function
HT−1 (x0, a0, r0, · · · , xT−1, aT−1, rT−1) in T-step trajectory
x(i) i-th sample
p→ Convergence in probability

A Additional Intuitive explanation

Here, we add several intuitive explanations, which can not be included due to the space limit.

Section 2

We explain Figure 1. The figure seeks to illustrate the local and intrinsic efficiency uniquely achieved
by our new estimators. It shows the ordering of asymptotic MSEs: if Q-functions are well specified,
both our proposed estimators (EMP, REG) and DR achieve the same efficiency bound, which IS and
SNIS do not; if Q-functions are misspecified, the efficiency bound is not achieved, yet our proposed
estimators will still have better MSE than DR, IS, and SNIS. Note that we use the terminology of the
well-specification and misspecification for parametric models.

Section 3

In section 3,1, the core idea is adding parameters ζ1 and ζ2 in addition to τ . These parameters ensures
the intrinsic efficiency since the existence of ζ1 gives the superiority over SNIS, and the existence of
ζ2 gives the superiority over IS.

In section 3.2, the key idea is using an empirical likelihood [22]. Empirical likelihood is known as an
optimal way to utilize some constraints (moment conditions). As it is known as nonparametric MLE,
the formulation is seen as maximizing each empirical weight following some imposed constraints.
Since it is hard to directly solve the original problem, people usually solve the dual formulation. For
the current context, control variate is seen as a constraint; so we add the following constraint

n∑
i=1

κ(i)πb(a
(i)|x(i))F(m(x(i), a(i); ξ, τ)) = 0.

The another constraint
n∑
i=1

κ(i)πb(a
(i)|x(i)) = 1

is imposed so that each weight corresponds to the probability weight. Under these constraints, the
log of the product of weights (nonparametric log–likelihood)

log

(
n∏
i=1

κ(i)

)
is optimized.

The critical idea in Section 3.3 is reducing the first stage optimization in Section 3.1 and 3.2 to the
second stage optimization. More specifically, τ is optimized in the first stage; then, ζ is optimized.
The second stage optimization has a computational advantage over the first stage optimization. An
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intrinsic property is still retained since ζ governs the intrinsic efficiency property rather than τ . In
addition, the local efficiency is sill retained since τ is optimized in the first stage.

B SNREG (self-normalized REG)

Herein, we construct an estimator exhibiting partial intrinsic efficiency, 2-boundedness and partial
stability based on a self-normalized estimator [24, 32]. The partial intrinsic efficiency means that the
resulting estimator’s asymptotic MSE is smaller than SNDR and SNIS. Further, partial stability is
defined as follows.

Definition B.1 (Partial stability). An estimator satisfies the stability when τ̂ does not depend on the
reward.

This condition indicates that the variance can be still bounded after defining the ratio and the
estimated Q-function. The DM, SNDR have been easily proved to have this property. In addition, in
the following proof section, we prove that the practical EMP also possesses this property.

Consider a family of unbiased estimators: β̂snd(m) as a solution to

En

[
β −

{∑
a∈A

m(x, a)πe(a|x)

}
− ω(a, x)

En[ω(a, x)]
{r −m(x, a)}

]
= 0,

where πe(a|x)/πb(a|x) = ω(a, x). The SNDR estimator is subsequently defined as β̂sndr =

β̂snd(q(x, a; τ̂)). First, the range of this estimator is [0, 2Rmax]. Therefore, tihs satisfies 2-
boundedness and partial stability. In addition, this satisfies the consistency for an arbitrary choice
of m(x, a). By selecting ζ1 + ζ2q(a, x; τ) as m(x, a), this class is also observed to include a SNIS
estimator setting ζ = (1, 0), and a SNDR estimator setting ζ = (0, 1). However, this class does not
include an IS estimator.

The asymptotic MSE is calculated as follows.

Theorem B.1. The term Asmse[β̂snd] is n−1Vsnd(m), where Vsnd(m) is

var

[
ω(a, x) (r −m(x, a))−

{∑
a∈A

m(x, a)πe(a|x)

}]
+ E [ω(a, x)(r −m(x, a))]

2
var [ω(a, x)]

− 2

(
E

[
w(a, x)2(r −m(x, a))− ω(a, x)

∑
a∈A

πe(a|x)m(a, x)

]
− β∗

)
E [ω(a, x)(r −m(x, a))] .

By minimizing the empirical approximation of the aforementioned asymptotic MSE with respect to
ζ1, ζ2 and τ and plugging-in as

(ζ̂, τ̂) = arg min
ζ∈R2,τ∈Θτ

V̂snd(m(x, a; ζ, τ)),

we obtain the estimator β̂snreg = β̂snd(m(x, a; ζ̂, τ̂)). Here, (ζ̂, τ̂) converges in probability to
(ζ∗, τ∗)

(ζ∗, τ∗) = arg min
ζ∈R2,τ∈Θτ

Vsnd(m(x, a; ζ, τ)). (11)

The asymptotic MSE of β̂snreg is given as follows.

Theorem B.2. Under the assumption that the optimization problem in (11) has a unique solution,

Asmse[β̂snreg] = n−1 min
ζ∈R2,τ∈Θτ

Vsnd(m(x, a; ζ, τ)).

The asymptotic MSE is smaller than those of the SNIS and SNDR.

Theorem B.3. The estimator β̂snreg is locally efficient.
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Table 9: SatImage (×1000 )

Behavior policy DR SNDR MDR REG SNREG EMP
0.7πd + 0.3πu 3.0 3.0 3.8 2.8 2.8 2.8
0.4πd + 0.6πu 5.0 5.0 5.3 4.4 4.4 4.4
0.0πd + 1.0πu 18.0 17.8 14.4 13.6 13.6 13.7

Table 10: Pageblock (×1000 )

Behavior policy DR SNDR MDR REG SNREG EMP
0.7πd + 0.3πu 1.4 1.4 2.3 1.5 1.4 1.4
0.4πd + 0.6πu 2.7 2.6 3.4 2.5 2.5 2.4
0.0πd + 1.0πu 7.2 7.3 6.4 4.9 4.9 4.9

Table 11: PenDigits(×1000 )

Behavior policy DR SNDR MDR REG SNREG EMP
0.7πd + 0.3πu 1.5 1.5 2.2 1.4 1.4 1.4
0.4πd + 0.6πu 2.2 2.2 3.4 2.1 2.1 2.0
0.0πd + 1.0πu 11.1 10.8 9.4 9.4 9.4 9.5

Proof. The variance reaches an efficiency bound: ζ1 = 0, ζ2 = 1 and τ = τ∗, noting

E[w(a, x){r −m(x, a)}] = 0.

Table 9-11 shows the experimental result of SNREG. The performance of SNREG is quite similar to
those of REG, SNREG and EMP.

C Theoretical property of β̂0
reg

Herein, we provide some theoretical property of β̂0
reg. In fact, the variance of β̂0

reg is smaller than the
following estimator:

β̂sn2sis = En

[
T−1∑
t=0

ω0:t

En[ω0:T−1]
γtrt

]
.

The difference between this estimator and β̂snsis is that the denominator is En[ω0:T−1] instead of
En[ω0:t−1].

Theorem C.1. The asymptotic MSE of β̂0
reg is smaller than those of β̂sis, β̂sn2is and β̂dr.

D Proofs

The assumption is as follows.
Assumption D.1. (a1) Parameter space Θτ is compact and sufficiently large, (a2) the term
|q(x, a; τ)| ≤ Rmax, (a3) the optimal solution (ζ∗, τ∗) in (4) is unique.

Note that we have assumed (a1) and (a2) for all of theorems. Regarding (a3), we have assumed for
Theorem 3.1. In addition, we have assumed that the reward r and the cumulative ratio wt1:t2 are
bounded in the main paper. These condition (uniform boundedness of reward and cumulative ratio)
can be relaxed to each theorem when discussing asymptotic properties. However, for simplicity, we
assumed these conditions.

Proof of Theorem 3.1. We denote m∗ = ζ∗1 + ζ∗2 q(x, a; τ∗), m̂ = ζ̂1 + ζ̂2q(x, a; τ̂) and u(m) as

ω(a, x)r +

{∑
a∈A

m(x, a)πe(a|x)

}
− ω(a, x)m(x, a).

We prove two lemmas first.
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Lemma D.1. ζ̂ p→ ζ∗ and τ̂
p→ τ∗.

Proof. First, we define a space Θζ , which always includes ζ̂ . We can take a compact set as Θζ noting
that is uniquely defined fixing τ , ζ̂ and the all of assumptions.

Then, based on Lemma 2.4 in [20], an uniform convergence condition:

sup
τ∈Θτ ,ζ∈Θτ

|(Pn − P) {u(ζ1 + ζ2q(x, a; τ))}2 | p→ 0

is satisfied using an assumption (a1) and the fact from (a2) that u(ζ1 + ζ2q(x, a; τ))2 is bounded
uniformly over ζ ∈ R2 and τ ∈ Θτ .

Then, by using Theorem 5.7 in [34], the statement holds from (a1), (a3) and the above uniform
convergence condition.

Lemma D.2. Gn[u(m̂)]−Gn[u(m∗)] = op(1).

Proof. Based on Lemma 19.24 in [34], we have to confirm two statements; (1): for some δ > 0,
the class {u(ζ1 + ζ2q(x, a; τ)); |ζ − ζ∗| < δ, |τ − τ∗| < δ} is a Donsker class, (2) the term
E[(u(m̂)− u(m∗))

2
] converges in probability to 0.

The first condition is satisfied using the assumption (a1) and the fact from (a2) that u(ζ1+ζ2q(x, a; τ))
is bounded uniformly over ζ ∈ R2 and τ ∈ Θτ , based on Example 19.7 in [34].

The second condition is satisfied as follows. First, m̂ converges in probability to m∗ from Lemma D.1
by continuous mapping theorem. In addition, {u(ζ1 + ζ2q(x, a; τ)); ζ ∈ R2, τ ∈ Θτ} is uniformly
integrable from the assumption (a2). Then, it is verified by Lebesgue convergence theorem.

We go back to the main proof. Here, we want to know the behavior of
√
n(u(m̂) − β∗). This is

decomposed as
√
n(u(m̂)− β∗) = Gn[u(m̂)]−Gn[u(m∗)]

+ Gn[u(m∗)]

+
√
n(E[u(m̂)]− β∗).

The first term is op(1) by Lemma D.2. The third term
√
n(E[u(m̂)]− β∗) is 0 from the construction.

Then, it is found that the influence function of the estimator is u(m∗), that is,
√
n(u(m̂)− β∗) = Gn[u(m∗)] + op(1).

Thus, the asymptotic MSE of β̂d(ζ̂1 + ζ̂2q(x, a; τ̂)) is the same as the variance of β̂d(ζ∗1 +
ζ∗2 q(x, a; τ∗)). This concludes the proof.

Proof of Corollary 3.1. We prove each statement as follows.

Local efficiency By setting ζ = (0, 1), τ = τ∗ in Theorem 3.1, it achieves the efficiency bound.

It is obvious because the asymptotic variance of β̂reg estimator is represented as

n−1 arg min
ζ∈R2,τ∈Θτ

E[{wr −F(ζ1 + ζ2q(x; τ))}2].

Intrinsic efficiency We notice that the asymptotic variance of each estimator is represented as
n−1E[{wr − F(ζ1 + ζ2q(x; τ))}2]. The SIS estimator corresponds to the case ζ = (0, 0). The
SNSIS estimator corresponds to the case ζ = (β∗, 0). The DR estimator corresponds to the case
ζ = (0, 1) and τ = τ †, where τ † is some convergence point of τ̂ .

Proof of Lemma 3.1. Because of the first order condition in (6), the following equation holds:
n∑
i=1

κ̂(i)πb(a
(i)|x(i))(w(x(i), a(i))− 1) = 0,
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where κ̂(i) = κ̂(a(i)|x(i); ξ̂, τ̂). Then,
n∑
i=1

κ̂(i)(πe(a
(i)|x(i))− πb(a(i)|x(i))) = 0

Regarding the 1-boundedness, it is proved as follows.

β̂emp =
1

n

n∑
i=1

ĉ(Dx,a; ξ̂, τ̂)−1κ̂(Dx,a; ξ̂, τ̂)πe(a
(i)|x(i))r(i)

≤ 1

n

n∑
i=1

ĉ(Dx,a; ξ̂, τ̂)−1κ̂(Dx,a; ξ̂, τ̂)πe(a
(i)|x(i))Rmax

= Rmax.

From the third line to the fourth line, we use a definition of ĉ.

Regarding the partial stability, noting ξ̂ and τ̂ are a function of Dx,a base on the form of optimization
problem (6), it is proved as follows;

var[β̂emp|Dx,a] =
1

n

n∑
i=1

{
ĉ(Dx,a; ξ̂, τ̂)−1κ̂(Dx,a; ξ̂, τ̂)πe(a

(i)|x(i))
}2

var[r(i)|Dx,a]

≤ 1

n

n∑
i=1

{
ĉ(Dx,a; ξ̂, τ̂)−1κ̂(Dx,a; ξ̂, τ̂)πe(a

(i)|x(i))
}2

σ2

≤ σ2.

From the second line to the third line, we have used the fact that maxb
∑
b2i such that

∑
bi = 1 is

1.

Proof of Theorem 3.2. First, we prove ξ̂
p→ 0 and τ̂

p→ 0. Define (ξ, τ>)> = ψ.

Lemma D.3. ψ̂ p→ 0

Proof. We use Theorem 5.7 in [34]. Here, note that

F(ξ + τ>t(x, a)) = ψ>g(x, a),

where g(x, a) = (F(1),F(t(x, a)))> and the estimator ψ̂ is an M-estimator defined by maximizing:

En[log(1 + ψ>g(x, a))].

The uniform convergence condition is proved similarly as the proof in Theorem 3.1 based on (a1)
and (a2). What we have to show is E[log(1 + ψ>g(x, a))] takes a maximum over ψ ∈ Rdψ if and
only if ψ = 0. This comes from the Jensen inequality:

E[log(1 + ψ>g(x, a))] ≤ log E[(1 + ψ>g(x, a))]

= log{1 + ψ>E[g(x, a)]} = 0,

and a corresponding Hessian is a negative definite matrix.

Then, we can state that ĉ also converges in probability to 1

Lemma D.4. ĉ p→ 1.

Proof. We have

|ĉ− 1| ≤ |(Pn − P){1 + F(m(x, a; ψ̂))}−1|+ |P[{1 + F(m(x, a; ψ̂))}−1]− 1|.
The first term converges in probability to 0 from the uniform convergence property based on the
assumption (a1) and (a2). The second term also converges in probability to 0 from the continuous
mapping theorem, noting ψ̂

p→ 0.
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Then, we show the following lemma.

Lemma D.5.

√
n

(
Pn

(
πer

πb′(ĉ, ψ̂)

)
− β∗

)
=
√
n

(
Pn
(
πer

πb
− ψ∗g(x, a)

)
− β∗

)
+ op(1),

where πb′(c, ψ) = cπb(1 + ψ>g(x, a)) and ψ∗ is defined as

ψ∗ = arg min
ψ∈Rdφ

var
[{
ω(a, x)r − ψ>g(x, a)

}]
= E[g(x, a)g(x, a)>]−1E

[
πe
πb
rg(x, a)

]
.

Proof. We have

√
n

(
Pn

(
πer

πb′(ĉ, ψ̂)

)
− β∗

)

=

(
Gn

(
πer

πb′(ĉ, ψ̂)

)
−Gn

(
πer

πb

))
+ Gn

(
πer

πb

)
+
√
n

(
E

[
πer

πb′(ĉ, ψ̂)

]
− β∗

)
(12)

= Gn
(
πer

πb

)
+
√
n

(
E

[
πer

πb′(ĉ, ψ̂)

]
− β∗

)
+ op(1) (13)

=
√
n

(
Pn
(
πer

πb
− ψ∗g(x, a)

)
− β∗

)
+ op(1). (14)

From the second line (12) to the third line (13) , noting that πb′(ĉ, ψ̂) converges in probability to πb
from the fact ĉ

p→ 1 and ψ̂
p→ (0, 0) and (a1), (a2), we used:

Gn

(
πer

πb′(ĉ, ψ̂)

)
−Gn

(
πer

πb

)
= op(1).

From the third line (13) to the fourth line (14) , we used the following argument.

√
nE

[
πer

πb′(ĉ, ψ̂)

]
=
√
n

(
E

[
∇ψ>

πer

πb′

]
,E

[
∇c

πer

πb′

])
|ψ∗,c∗((ψ̂ − ψ∗)>, ĉ− c∗)> + op(1)

(15)

= −E

[
πe
πb
rg>

]
E[gg>]−1

√
nPng (16)

=
√
nPn[−ψ∗>g].

Here, from the first line (15) to the second line (16), we have used the fact that an estimator ψ̂ and ĉ
are defined as an Z-estimator:

En

[
g

1 + ψ>g

]
= 0, En

[
1

1 + ψ>g
− c
]

= 0.

This implies

√
n(ψ̂ − ψ∗) = −E

[
g(x, a)g(x, a)>

1 + ψ>g(x, a)

]−1√
nPng(x, a)|ψ∗,c∗ + op(1),

= −E
[
g(x, a)g(x, a)>

]−1√
nPng(x, a)|ψ∗,c∗ + op(1),

√
n(ĉ− c∗) = −E

[
g(x, a)

1 + ψ>g(x, a)

]√
n(ψ̂ − ψ∗)|ψ∗,c∗ + op(1) = op(1).
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Finally, from Lemma D.5, the asymptotic variance of β̂emp is

n−1 min
ψ∈Rdψ

var [{ω(a, x)r − ψg(x, a)}] .

Proof of Theorem 3.3. We show an asymptotic statement for the practical β̂reg first. Then, we go to
the asymptotic statement for the practical β̂emp.

We prove the following lemma first.

Lemma D.6. ζ̂ p→ ζ∗, where

ζ∗ = arg min
ζ∈R2

E
[{
wr −F(ζ1 + ζ2q(x, a; τ †))

}2
]
. (17)

Proof. We use Theorem 5.7 in [34]. The uniform convergence condition is proved similarly as the
proof in Theorem 3.1 based on (a1) and (a2). Therefore, what we have to prove is the minimum of
the following function

ζ → E
[{
wr −F(ζ1 + ζ2q(x, a; τ †))

}2
]

(18)

is uniquely defined. This is obvious because the above function is a quadratic function with respect
to ζ.

For the rest of the proof, by following the same argument in the proof of Theorem 3.1 with redefining

m∗ = ζ∗1 + ζ∗2 q(x, a; τ †),

the statement is proved.

Next, we show a statement for β̂emp. As in the proof of Theorem 3.2, we show the following lemma.

Lemma D.7.
√
n

(
Pn

(
πer

πb′(ĉ, ξ̂, τ̂)

)
− β∗

)
=
√
n

(
Pn
(
πer

πb
− ζ∗(τ̂)g(x, a; τ̂)

)
− β∗

)
+ op(1),

where πb′(c, ξ, τ) = cπb(1 + ξ>g(x, a; τ)) and ζ∗(τ) is defined as

ζ∗(τ) = arg min
ζ∈R2

var
[(
ω(a, x)r − ζ>g(x, a; τ)

)]
= E[g(x, a; τ)g(x, a; τ)>]−1E

[
πe
πb
rg(x, a; τ)

]
.

We go back to the main proof. Finally, we have
√
n

(
Pn
(
πer

πb
− ζ∗(τ̂)>g(x, a; τ̂)

)
− β∗

)
= Gn

(
πer

πb
− ζ∗(τ̂)>g(x, a; τ̂)

)
−Gn

(
πer

πb
− ζ∗(τ †)>g(x, a; τ †)

)
+ Gn

(
πer

πb
− ζ∗(τ †)>g(x, a; τ †)

)
+
√
n

(
E

[
πer

πb
− ζ∗(τ̂)>g(x, a; τ̂)

]
− β∗

)
= Gn

(
πer

πb
− ζ∗(τ †)>g(x, a; τ †)

)
+ op(1).

From the second line to the third line, we use an argument that the first term is equal to op(1) by
the assumptions (a1), (a2) and the third term is 0 from the construction. Therefore, the asymptotic
variance (MSE) is

n−1 min
ζ∈R2

var
[(
ω(a, x)r − ζ>g(x, a; τ †)

)]
.
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Proof of Theorem 4.1. We use a law of total variance [2].

nvar

[
En

[
T−1∑
t=0

(
γtω0:trt − γt

(
ω0:tmt(xt, at)− ω0:t−1

∑
a∈A

mt(xt, a)πe(a|xt)

))]]

=

T−1∑
t=0

E

[
var

(
E

[
T−1∑
k=0

(
γkω0:krk − γk(ω0:kmk(xk, ak)− ω0:k−1

∑
a∈A

mkπe)

)
|Ht

]
|Ht−1

)]

=

T−1∑
t=0

E

[
var

(
E

[
T−1∑
k=t

(
γkω0:krk − γk(ω0:kmk(xk, ak)− ω0:k−1

∑
a∈A

mkπe)

)
|Ht

]
|Ht−1

)]

=

T−1∑
t=0

E

[
γ2tvar

(
E[

T−1∑
k=t

γk−tω0:krk|Ht]− (ω0:tmt(xt, at)− ω0:t−1

∑
a∈A

mtπe)|Ht−1

)]

=

T−1∑
t=0

E

[
γ2tω2

0:t−1var

(
E[

T−1∑
k=t

γk−tωt+1:krk|Ht]ωt:t − (ωt:tmt(xt, at)−
∑
a∈A

mtπe)|Ht−1

)]
.

From the third line to the fourth line:

E

[
ω0:kmk(xk, ak)− ω0:k−1

∑
a∈A

mk(xk, a)πe(a|xk)|Ht

]
= 0,

for k > t.

Proof of Lemma 4.1. Define an estimator as a solution to: En[d, d0, d1, · · · , dT−1]> = 0, where

d = β −

{
T−1∑
t=0

ω0:tγ
trt/ct

}
, dt = ct − ω0:t.

The asymptotic MSE of (β̂, ĉ1, . . . , ĉT−1) is written as a sandwich formula: n−1A−1BA>
−1:

A =


1 γβ∗1 . . . γT−1β∗T−1
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , B =


var[d] cov[d, d1] . . . cov[d, dT−1]

cov[d1, d] var[d1] . . . 0
...

...
. . .

...
cov[dT−1, d] 0 . . . var[dT−1]

 ,

where

β∗t = E[ω0:trt].

First, A−1 is

A =


1 −γβ∗1 . . . −γT−1β∗T−1
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

Then, the (1,1) element in A−1BA>
−1 is

var[d]−
T−1∑
t=0

γtβ∗t cov[d, dt] +

T−1∑
t=0

γ2tβ∗t
2var[dt]. (19)

First, var[d] is equal to

T−1∑
t=0

E

[
γ2tω2

0:t−1var

(
E

[
T−1∑
k=t

γk−tωt+1:krk−t|Ht

]
ωt:t|Ht−1

)]
.
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Then, cov[d, dt] is equal to

E

[
γ2kω2

0:t−1cov

(
E

[
T−1∑
k=t

γk−tωt+1:krk−t|Ht

]
ωt:t, β

∗
t ωt:t|Ht−1

)]
.

Finally, the term (19) is equal to

T−1∑
t=0

E

[
γ2tω2

0:t−1var

(
ωt:t

(
E[

T−1∑
k=t

γk−tωt+1:krk−t|Ht]− β∗t

)
|Ht−1

)]
.

Proof of Theorem 4.2. As in the same way of Theorem 3.1, it is proved that the asymptotic MSE of
β̂T−1

reg is

n−1 min
ζ∈Rdζ

var[v({ζ1t + ζ2tq(x, a; τ †)}T−1
t=0 )].

We prove the intrinsic efficiency. Regarding local efficiency, they are proved as the proof of Corollary
3.1. The asymptotic MSEs of β̂sis, β̂snsis and β̂dr are represented as a form of n−1var[v({ζ1t +

ζ2tq(x, a; τ †)}T−1
t=0 )]. Setting ζ1t = 0 and ζ2t = 0, it corresponds to the estimator β̂sis. Setting

ζ1t = β∗t and ζ2t = 0, it corresponds to the estimator β̂snsis. Setting ζ1t = 0 and ζ2t = 1, it
corresponds to the estimator β̂dr. This concludes the intrinsic efficiency.

Proof of Theorem 4.3. We prove a 1-boundedness and (partial) stability. When τ is not pre-estimated,
it has stability. When τ is pre-estimated, it has partial stability. We prove the latter point. Regarding
the asymptotic result, we can prove as in Theorem 3.2.

From the first consider of optimization problem with respect to ζ1t for 0 ≤ t ≤ T − 1, we have

0 = En

[
w0:t − w0:t−1

1 + g(Dx,a; ξ̂, τ̂)

]
.

Noting w0:−1 = 1 for any t,

0 = En

[
w0:t − 1

1 + g(Dx,a; ξ̂, τ̂)

]
. (20)

The estimator β̂T−1
emp is bounded as follows. Regarding the 1-boundedness,

β̂T−1
emp ≤

1

n

n∑
i=1

T−1∑
t=0

ω
(i)
0:tγ

tr
(i)
t

ĉ−1

1 + g(Dx,a; ξ̂, τ̂)

≤ 1

n

n∑
i=1

T−1∑
t=0

ω
(i)
0:tγ

tRmax
ĉ−1

1 + g(Dx,a; ξ̂, τ̂)

=

T−1∑
t=0

γtRmax

From the second to the third line, we have used (20).
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Regarding the partial stability, noting that from the assumption, ζ̂ and τ̂ are functions of x and a,

var[β̂T−1
emp |Dx,a] ≤ var

[
1

n

n∑
i=1

T−1∑
t=0

ω
(i)
0:tγ

tr
(i)
t

ĉ−1

1 + g(Dx,a; ξ̂, τ̂)
|Dx,a

]

≤ 1

n

n∑
i=1

T−1∑
t=0

{
ω

(i)
0:t

ĉ−1

1 + g(Dx,a; ξ̂, τ̂)

}2

γ2tvar[rt]

≤ 1

n

n∑
i=1

T−1∑
t=0

{
ω

(i)
0:t

ĉ−1

1 + g(Dx,a; ξ̂, τ̂)

}2

γ2t max[var[rt]]

≤
T−1∑
t=0

γ2t max[var[rt]] = σ2.

From the third to the fourth line, we have used (20).

Proof of Theorem B.1. The estimator is defined as a solution to the following equation with respect
to β, c:

En[d1, d2] = 0,

where

d1(x, a;β, c) = β − ω0:0(x, a)

c
(r −m(x, a))−

{∑
a∈A

m(x, a)πe(a|x)

}
, d2(x, a; c) = c− ω0:0(x, a).

The asymptotic MSE of (β̂, ĉ) is written as

Asmse[(β, c)>] =

[
1 E[∇cd1]
0 1

]−1 [
var[d1] cov[d1, d2]

cov[d1, d2] var[d2]

] [
1 0

E[∇cd1] 1

]−1

|β∗,c∗

=

[
1 −E[∇cd1]
0 1

] [
var[d1] cov[d1, d2]

cov[d1, d2] var[d2]

] [
1 0

−E[∇cd1] 1

]
|β∗,c∗ .

Therefore, the asymptotic MSE is given as

(var[d1]− 2E[∇cd1]cov[d1, d2] + E[∇cd1]2var[d2])|β∗,c∗ .
Here, noting that c∗ = 1,

E[∇cd1]|c∗ = E [ω(a, x)(r −m(x, a))] ,

cov[d1, d2]|c∗ = E

[
ω2

0:0(a, x)(r −m(x, a))− ω(a, x)

{∑
a∈A

πe(a|x)m(x, a)

}]
− β∗,

var[d1]|β∗,c∗ = var

[
ω(a, x) (r −m(x, a))−

{∑
a∈A

πe(a|x)m(x, a)

}]
,

var[d2]|β∗,c∗ = var [ω(a, x)] .

By combining all together, we get the conclusion.

Note that the influence function is written as

d1(x, a)|β∗,c∗ − E[∇cd1(x, a)]|c∗d2(x, a)|β∗,c∗ . (21)

Proof of Theorem B.2. Define ub(c,m(x, a; ζ, τ)):

β =
∑
a∈A

m(x, a; ζ, τ)πe(a|x) +
ω0:0(x, a)

c
(r −m(x, a; ζ, τ)).
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By noting that ĉ
p→ c∗ = 1, this is decomposed as
√
n(ub(ĉ, m̂)− β∗) = Gn[ub(ĉ, m̂)]−Gn[ub(1,m

∗)]

+ Gn[ub(1,m
∗)]

+
√
n(E[ub(ĉ, m̂)]− β∗),

when m∗ = ζ∗1 + ζ∗2 q(x, a; τ∗) and m̂ = ζ̂1 + ζ̂2q(x, a; τ̂). Here, the first term is equal to op(1) from
assumptions (a1) and (a2). The last term is

√
n(E[ub(ĉ, m̂)]− β∗)

=
√
n(E[ub(1, m̂)]− β∗) +

√
nE[∇cub(c,m)]|c∗Pn (ω(a, x)− 1) + op(1)

=
√
nE[∇cub(c,m)]|c∗Pn (ω(a, x)− 1) + op(1).

Therefore,
√
n(ub(ĉ, m̂)− β∗) = Gn [ub(1,m

∗) + E[∇cub(c,m)]|c∗ (ω(a, x)− 1)] + op(1).

From the form of the influence function (21), this implies that the asymptotic MSE is

n−1 min
ζ∈R2,τ∈Θτ

Vsnd(m(x, a; ζ, τ)).

Proof of Theorem C.1. As in the same way of Theorem 3.1, it is proved that the asymptotic MSE of
β̂0

reg is

n−1 min
ζ∈R2,τ∈Θτ

var[v({ζ1 + ζ2q(x, a; τ)}T−1
t=0 )].

The asymptotic MSE of β̂sis, β̂sn2reg and β̂dr is represented as a form of var[v({ζ1 +

ζ2q(x, a; τ)}T−1
t=0 )]. When ζ = (0, 0), it corresponds to the β̂sis. When ζ = (β∗, 0), it corresponds to

the β̂sn2sis. When ζ = (0, 1), it corresponds to β̂sndr.

E Details of the experimental setup

E.1 Contextual bandit

Transformation method A multi-label classification data set comprises (x(i), y(i))ni=1 where x(i) is
covaraite and y(i) is its class. Here, x(i) ∈ Rd and y(i) ∈ {1, · · · , l}, where l is the number of class.
A classification algorithm assigning x to y is considered to be a policy from a context to an action.

Next, we will explain how to define a reward. The policy is considered to be an estimator a(i)

associated with x(i). The agent receives a unit reward 1 if the prediction succeeds, that is, when
a(i) = y(i). It receives no reward when a(i) 6= y(i). The reward of a policy is considered to be the
accuracy of the classification model. In this way, we can generate triplets of {(x(i), a(i), r(i))}ni=1. In
section 5, based on some classification data set and some randomized policies, we made a data set
200 times and performed simulations.

Additional remarks

• The data set is split into training data (30%) for defining a policy πd and evaluation data
(70%) for the OPE. The size of the evaluation data is larger than that of training data because
for the current problem, the accuracy of πd is not important and, we intend to know the
accuracy of the OPE methods.

• Our survey has denoted that several methods can be employed to construct Q-functions. For
example, [6] used a training data set to learn a Q-function. However, we should not use the
training data for the valid comparison of OPE methods. In our case, the behavior policy was
only applied to the evaluation data set. We subsequently constructed a Q-function using the
generated data.

• The number of actions and data points of the problem is shown in Table 12.
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Table 12: Bandit Datasets

Dataset PageBlock OptDigits SatImage PenDigits
Classes 5 10 6 10

Data 5473 5620 6435 10992

E.2 Reinforcement learning

We here describe the RL domains used in the experiments. In addition, we show the graph representing
the results in Table 2.

Windy Gridworld

A detailed explanation is Example 6.5 in [27]. The board is a 7× 10 matrix. The reward is −1 for all
tranistion until the terminal state is reached. The action comprises four choices: up, down, right, left.
The difference of the usual GridWorld is that a crosswind runs upward through the middle of the grid.
The horizon was set to T = 400. Further, we calculated the best policy πd using Q-learning.

Cliff Walking

The detailed explanation is Example 6.6 in [27]. The board is a 4× 12 matrix. Each time step incurs
−1 reward, and stepping into the cliff incurs −100 reward and a reset to the start. An episode is
terminated when the agent reaches the goal. The horizon was set to T = 400. Further, we calculated
the best policy πd using Q-learning.

Mountain Car

A car is between two hills in interval [−0.7, 0.5] and the agent should move back and forth to gain
enough power to reach the top of the right hill. The state space comprises position and velocity. There
are three discrete actions 1)forward, 2)backward and 3) stay-still. The horizon was set to be T = 250
with a reward of −1 per step. We calculated the best policy πe using Q-learning. The state space was
continuous; thus, we obtained a 400-dimensional feature using a radial basis function kernel.

Figure 2: RL results; Cliff Walking and Mountain Car
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