A Proofs

Table 5: Cases we discuss in the proofs of Theorems 7 and 8.

Uy \Ilfl(g)>1—c W;l(g)gl—c

My f=y f#y | f=y" [f#y"
Ny >1—¢ (A) (B) © (D)
Ny <1—c (E) (F (G) (H)

To begin with, define the excess pointwise 0-1-c risk as

AWoie(r, f;m) = Woae(r, f;m) — min {C 1- max Wy} . (17)

A.1 Proof of Theorem 7

The pointwise risk of OVA loss is expressed as

Wova(gim) =Y [ny¢(gy) + (1 = ny)d(—gy)]- (18)

Y

We write the the excess pointwise risk of OVA loss as
AWova(f;m) = Wova(f;n) — nf Wova(fin).
g

The main focus of this proof is to show the following inequality:

AWore(r, f;m) < 2CAWova(gin)*, (19)
since if the above inequality holds, then Ineq. (16) can be derived as follows:

ARO-l—c(vaf):mNIE’( [AWo.rc(rp (), f(x);n(x))]

< E [QCAWOVA

x~p(x)

1

<2C E [AWova(g(z);n(z))]

z~p(x)
< 2CROVA(9)%a

where we used Jensen’s inequality in (20). To prove Ineq. (19), we need to consider the different
cases with respect to 17 and ¥(g), which is summarized in Table 5. Again, we will abbreviate x for
brevity in the rest of this proof. Note that ¥ s () = maxy,cy ¥, (x) if we use proper composite loss.

(20)

Cases (A)(G)(H):
In this case, we can confirm that AWy.i_.(r¢, f;m) = 0 by (17) since (ry, f) makes a
correct prediction. Thus, it holds that

AWoro(rs, f;m) = 0 < 20AWoya(g;n)* .

Cases (C)(D):
In this case, we can confirm that

AWo.re(rp, fim) = ¢ — (1 = ny~) (21)
by (17). Let gt = argming;* _o Wova(g’;m). Using the Lagrangian multiplier method we
see that g' has to satisfy

¢'(—g})
¢ (—g)) + ¢/ (91

_my (y #y),
){1—6 (y=y"), 22
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and the LHS of which actually exists by the assumption (14). We now prove

Wova(g;m) — Woval(g'in) > 0. (23)

Recall that Woya (18) is a convex combination of ¢, which is a convex function. Thus,
Wova is also a convex function. Therefore,

Wova(g:m) — Wova(g'in) > Vg Wova(gin)ly_,: (9 —g")

=3 ' (gh) — (1 —n)e' (—g})] (9y — g})

y£Y*

=0 (using (22))
+ [0/ (a}) = (L =my )8 (=l)] (90 — 93)
= ¢ (g}) = (1= 1) (=g)] (g = g}-).
The condition 7~ > 1 — ¢ together with the assumption o4 (—gj/*) < ¢ (gl) =¢'(#) <0
gives
-8 (gh-) — (1 =y )¢ (—gl.) < (1= )¢/ (g-) — cd'(—g].) = 0.

Here, we used (22) in the last equality. In addition, since we have \II;} (g9) < \11;1 (g) <1-—c
in cases (C)(D), together with \IJ,;*1 (g") = 1 — ¢, we get the inequality \Il;*1 (g) < ¥ tgh).
Note that \I!yil is a non-decreasing function with respect to g« , so it holds that

gy < g;* .
Therefore, we can conclude that (23) holds, which gives the following result:

AWova(gin) = inf AWova(g';n)

Y

>C %y —(1—-0)° (by assumption (15))
= C 7 AWya.c(ry, f;m)°. (by using (21))
Cases (E)(F):
In this case, we can confirm that
AWore(ry, fim) = [(1 —nf) — ¢ (24)

by (17). Let g% = argming}zg Wova(g';m). Similarly to the above case, the optimal

solution g* satisfies the following:
¢'(—95) _ {ny (y 7’é f)7 (25)
& (—gi)+¢'(gh) L—c (y=1),
and the LHS of which actually exists by the assumption (14). We now prove
Wova(g;n) — Woval(g#;m) > 0. (26)

Recall that Wgya (18) is a convex combination of ¢, which is a convex function. Thus,
Wova is also a convex function. Therefore,

Wova(g;n) — Wova(g*;m) > VoWova(g*;n) (g — g*)

=" @' (65) — (1= )¢ (—g2)) (9 — 32
y#f

=0 (using (25))
+ [nfsb'(gf«) —(1— nf)sb’(—g?c)} (97 — g%)

= [mr¢/(6)) = (1 =)' (=%)] (91 — 5.
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The condition 1y < 7y~ < 1 — ¢ together with the assumption ¢’ (—g?c) < ¢ (—g?c) =
¢'(9) < 0 gives

nrd' (g}) — (1 =np)¢' (—g%) > (1= )¢/ (g}) — cd' (—g§) = 0.
Here, we used (25) in the last equality. In addition, since we have \11)71 (g) > 1 — cincases
(E)(F), together with \Iljil(gﬁ) = 1 — ¢, we get the inequality \Illjl(g) > \I/Jil(gﬁ). Note
that \11;1 is a non-decreasing function with respect to gy, so it holds that

gr = g]uc-
Therefore, we can conclude that (26) holds, which gives the following result:
AWova(gim) = inf AWova(g'sn)

9y
>C %y —(1—-0)° (by assumption (15))
> C AWoac(ry, fim)*. (by using (24))
Case (B):
In this case, we can confirm that
AWoae(ry, f3m) = 0y — 0y (27)

by (17). Again, we will prove (26) and utilize the property (25) of optimal solution g*. By
assumption ¢ < % and property Zy 1y = 1, we have 1y~ > 1 — ¢ > 7. This inequality

together with the assumption gzﬁ’(fg?c) < gb’(g]ﬁc) = ¢'(0) < 0 gives

npd' (g%) — (L—np)d'(—g}) > (1= )¢ (g%) — cd'(—g) = 0.
Here, we used (25) in the last equality. In addition, since we have \Iljil(g) > 1 — cincase
(B), together with \Iljil(gn) = 1 — ¢, we get the inequality \I/jil(g) > \Ilfl(gﬁ). Note that
\11;1 is a non-decreasing function with respect to g, so it holds that

gf ngc.

Therefore, following the similar arguments as before, we can conclude that (26) holds,
which gives the following result:

AWoval(g;n) > giILfa AWova(g;n)

’

f

>C |y —(1—0)° (by assumption (15))
> (2C) 75|y — ngl® (by assumption ¢ < 3)
> (20) 7 AWo.re(ry, fim)". (by using (27))
Therefore the proof is completed. O

A.2 Derivation of 6, C' and s in Table 1

We now derive 6, C' and s in Table 1. The derivation goes along a similar discussion as Zhang
[31], Yuan and Wegkamp [29], where they derived C' and s in binary classification with rejection.

Define gt = argming _y Wova (g;m), and g* = argming, Wova (g;n). Similarly to (22), we have

(b/(_g;') {773/ Y #vy),
= / (28)

¢(—gi)+e'(gl) l—c (¥ =y)
¢ (_gy/) =y (y/ e y) (29)

¢'(—g;) + &' (g5)
By recalling the expression of AWoya, we see

inf AWova(g;n) = Wova(g';n) — Wova(g*;m)

gy=0
=1y d(g}) + (1 = my)é(—gf) —ny¢(g;) — (1 = ny)é(~gy).  (30)
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A.2.1 Logistic loss

Observe that when we use logistic loss ¢(z) = log (1 + exp(—2z)),

1
¢'(—0) B ~ TFexp(—0) _ 1

(=) +¢'(0) - 1+ex£(70) - 1+e)1(p(0) 1+ exp(—0)
Thus, we have (14) by letting 8 = lo
is satisfied. By (28) and (29), we have g;; =0 = log % and g; = log v == Define the function
Q(t) = —tlogt — (1 —t)log(1 — ¢). Then it holds that

nf, AWoval(gin) = —nylog(l — ¢) — (1 —1y)log ¢ + ny logny + (1 — 1) log(1 — 1)

—(1—¢)log(1 —c¢) — clogc+ nylogn, + (1 —n,)log(l —ny)
+ (logc —log(1 — c)) (ny -(1- c))
=Q(1—¢)=Qny) + Q' (1 —c)(ny — (1 —0)).

By applying Taylor expansion to ) at ¢ = 1 — ¢, we know that there exists 7’ between 7, and 1 — ¢
so that

mf AWovalg;n) = Q(l - C) - Q(ny> + Q/<1 —c) (ny - (1 - C))

= @0y~ (- 0)’
(ny -(1- C))2

_ 1
S 21—
2
>2(n, —(1—0))7,
where the inequality follows from '(1 — ') <

»th—‘

A.2.2 Exponential loss

Observe that when we use exponential loss ¢(z) = exp(—z),

(=0 —exp(0) _ 1
& (—0)+¢'(0) — exp(@) —exp(—0) 1+exp(—20)
Thus, we have (14) by letting 6 =
satisfied. By (28) and (29), we have gy = 9 =3

Q(t) = 24/t(1 — t), then it holds that

g{/Il_f AWoval(g:m) WAl T —1y) \/ )
1—cc \/7 )(Uy—(l_c))

=Q(1 -0 -Qn) +Q(1 —C)(ny - (1 —C))-

Applying Taylor expansion to () at t = 1 — ¢, we know that there exists 7’ between 1, and 1 — ¢ so
that

*—1log

1—

lnf AWova(gin) = Q1 —¢) = Qny) + Q' (1 —¢)(n, — (1 —¢))

gy="0

2
2 2("7y - (1 - C)) )
where the inequality follows from 7/(1 — n’) <



A.2.3 Squared loss

Observe that when we use squared loss ¢(z) = (1 — z)2, it holds that

(-6 2(—60—-1 1
A G IR P
d(—=0)+¢'(0) 2(-0—-1)+20-1) 2
Thus, we have (14) by letting § = 1 — 2¢, which means that the requirement for ¢ in Theorem 7 is
satisfied. By (28) and (29), we have g; =60 =1-2cand g; = 2n, — 1. Substitute these values into
(30) gives

inf AWova(g;n) = 4(n, — (1 - ¢))”.

gy=9
A.2.4 Squared hinge loss

This is similar to the derivation of squared loss. Observe that when we use squared loss ¢(z) =
(1 — z)2, it holds that

@' (—0) —2(140)+ . (1 )
= =min< 1, ( =(0+1 .
F(O)+ 9@  —20+6), —20-0); 20V,
Thus, we have (14) by letting # = 1 — 2¢, which means that the requirement for ¢ in Theorem 7
is satisfied. By (28) and (29), we have g) = 0 = 1 — 2c and g;; = 27, — 1. Together with the

assumption ¢ < % it holds that

giH:f , AWoval(g;n)

=n,(1—g)3+ @ —ny)1+g)3 —n,(1—g0)% = (1—n)1+g0)%
— 40277y +4(1 - 0)2(1 —ny) —4ny(1 — ny)2 — 4172(1 —Ny)

=4(1 - 0)2 + 4771/(20 -1) - 4771/(1 - 77y)

=4(n, — (1-0))".

A.3 Proof of the estimation error bound of OVA loss

For the case where only finite samples are available, we can bound the estimation error with respect
to 0-1-c risk in the following way.

Let G be a family of functions g, : X — R. We denote by fthe minimizer over G of the empirical
OVArisk R(f) = L 3" | Lova(f;xi,y:), and its corresponding rejector (10) by T

Proposition 9 (Estimation error bound for OVA loss). Assume ¢ is Lipschitz-continuous with constant
Ly, and assume all functions in the model class G are bounded. Define My = Sup,ex 4eg ¢(g(w))
and let R, (G) be the Rademacher complexity of G for data of size n drawn from p(x). Then under
the assumption of Theorem 7, for any § > 0, it holds with probability at least 1 — § that

~ 2log 2\ °
ARO_l_c(rf, H< QC< inf  ARova(f)+8KLgR,(G)+ 4M, gﬁ)
919K €Y n

This proposition is straightforward from Theorem 7 and the standard argument regarding Rademacher
complexity [18].

Definition 10 (Rademacher Complexity [18]). Let Z1, ..., Z, be random variables drawn i.i.d. from
a probability distribution D, and H = {h : Z — R} be a family of measurable function. Then the
Rademacher complexity of H is defined as

n

1
Rn(H) = E E sup — oih(Z;
"= B Bon |30 7 2 THED |
where o1, . . ., 0, are Rademacher variables, which are independent uniform random variables taking

values in {—1,+1}.
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We first show the following lemmas. Define Hovya as

Hova = {(x,y) — Lovalg;x,y) | 91,...,9x € G}.
Lemma 11. Let R,,(Hova ) be the Rademacher complexity of Hova for S = {(xi,y:)}, from

p(x,y), and R, (G) be the Rademacher complexity of G for data of size n drawn from p(x). Then
we have R, (Hova) < 2K LR, (G).

Proof of Lemma 11. By definition, we can bound 2R,,(Hova ) as follows:

mn(,HOVA):IEm“EjU sup % Z i | ¢(gy. (1)) Z o(—
T g9k €O T (@ yes Yy
<E E s+ > 0y (@)
S 015.50n _gl,...,gKEQ n (@50 ES
(A)
TELE. | Si}ieg Yo ooy (gl

(z5,y:)ES Y #yi

(B)

where we utilized the sub-additivity of supremum. We shall bound the both terms above. By letting

o = 20—y,

(A)=E E

So01,...,0n

sup

91,9 €G T

Ly

(zi,yi) €S

— 1, we can bound the first term (A) as follows:

=E E sup Z mZQﬁgy (z:) a’+1)
S o100 | gy, ,qxeg (acL,yz)ES Y
<E E sup > O”U’Zd)gy =)
So1,on | g ,gxeg (wL yi)ES
+E E sup 2 i) dlol=)
S 01,..,0n g
g1,--9K € (:13¢7Jz)65 Y
—E E sup 2 o2 dloy(w) -
S 01,...,0n gi,-- ,gKeg (xi,y:)ES v
1
cxe s [t S et
T1s0n gy ggeG T (xi,y:)ES
= KRy (¢0G).

We utilized the sub-additivity again and in (31), we used the fact that «;0; has exactly the same
distribution as o;.

Similarly to term (A), the second term (B) can be bounded by KR, (¢ o G).

Consequently, we can bound the Rademacher complexity of Hoya as follows:
Rn(Hova) < 2KR, (00 G) < 2K LR, (G)
due to Talagrand’s contraction lemma.

Lemma 12. For any §, with probability at least 1 — 0,

‘ 8log %
sup .

Rova(g) — Rova(g)| < 4K LyR(G) + M,

n
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Proof of Lemma 12. We will only discuss a one-sided bound on sup, . g (EOVA(g) -
Rova (g)) that holds with probability at least 1 — g. The other side can be derived in a similar way.

To begin with, we first bound the change of sup,, ;. g (EOVA(g) — Rova(g)) when a sin-
gle entry z; = (x;,y;) of (z;,...,2,) is replaced with z; = (x},y.). Define A(z1,...,2,) =
SUp,, . geeg (Rova(g) — Rova (g)). Then it holds that

A2y ey Zige ey 2n) — A(21y 0o 2000 20)

y~

1 n
= sup inf — Lovalg;zj,y;) — E [Lovalgiz,y
91y 9K €G 915 9K €Y n; ( ERadV/ R ]) p(my)[ ( s Ly )]

)

1 1
—= E Loval(g'sxj,y;) — —Lovalg iz, y) + E  [Lovalg'sz,y)]
n . n p(z,y
Jje{1,....n}\ {7}

1 n
< sup o > Lovalgiz,y;) — p(fly) [Lova(g;z,y)]
=1 ’

1
—— > Lovalgimj,ys) — —Lovalg: @i, yi) +

E [£ ;
. | E )[ oval(g;z,y)]
J€{1,...,n}\{i}

p(®,y

1 1
= sup {ﬁov/x(g; x;,yi) — —Loval(g; i, yé)}
g1,--,9x€G LT n

- &gy, (@) + D d(— gy (@) — by (x) = D & — gy ()

N gi,...gx€G o2y vty
1 4My
== sup [0(gy(m:)) + O — gy () — gy (7)) — (= gy, (x)))] < —2,
N gi,...9x€G n
where we used the boundedness of the loss function.
Thus, we can apply McDiarmid’s inequality to get that with probability at least 1 — g,
~ ~ 8log %
sup  (Rova(g) — Rova(9)) <E| sup (Rova(g) — Rova(g))| + M,
g1,--,9K €EG gi,-.,9K €G n
Since Rova(g) = E [EOVA ()], thus by applying symmetrization [18], we get
E| sup (§OVA(Q) - ROVA(Q))] < 2R, (Hova) < 2KLyR,(G),
91,9k €Y
where the last line inequality follows from Lemma 11. O

Lastly, we present the proof for Proposition 9.

Proof of Proposition 9. To begin with, we split the excess risk into two parts: the estimation error
term and the approximation term as follow:

R@G) - R = (R(g) Y R(g)) + <g inf  R(g) — R*) .

91,9k €Y 159K €Y
estimation error approximation error
We focus on the estimation error. Therefore, we assume that for any € > 0, there exist g7, ..., 9% € G
such that
R(g°)= inf R(g)--ce.
g1,--,9K €G
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Calibration Function

—0.5 0.0 1.0
z

Figure 3: The comparison of the calibration function using the Cross Entropy loss. The blue line
corresponds to the case of ordinary classification, and the red line corresponds to the case of learning
with rejection, which is our framework. As we can see from the graph, both functions show similar
behavior near z ~ 0.

Using these notations, we can upper bound the estimation error as follows:

R(G)—- inf R
(g)—  inf  Rlg)

<2 sw_|R(g)-Rg)|+ (R@ - R(")
G1yees g €G

<2 sw_|Rig) - R(g)| (32)
G1y-ees g €G

[810g 2
< AKL4R(G) + M, (;g 5. (33)

where we used that E(ﬁ) < R(g°) by the definition of g in (32), and we used the result of Lemma 11
in (33). The above result together with Theorem 7 gives Proposition 9. O

A.4 Proof of Theorem 8

To begin with, we will use the following theorem, which is proved in Pires and Szepesvari [19].
Theorem 13 (Pires and Szepesvari [19]). Define the function {cg : R — Rxq as

écr(z) = %[(1 + 2)log(1 + z) + (1 — 2) log(1 — 2)].

Then for all f, we have
éce(ARoa(f)) < ARcgr(g).

To compare Theorem 8 with Theorem 13, let us apply Taylor expansion to calibration function {cg:

1 1 1 1
écr(z) = §z2 + ﬁz‘l + %zG +0(2%) > 522.

As we can see from the above, Theorem 8 provides a loosened excess risk bound compared to
Theorem 13. Yet, we can observe that the behavior of £c, is similar to that of 32% when z € [0,1]
(see also Figure 3), thus gives similar calibration performance.

Now we will prove Theorem 8.
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Proof. The pointwise risk of CE loss is expressed as

Wee(g;n) Znygy +log (Z exp(gy ) : (34)

Similarly to the proof of Theorem 7, the main focus in this proof is to show the following inequality:

1
§AW0-1-c(7’f, fim)? < AWcg(g;n).

Note that when we use cross entropy loss, we can rewrite the surrogate excess risk using KL
divergence Dxr(- || -)

AWeg(g;n) = — Z ny9y + log <Z exp(gy)> + Z ny log 1y (by definition (34))

onylog\Il +Znylogny

Y

= Zny log ) =Dx(n || ¥~ '(g))

Now we us Table 5 again. Note that \I/f(m) = max,cy U, (x) if we use proper composite loss.

Cases (A)(G)(H):
In this case, we can confirm that AWy.i_.(r¢, f;m) = 0 by (17) since (ry, f) makes a
correct prediction. Thus, it holds that

AWoie(ry, f;m) = 0 < V/2AWck(g;n).
Cases (C)(D):

In this case, we can confirm that AWo.1..(r¢, ;1) = ¢ — (1 — ny~) by (17), thus, we can
lower bound surrogate excess risk as follows:

AWck(g;m) = Dku(n | ' (g))

2
1
>3 (Z Iy — W, 1(g)‘) (Pinsker’s inequality)
y
1 _ 2
1
> 5 Iy = (1=c)f* (35)
1

= 5 AW (ry, fim)?,

where in (35), we used the fact that 7~ > 1 — c in cases (C)(D), and \I/;} (g9) < e (g) by
max, U, '(g) =¥;'(g) <1—c
Cases (E)(F):

In this case, we can confirm that AWo.1..(r¢, f;m) = |(1 — n¢) — ¢| by (17), thus, similar
to the case above, we can lower bound surrogate excess risk as follows:

AWceg(gin) = Dxi(n | €' (g))

2
1
25 (Zy: Iny — ¥, ' (g) |> (Pinsker’s inequality)
1 - 2
> B ’nf _‘ij (9)’
1 —_ .
> 3 g — (1 - C)|2 (byny <l-c< \I/fl(g) in cases (E)(F))

1
= §AW0-1-c(7“f7f§77)2-
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Case (B):
This case reduces to the excess risk bound in the ordinary classification, which enables us to
utilize the result of Theorem 13. Note that AWo_1_c(7¢, f; 1) = AWoi(fim) = 1y — 1
by (17). Thus, we can lower bound AW¢g(g;n) as follows:

AWce(g;n) = Ece(AWor(fim)) = éce(AWoac(ry, fim)) = %AWO 1e(ry, fim)%,
2

where in the last inequality, we used the property {cp(z) > 522,

Combining the above analysis completes the proof. [

B Analysis for classifier-rejector approach

B.1 Proof of Theorem 4

C rfl C e . . . .
Define hy(r) = W. Note that the minimizer TI] in (3) satisfies the first-order optimality
condition
hn(rl) = 0. (36)
We first consider the case max, 7, < 1 —¢, i.e., sign[r*] = —1. Recall that W is defined as
W (r(x), f(z) =Y ny(@)L(r, f;2,y)
yeY

is a convex combination of £, which is a convex function of class C'!. Thus, ha (r) is a non-decreasing
function with respect to . Since we assumed that rT is rejection-calibrated, we need sign[r;] =
sign[r*] = —1, which implies ril < 0. Therefore we have h,,(0) > 0 by the monotonicity and (36).
Since this argument holds for any 7 such that max,, 7, < 1—c, we have sup,. o, 1y, <1-c hy(0) > 0.
For the case max, 7, > 1 — ¢ we have infy). max, n,>1-c Iy (0) < 0.

Combining the above analysis, we can conclude that r is rejection-calibrated only if
sup hyp(0) <0< inf hyp(0). 37

7: maxy 7y >1—c 7: maxy Ny <1—c
The necessary conditions (6) (left) and (6) (right) are then straightforward, since restricting constraints
does not make the supremum larger and the infimum smaller. We further show in Appendix B.4 that
(37) is also the sufficient condition for rejection calibration. O]

B.2 Upper bounds of 0-1-c loss

We first present general upper bounds of 0-1-c loss in the multiclass setting.

Lemma 14 (Upper bounds for 0-1-c loss). Let ¢(z), (%), ¢1(2),12(z) be convex functions that
bound 1,<q) from above, and «, 3 be the positive constants. Then, Additive Pairwise Comparison
Loss (APC loss) Lapc and Multiplicative Pairwise Comparison Loss (MPC loss) Lyipc given below
are upper bounds of 0-1-c loss, where

Lavc(r fiw,y) = > 6(algy(@) - gy (@) = r(@))) + et (Br(@)),
y'#y

Lawpe(r, fim,y) = o(algy %«mwwuﬂw@»+amwmw»
y'#y

Proof. Define the margin function: m(f(x),y) = gy(x) — max, -+, g, (). Note that the margin
function satisfies

Lif(@)2y) < Lpm(f(a))<0)s

o(am(f@).)) < D o(algy @) - g (@))).

y'#y
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Using these properties, we can bound L 1. from above as follows:

Loa-e(r, f32,9) < Lim(f(@),m)<0] Lir(@)>0] + cLir@)<o]
= Liam(t@).p) <01 Ljar(@)>0) + cLsr(z)<o]
< o(am (f(2),y) )w1<ar<w>> + cyn(Br()
< 3 o(algy (@) - gy (@) ) valar(@)) + v (Br())

y'#y
= Lypc(r, [52,y).

Lore(r, f32,Y) < Lpm(s(@),1)<0) Lr(2)>0] + CLir()<o]
< (s (@).y) <0l L—r(@)<o] T L) <o)
= Lmax(m(f(2).y),~r())<0] T CLir(z)<o]
S Ut mf@)y)-r@)<o] T i@ <ol
= La(m(f(@).y)—r(@)<0] T Lipr@)<o]
< o(a(m(f(@),y) - (@) ) + c(Br(z))
< Lapc(r, fiz,y).
O

In terms of optimization, £ pc is convex with respect to (r, f), while Lypc is non-convex since it
contains the multiplication of two convex functions, which is not necessarily convex. However, we
can easily confirm that Lypc is biconvex, that is, if we fix either r or f, then this function is convex
with respect to the other.

B.3 Order-preserving property
We first show that these losses in Lemma 14 have the order-preserving property which is defined as
follows.

Definition 15 (Order-preserving property [30]). A loss L is order-preserving if, for all fixed n), its
pointwise risk W has a minimizer g* € Q such that n; < n; = g; < gj. Moreover, the loss L is
strictly order-preserving if the minimizer g* satisfies n; < n; = g; < gj.

It is known that the order-preserving property is a sufficient condition for classification calibration [19].
Therefore, showing the order-preserving property of a loss function guarantees classification calibra-
tion.

Again, we denote by (TT, f T) the minimizer of the above risks over all measurable functions, and
(rI,, f;f,) the minimizer of the corresponding pointwise risks over real space:

(rf,fT) = argmin R(r, f),

r, f:measurable

(ri, f3) = argmin W(r, f;n),
reR, geRK

where we consider APC loss and MPC loss for the pointwise risk W, which are expressed as

Wapc(r, fim) = Zny > o(aloy =gy = 1)) | +ew(8r).

y'#y

Wapc(r, fim) Zny Z ¢( 91/))1#1(—047“) + e (Br).

y'#y

The following theorems show that APC loss an MPC loss have order-preserving property.
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Theorem 16 (Order-preserving property for Lapc). Lapc is order-preserving if ¢ is a non-
increasing function such that ¢(z — arf)) < ¢(—z — ar}) (z > 0) holds for all n € A Moreover,

Lapc is strictly order-preserving if ¢ is differentiable and ¢’(—a7“j7) < 0 holds forallm € Ak.

Theorem 17 (Order-preserving property for Lyipc). Lvpc is order-preserving if ¢ is a non-
increasing function such that ¢(z) < ¢(—z) holds for all z > 0. Moreover, Lyipc is strictly
order-preserving if ¢ is differentiable and ¢’ (0) < 0.

Proof. We will only prove Theorem 16. The proof of Theorem 17 proceeds along the same line as
the proof of Theorem 16 and is thus omitted.

We can fix i = 1, 7 = 2 without loss of generality. Define g;,, & as

g2 (k=1
g’:],k = g'r],l (k = 2)7
gih . (otherwise).

+

1 > 9:;,2- Then we have

We now prove the first part by contradiction. Assume g

Wapc(rl, frim) — Wapc(rh, fi:m)

Zny Z¢>( Gy = Iy =78 | = Dy Z¢( ~ghy =)

y'#y Yy y'#y
- Z My Z ¢(a(g;]7y — Iy TL)) - Z My Z ¢)( gny TII))
y=1,2 y'#y y=1,2 y' £y

(n2 —m) [¢(04(QI, 1~ 9:;,2 - r%)) - ¢(a(9j7,2 - 91;71 - TI}D

+ Z <¢) g,, 1 gn y’ TI])) o qﬁ(a(giﬂ o gil,y/ B ij)))]

y'>2

< (n2 —m)[0+0] =0,

which contradicts the optimality of fj,. Therefore we must have 91,,1 < giﬂ, which proves the first
part.

Next we assume ¢ is differentiable. In this case, the first-order optimality condition gives

n Z ¢ (a g,, 1 gn Y’ Z My ® gn Y’ 911,1 - T;)) (38)
y'ey y'ey

"2 Z ¢ (a gn Yy Z My ¢ gn y 917:2 - r:f])) (39)
Y'Y y' €y

by taking the derivative of Wapc (7, f; m) with respect to g1 and go, and then substituting ( f ‘L)

for (r, f). We again prove the second part by contradiction. Assume gT 1= gl; 9= gJr In thls case,

the RHSs of (38) and (39) are the same, which gives
m D ¢ (aloh =gy —rh) =m D ¢ (aleh =g, =),
y' ey y' ey
or equivalently,

(m —n2) Z ¢ (a g77 ' r;r])) =0. (40)
y'ey
Note that /.y, ¢’ (o (gn - gn v~ 7’};)) < 2(;5/(,0”1?) < 0 holds since ¢ is a non-increasing

function. Therefore we must have 1; = 1y for (40) to hold. However, this contradicts the assumption

n1 < 12, therefore, we have g;r,)l #* 917,2- Together with the fact of the first part, we have gj%l < 92,2
O

in this case.
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To compute rI, we need true class distribution 7, which is unknown to the learner. Thus, it is

difficult to verify the requirement ¢(z — 047"1]) < p(—2z — 047"1]) (z > 0) for Lopc. However, the
following corollary, which immediately follows from Theorems 16 and 17, implies that logistic loss
and exponential loss are good candidates for ¢ in Lapc and Lypc, respectively.

Corollary 18 (Strictly order-preserving property for Lapc, Lmpc). Lapc and Lyipe are strictly
order-preserving if ¢ is a differentiable function such that ¢'(z) < 0 holds for all z € R.

B.4 Rejection calibration

In the following, we give a simple example to illustrate the intuition of Theorem 4 and Corollary 5.
Throughout this section, we consider APC loss with exponential loss for ¢ and ).

Lapc(r, fix,y) = Z exp(a(r(a:) + gy (x) — gy(w))) + cexp(—pr(x)),

y'#y
Wara(r, fim) = ny | D exp (Oé(?" + gy — gy)) + cexp(—fr).
y y'#y

Note that Lyipc = Lapc When we use exponential loss for binary losses.

Binary Case In the binary case, Lapc and Wpc are expressed as

Lapc(r, f2,y) = exp [a(r(x) — yf(x))] + cexp [ - fr(z)],
Wapc(r, f;m) =nyexp [a(r — f)] + n-exp [a(r + f)] + cexp(—pr),

which coincide with the losses defined in Cortes et al. [9]. Since ff, is the minimizer of Wpc, by
taking the derivative of Wpc with respect to f and setting it to zero, we get f;; = i log Z—f Thus,

OWarc(r.flm)

5 can be expressed as follows:

OWapc(r, f;m)

o = amny exp [a(r — f:,)] + an_ exp [a(r + f;’,)] — cfBexp(—pr)

= 2a\/myn—exp(ar) — cBexp(—pr).

Hence, we have

OWapc(r, f;
OWarc(r, fi;m) sup 20/ — cf = 200/c(1 — ¢) — b,

sup =
maxy 7y >1—c or r—0 maxy ny=1—c
6WA c\r t.
inf M = inf 200/M3n— — ¢S =2a/c(1l — ¢) — ¢f.
maxy 17y =1—c or 0 maxy ny=1-—c
r=

Using the result of Theorem 4, we can confirm that rejection calibration holds if and only if

20y/c(l—¢c)—cB=0 & §=2 1_0, (41)

c

which coincides with the result of Theorem 1 of Cortes et al. [9]. This suggests that Theorem 4 is a
general extension of their result.

Multiclass case Next, we consider the multiclass case, i.e., the case where K > 2. We assume
that ¢ < %, otherwise, even data points with low confidence will also be accepted. Since ng is the
minimizer of Wapc, by taking the derivative of W pc with respect to g and setting it to zero, we
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. o fts
getgy , — gj,y = log . Thus W can be calculated as follows:
OWapo(r, f;m)
—a = = aexp(ar) Z My Z exp [ — g;r]y)} — cBexp(—pr)
Y 7Y’
= aexp(ar) » > /iy — cBexp(—pr)
Y oy'Fy

= aexp(ar Z Z\/Uyny ny | — cBexp(—pr)

Y

2
= aexp(ar) <Z \/7Ty> — cBexp(—pr),

where in the last line we used the condition Zy 1y = 1. We next see how Egs. (6) (left) and (6)
(right) behave. As for the Eq. (6) (left), we have

OWapc(r, fi;m)

2
sup = sup « Z Vig| —1] —cB
max, ny=1—c or r—0 max, ny=1—c "
c 2
=al(V]l—c+ (K-1)) =1)—¢p
K-1
=« <(K —2)c+ 2/ (K —1)e(1 — c)) —cp.
Note that since ¢ < %, the supremum is satisfied when max, 1, = 1 — ¢, and 1,y = %5 for the
others. The above calculation gives the condition
1 —
Bsk—2) 12k —1)i=C. 42)
o c
When K = 2, the RHS of (42) is the same as RHS of (41). As for Eq. (6) (right), we get
2
. OWarc(0, f1;m) . _
maxylf]lyfgl—c or - maxylf]tfgl—c @ Z My -1 B CB
y
=2av/c(1 —¢) — ¢B.
Note that since ¢ < 2, the infimum is satisfied when max, 1, = 1 — ¢, and ,y = ¢, and 7, = 0 for
the others. The above calculation gives the condition:
1—
By ° (43)
o c

Again, when K = 2, the RHS of (43) is the same as RHS of (41).

However, when we deal with multiclass classification, we can easily confirm that (42) and (43) cannot
simultaneously be satisfied, since

1 1
K —2)+2¢/(K —1) ‘

The intuition of this result is that we cannot achieve rejection calibration in multiclass setting, using

classifier-rejector approach. More precisely, if we set hyper-parameters « and 3 to satisfy (42), we

can make FR to zero, but we cannot make FA to zero. Conversely, if we set hyper-parameters « and

5 to satisfy (43), we can make FA to zero, but we cannot make FR to zero.

For the logistic loss, we get g}; vy~ gi, v =
; , Ny

for the proof of the exponential loss, the fallure result of the logistic loss can be obtained.

1 log . After applying the same procedure as we did
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C Experiment details

Cl1

C.2

Synthetic datasets
e Goal: To see the calibration result of proposed method.
e Datasets:

— We randomly select 8 two-dimensional vectors pi1, ..., s € R2. These 8 vectors
correspond to 8 classes.

— Each sample (, y) is sampled from p(y)p(x|y), where p(y) is a uniform distribution
p(y) = 3. and p(x|y) is a Gaussian distribution N (p,,0.215). Here, Iy is a 2 x 2
identity matrix.

- (# training data): {20, 50,100, 200, 500, 1000, 1500, 2000, 5000, 10000} for each
class.

e Rejection Cost: ¢ € {0.05,0.1,0.2,0.3,0.4}.
e Methods:

— APC loss (8) with logistic loss and exponential loss. We set a = 1 for simplicity and
B is set to satisfy (6) (left) and (6) (right) respectively (APC+log+acc, APC+log+rej,
APC+exp+acc, APC+exp+rej).

— MPC loss (7) with logistic loss (MPC+log). Note that MPC loss with exponential loss
reduces to APC+exp. We set a = 1 for simplicity and f3 is set to satisfy (6) (left) and
(6) (right) respectively (MPC+log+acc, MPC+log+rej).

— OVA loss with logistic loss and exponential loss (OVA+log, OVA+exp)

— CE loss (CE)

e Hyper-parameter Selection:

— /5 regularization, where weight decays are chosen from {10=7,107%.10*}.

— We did 80-20 split for each training data for validation for hyper-parameter tuning.

— Using a different random partition, we repeated the experiments three times.

e Optimization:
— AMSGRAD with 100 epochs.
e Model:

— one-hidden-layer neural network (d-3-1) with rectified linear units (ReLU) as activation

functions.
Benchmark datasets

e Goal: To see the empirical performance including the existing method.

e Datasets: see Table 3. They can all be downloaded from https://archive.ics.
uci.edu/ml/ or https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/multiclass.html.

e Rejection Cost: ¢ € {0.05,0.1,0.2,0.3,0.4}.

e Methods:

— APC loss (8) with logistic loss and exponential loss (APC+log, APC+exp).

— MPC loss (7) with logistic loss (MPC+log). Note that MPC loss with exponential loss
reduces to APC+exp.

— OVA loss with logistic loss and exponential loss (OVA+log, OVA+exp)
— CE loss (CE)
— existing method in Ramaswamy et al. [20] (OVA+hin)

e Hyper-parameter Selection:

— /o regularization, where weight decays are chosen from {10=7,107%.101}.

— For APC+log, APC+exp, MPC+log, we need to decide the parameter o and 5. We
set « = 1. For g, three candidates are chosen from (6) (left), (6) (right) and the mean
value of these values.
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— For OVA+hin, five candidates of threshold parameter are chosen from
{-0.95,-0.5,0,0.5,0.95}.

— We did 80-20 split for each training data for validation for hyper-parameter tuning.

— Using a different random partition, we repeated the experiments ten times.

e Optimization:
— AMSGRAD with 150 epochs.
e Model:

— one-hidden-layer neural network (d-50-1) with rectified linear units (ReLU) as activa-
tion functions.
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Figure 4: Average 0-1-c risk on the test set as a function of the rejection cost on benchmark datasets
(full version).
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Table 6: Mean and standard deviation of 0-1-c risks for 10 trials. Best and equivalent methods (with
5% t-test) are shown in bold face.

dataset [ c [ APC+log APC+exp MPC+log OVA+log OVA+exp CE OVA-+hin
005 | 0045 0.038 0.044 0.043 0.035 0.036 0.042
' (0.0023)  (0.0081)  (0.0101)  (0.0008)  (0.0030)  (0.0007)  (0.0049)
o1 0.074 0.073 0.07 0.074 0.064 0.063 0.085
' (0.0038)  (0.0171)  (0.0092)  (0.0036)  (0.0033)  (0.0032)  (0.0060)
vehicle | 02 0.12 0.117 0.125 0.117 0.108 0.110 0.147
0.0044)  (0.0108)  (0.0142)  (0.0039)  (0.0037)  (0.0020)  (0.0089)
03 0.157 0.157 0.163 0.156 0.152 0.148 0.184
‘ (0.0068)  (0.0076)  (0.0150)  (0.0058)  (0.0106)  (0.0046)  (0.0088)
04 0.182 0.205 0.195 0.205 0.193 0.182 0211
‘ 0.0130)  (0.0182)  (0.0118)  (0.0092)  (0.0058)  (0.0057)  (0.0073)
005 | 0-030 0.039 0.039 0.030 0.030 0.030 0.032
: 0.0013)  (0.0052)  (0.0070)  (0.0011)  (0.0011)  (0.0006)  (0.0003)
o1 0.052 0.057 0.063 0.049 0.050 0.049 0.057
: 0.0013)  (0.0041)  (0.0069)  (0.0014)  (0.0008)  (0.0009)  (0.002)
y 0a 0.087 0.093 0.094 0.081 0.081 0.078 0.080
salimage | L. (0.0027)  (0.0055)  (0.0048)  (0.0016)  (0.0029)  (0.0009)  (0.0012)
03 0.104 0.111 0.112 0.102 0.102 0.097 0.103
: (0.0037)  (0.0048)  (0.0033)  (0.0026)  (0.0028)  (0.0013)  (0.0010)
04 0.115 0.113 0.116 0.114 0.116 0.107 0.122
: (0.0036)  (0.0030)  (0.0026)  (0.0036)  (0.0033)  (0.0025)  (0.0019)
005 | 0050 0.057 0.052 0.050 0.051 0.050 0.050
. (0.0000)  (0.0109)  (0.0023)  (0.0000)  (0.0009)  (0.0000)  (0.0002)
o1 0.100 0.104 0.102 0.100 0.102 0.100 0.100
. (0.0000)  (0.0071)  (0.0035)  (0.0006)  (0.0011)  (0.0006)  (0.0002)
0o 0.200 0222 0.200 0.201 0.201 0.200 0.200
yeast : (0.0000)  (0.0297)  (0.0001)  (0.0009)  (0.0023)  (0.0013)  (0.0007)
03 0.300 0317 0.299 0.297 0.298 0.292 0.295
. (0.0000)  (0.0214)  (0.0009)  (0.0020)  (0.0033)  (0.0020)  (0.0036)
04 0.400 0.410 0412 0.388 0.395 0.374 0.372
: (0.0009)  (0.0104)  (0.0117)  (0.0031)  (0.0050)  (0.0029)  (0.0046)
005 | 0052 0.057 0.059 0.055 0.056 0.056 0.050
: (0.0007)  (0.0016)  (0.0012)  (0.0012)  (0.0015)  (0.0018)  (0.0001)
o1 0.107 0.112 0.114 0.110 0.114 0.111 0.102
: (0.0014)  (0.0046)  (0.0034)  (0.0019)  (0.0035)  (0.0034)  (0.0005)
. 0a 0211 0210 0216 0210 0216 0.208 0.196
coviype | ©- (0.0039)  (0.0059)  (0.0061)  (0.0028)  (0.0070)  (0.0064)  (0.0011)
03 0.295 0.287 0.292 0.293 0.300 0.285 0.287
: (0.0024)  (0.0046)  (0.0041)  (0.0046)  (0.0090)  (0.0090)  (0.0015)
04 0.349 0.364 0.366 0353 0.360 0.339 0373
: 0.0047)  (0.0123)  (0.0147)  (0.0063)  (0.0113)  (0.0117)  (0.002)
005 | 0040 0.038 0.033 0.041 0.036 0.032 0.041
. (0.0013)  (0.0015)  (0.0013)  (0.0007)  (0.0010)  (0.0008)  (0.0007)
o1 0.067 0.066 0.057 0.071 0.064 0.054 0.080
' 0.0024)  (0.0019)  (0.0028)  (0.0011)  (0.0015)  (0.0019)  (0.0018)
etter | 02 0.103 0.109 0.093 0.118 0.110 0.083 0.146
(0.0035)  (0.0025)  (0.0045)  (0.0018)  (0.0028)  (0.0018)  (0.0046)
03 0.131 0.148 0.121 0.154 0.143 0.105 0.191
. 0.0094)  (0.0064)  (0.0041)  (0.0024)  (0.0032)  (0.0016)  (0.0078)
ol 0.149 0.166 0.148 0.179 0.168 0.120 0214
: (0.0080)  (0.0076)  (0.0097)  (0.0033)  (0.0036)  (0.0021)  (0.0094)
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Table 7: Mean and standard deviation of accuracy on non rejected data for 10 trials. “-" corresponds
to the case where all the test data samples are rejected.
dataset [ ¢ [ APC+log APC+exp MPC+log OVA+log  OVA+exp CE OVA-+hin
0.05 - 0.981 0.966 1.000 0.991 1.000 0.996
: (-) 0.0204)  (0.0231)  (0.0000)  (0.0089)  (0.0000)  (0.0111)
o1 1.000 0.962 0.958 0.939 0.081 0.990 0.947
: (0.0000)  (0.0348)  (0.0209)  (0.0115)  (0.0064)  (0.0081)  (0.0282)
vehicle | 0.2 0.984 0.937 0.924 0.979 0972 0.974 0.964
(0.0188)  (0.0289)  (0.0301)  (0.0072)  (0.0044)  (0.0005)  (0.0535)
03 0.946 0.905 0.894 0.960 0.945 0.959 0.941
: (0.0250)  (0.0195)  (0.0384)  (0.0093)  (0.0198)  (0.0073)  (0.0265)
04 0.891 0.831 0.853 0.902 0.904 0917 0.887
: (0.0288)  (0.0543)  (0.0418)  (0.0164)  (0.0107)  (0.0087)  (0.0375)
005 | 0991 0.973 0.972 0.987 0.982 0.9%3 0.995
: (0.0025)  (0.0148)  (0.0141)  (0.0014)  (0.0020)  (0.0011)  (0.0010)
o1 0.975 0.966 0.957 0.930 0.973 0.975 0.974
: (0.0034)  (0.0095)  (0.0170)  (0.0023)  (0.0010)  (0.0015)  (0.0093)
. 0.950 0.930 0.926 0.962 0.954 0.957 0.965
satimage | 021 00102)  (0.0117)  (0.0119)  (0.0022)  (0.0043)  (0.0013)  (0.0018)
03 0.929 0.904 0.905 0.944 0.935 0.938 0.952
: (0.0055)  (0.0196)  (0.0153)  (0.0031)  (0.0023)  (0.0020)  (0.0013)
04 0915 0.890 0.890 0.922 0915 0918 0.933
: (0.0066)  (0.0049)  (0.0109)  (0.0034)  (0.0029)  (0.0023)  (0.0028)
0051 () ) (-) ) (-) ) ()
o1 - - - - 0.593 - -
) (-) (-) (-) (-) (0.2699) (-) (-)
] 02 - - - - 0.742 0.806 -
yeast | O (-) (-) (-) (-)  (0.1538)  (0.0615)  (-)
03 - - - 0.822 0.733 0.805 -
: (-) (-) (-) (0.0780)  (0.0577)  (0.0301) (-)
04 - - - 0.750 0.630 0.766 0.760
: (-) (-) (-) (0.0393)  (0.0353)  (0.0169)  (0.0394)
0.05 | 0795 0.797 0.798 0.821 0.803 0.820 0.836
: (0.0205)  (0.0764)  (0.0169)  (0.0267)  (0.0313)  (0.0321)  (0.0314)
o1 0.765 0.806 0.793 0.781 0.767 0.796 0812
: (0.0176)  (0.0177)  (0.0185)  (0.0200)  (0.0375)  (0.0285)  (0.0216)
0.740 0.759 0.738 0.749 0.732 0.771 0.850
coviype | 0.2 | 10181)  (0.0185)  (0.0102) (0.0135) (0.0317)  (0.0235)  (0.0161)
03 0.719 0.743 0.722 0.719 0.699 0.733 0.795
: (0.0115)  (0.0156)  (0.0116)  (0.0126)  (0.0231)  (0.0204)  (0.0133)
04 0.698 0.638 0.649 0.637 0.669 0.694 0.768
: (0.0134)  (0.0128)  (0.0340)  (0.0109)  (0.0183)  (0.0180)  (0.0135)
0.05 | 0998 0.936 0.986 0.996 0.994 0.998 0.996
: (0.0010)  (0.0046)  (0.0021)  (0.0015)  (0.0019)  (0.0008)  (0.0021)
o1 0.993 0.978 0.980 0.994 0.986 0.994 0.963
: (0.0013)  (0.0045)  (0.0034)  (0.0014)  (0.0019)  (0.0015)  (0.0044)
eter | 02 0.979 0.966 0.969 0.933 0.968 0.984 0913
: 0.0027)  (0.0049)  (0.0046)  (0.0015)  (0.0019)  (0.0014)  (0.0227)
03 0.969 0.948 0.961 0.966 0.950 0.969 0.942
: (0.0054)  (0.0355)  (0.0038)  (0.0025)  (0.0023)  (0.0024)  (0.0446)
04 0.952 0.852 0.946 0.946 0.930 0.949 0.892
: (0.0051)  (0.0379)  (0.0383)  (0.0023)  (0.0027)  (0.0026)  (0.0484)

30



Table 8: Mean and standard deviation of rejection ratio (the ratio of rejected data samples over whole
test data) for 10 trials.

dataset [ ¢ | APC+log APC+exp MPC+log  OVA+log  OVA+exp CE OVA-+hin
0.05 | 0909 0.605 0.570 0.868 0.623 0.721 0.825
(0.0460)  (0.0486)  (0.0400)  (0.0156)  (0.0179)  (0.0137)  (0.0914)
o1 0.740 0.525 0.469 0.708 0.556 0.590 0.567
: (0.0383)  (0.0812)  (0.0465)  (0.0271)  (0.0129)  (0.0105)  (0.1859)
vehicle | 02 0.564 0.381 0374 0.538 0.466 0.483 0.620
(0.0365)  (0.0842)  (0.0852)  (0.0131)  (0.0224)  (0.0098)  (0.1821)
03 0.410 0.299 0.276 0.447 0.396 0412 0512
. (0.0633)  (0.0616)  (0.0841)  (0.0080)  (0.0200)  (0.0149)  (0.0535)
s 0.247 0.123 0.173 0353 0321 0313 0332
. 0.0450)  (0.1347)  (0.1082)  (0.0127)  (0.0126)  (0.0092)  (0.0839)
005 | 0304 0.428 0411 0.462 0.385 0.400 0.603
: 0.0359)  (0.1361)  (0.1312)  (0.0125)  (0.0105)  (0.0125)  (0.0060)
o1 0.360 0347 0314 0357 0311 0313 0.409
: (0.0245)  (0.0466)  (0.0981)  (0.0050)  (0.0065)  (0.0082)  (0.0781)
. 0.245 0.173 0.158 0.264 0.228 0.221 0275
satimage | 0.2 1 00407)  (0.0432)  (0.0560)  (0.0032)  (0.0094)  (0.0075)  (0.0042)
03 0.142 0.069 0.074 0.187 0.155 0.145 0219
' 0.0247)  (0.0679)  (0.0609)  (0.0050)  (0.0077)  (0.0079)  (0.0037)
04 0.094 0.011 0.020 0.113 0.096 0.078 0.166
: 0.0221)  (0.0090)  (0.0301)  (0.0030)  (0.0051)  (0.0042)  (0.0066)
0.05 | 1.000 0.970 0.985 1.000 0.999 1.000 0.998
. (0.0000)  (0.0441)  (0.0134)  (0.0000)  (0.0010)  (0.0000)  (0.0036)
o1 1.000 0.971 0.982 0.999 0.995 0.999 0.999
‘ (0.0000)  (0.0265)  (0.0224)  (0.0010)  (0.0026)  (0.0019)  (0.0025)
1.000 0.879 0.999 0.992 0.977 0.979 0.994
yeast | 02 1 )0000)  (0.1466)  (0.0025)  (0.0039)  (0.0062)  (0.0055)  (0.0116)
03 1,000 0.858 0.996 0.974 0.931 0.918 0.950
‘ (0.0000)  (0.1741)  (0.004)  (0.0088)  (0.0105)  (0.0068)  (0.0271)
04 0.998 0.581 0.593 0.919 0.843 0.845 0.816
: (0.0068)  (0.3448)  (0.3394)  (0.0135)  (0.0197)  (0.0158)  (0.0434)
005 | 0985 0.950 0.943 0.964 0.957 0.955 0.995
: 0.0025)  (0.0194)  (0.0102)  (0.0037)  (0.0059)  (0.0051)  (0.0009)
o1 0.947 0.877 0.866 0913 0.895 0.892 0.982
: 0.0104)  (0.0304)  (0.0188)  (0.0062)  (0.0132)  (0.0073)  (0.0019)
. 0a 0.816 0.762 0.736 0.793 0.759 0.733 0.924
covtype | ©- 0.0293)  (0.0426)  (0.0747)  (0.0098)  (0.0238)  (0.0136)  (0.0072)
03 0.671 0.688 0.614 0.641 0.600 0.553 0.860
: (0.0657)  (0.0328)  (0.0562)  (0.0141)  (0.0344)  (0.0141)  (0.007)
04 0.470 0.031 0.156 0.457 0.421 0.346 0.839
: 0.0647)  (0.0091)  (0.2154)  (0.0163)  (0.0391)  (0.0120)  (0.0072)
005 | 0792 0.660 0.538 0.802 0.682 0.628 0.810
. (0.0265)  (0.0245)  (0.0333)  (0.0107)  (0.0119)  (0.0180)  (0.0192)
o1 0.646 0.571 0.460 0.695 0.585 0.506 0.677
: (0.0283)  (0.0291)  (0.0475)  (0.0103)  (0.0130)  (0.0164)  (0.0210)
etter | 02 0.461 0.45T 0.366 0.552 0.463 0.365 0.507
0.0251)  (0.0205)  (0.0387)  (0.0076)  (0.0123)  (0.0123)  (0.0804)
03 0371 0.369 0316 0.451 0372 0273 0.528
. (0.0444)  (0.1188)  (0.0218)  (0.0063)  (0.0101)  (0.0091)  (0.1163)
04 0.286 0.055 0262 0363 0.295 0.198 0.346
: (0.0280)  (0.1173)  (0.0785)  (0.0075)  (0.0112)  (0.0078)  (0.1134)
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