
A Proofs

Table 5: Cases we discuss in the proofs of Theorems 7 and 8.

H
HHHH

Ψf Ψ−1f (g) > 1− c Ψ−1f (g) ≤ 1− c

ηy∗
H
HHHH

f = y∗ f 6= y∗ f = y∗ f 6= y∗

ηy∗ > 1− c (A) (B) (C) (D)
ηy∗ ≤ 1− c (E) (F) (G) (H)

To begin with, define the excess pointwise 0-1-c risk as

∆W0-1-c(r, f ;η) = W0-1-c(r, f ;η)−min

{
c, 1−max

y∈Y
ηy

}
. (17)

A.1 Proof of Theorem 7

The pointwise risk of OVA loss is expressed as

WOVA(g;η) =
∑
y

[
ηyφ(gy) + (1− ηy)φ(−gy)

]
. (18)

We write the the excess pointwise risk of OVA loss as

∆WOVA(f ;η) = WOVA(f ;η)− inf
g∈RK

WOVA(f ;η).

The main focus of this proof is to show the following inequality:

∆W0-1-c(r, f ;η) ≤ 2C∆WOVA(g;η)
1
s , (19)

since if the above inequality holds, then Ineq. (16) can be derived as follows:

∆R0-1-c(rf , f) = E
x∼p(x)

[
∆W0-1-c

(
rf (x), f(x);η(x)

)]
≤ E
x∼p(x)

[
2C∆WOVA

(
g(x);η(x)

) 1
s

]
≤ 2C E

x∼p(x)

[
∆WOVA

(
g(x);η(x)

)] 1
s (20)

≤ 2CROVA(g)
1
s ,

where we used Jensen’s inequality in (20). To prove Ineq. (19), we need to consider the different
cases with respect to η and Ψ(g), which is summarized in Table 5. Again, we will abbreviate x for
brevity in the rest of this proof. Note that Ψf (x) = maxy∈Y Ψy(x) if we use proper composite loss.

Cases (A)(G)(H):
In this case, we can confirm that ∆W0-1-c(rf , f ;η) = 0 by (17) since (rf , f) makes a
correct prediction. Thus, it holds that

∆W0-1-c(rf , f ;η) = 0 ≤ 2C∆WOVA(g;η)
1
s .

Cases (C)(D):
In this case, we can confirm that

∆W0-1-c(rf , f ;η) = c− (1− ηy∗) (21)

by (17). Let g† = argming′
y∗=θ

WOVA(g′;η). Using the Lagrangian multiplier method we

see that g† has to satisfy

φ′(−g†y)

φ′(−g†y) + φ′(g†y)
=

{
ηy (y 6= y∗),

1− c (y = y∗),
(22)
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and the LHS of which actually exists by the assumption (14). We now prove

WOVA(g;η)−WOVA(g†;η) ≥ 0. (23)

Recall that WOVA (18) is a convex combination of φ, which is a convex function. Thus,
WOVA is also a convex function. Therefore,

WOVA(g;η)−WOVA(g†;η) ≥ ∇g WOVA(g;η)|>g=g† (g − g†)
=
∑
y 6=y∗

[
ηyφ
′(g†y)− (1− ηy)φ′(−g†y)

]︸ ︷︷ ︸
=0 (using (22))

(gy − g†y)

+
[
ηy∗φ

′(g†y∗)− (1− ηy∗)φ′(−g†y∗)
]

(gy∗ − g†y∗)

=
[
ηy∗φ

′(g†y∗)− (1− ηy∗)φ′(−g†y∗)
]

(gy∗ − g†y∗).

The condition ηy∗ > 1− c together with the assumption φ′(−g†y∗) ≤ φ′(g†y∗) = φ′(θ) < 0
gives

ηy∗φ
′(g†y∗)− (1− ηy∗)φ′(−g†y∗) < (1− c)φ′(g†y∗)− cφ′(−g†y∗) = 0.

Here, we used (22) in the last equality. In addition, since we have Ψ−1y∗ (g) ≤ Ψ−1f (g) ≤ 1−c
in cases (C)(D), together with Ψ−1y∗ (g†) = 1− c, we get the inequality Ψ−1y∗ (g) < Ψ−1y∗ (g†).
Note that Ψ−1y∗ is a non-decreasing function with respect to gy∗ , so it holds that

gy∗ ≤ g†y∗ .
Therefore, we can conclude that (23) holds, which gives the following result:

∆WOVA(g;η) ≥ inf
g′
y∗=θ

∆WOVA(g′;η)

≥ C−s|ηy∗ − (1− c)|s (by assumption (15))

= C−s∆W0-1-c(rf , f ;η)s. (by using (21))

Cases (E)(F):
In this case, we can confirm that

∆W0-1-c(rf , f ;η) = |(1− ηf )− c| (24)

by (17). Let g] = argming′f=θWOVA(g′;η). Similarly to the above case, the optimal

solution g] satisfies the following:

φ′(−g]y)

φ′(−g]y) + φ′(g]y)
=

{
ηy (y 6= f),

1− c (y = f),
(25)

and the LHS of which actually exists by the assumption (14). We now prove

WOVA(g;η)−WOVA(g];η) ≥ 0. (26)

Recall that WOVA (18) is a convex combination of φ, which is a convex function. Thus,
WOVA is also a convex function. Therefore,

WOVA(g;η)−WOVA(g];η) ≥ ∇gWOVA(g];η)>(g − g])
=
∑
y 6=f

[
ηyφ
′(g]y)− (1− ηy)φ′(−g]y)

]︸ ︷︷ ︸
=0 (using (25))

(gy − g]y)

+
[
ηfφ

′(g]f )− (1− ηf )φ′(−g]f )
]

(gf − g]f )

=
[
ηfφ

′(g]f )− (1− ηf )φ′(−g]f )
]

(gf − g]f ).
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The condition ηf ≤ ηy∗ ≤ 1 − c together with the assumption φ′(−g]f ) ≤ φ′(−g]f ) =

φ′(θ) < 0 gives

ηfφ
′(g†f )− (1− ηf )φ′(−g]f ) ≥ (1− c)φ′(g†f )− cφ′(−g]f ) = 0.

Here, we used (25) in the last equality. In addition, since we have Ψ−1f (g) > 1− c in cases
(E)(F), together with Ψ−1f (g]) = 1 − c, we get the inequality Ψ−1f (g) > Ψ−1f (g]). Note
that Ψ−1f is a non-decreasing function with respect to gf , so it holds that

gf ≥ g]f .
Therefore, we can conclude that (26) holds, which gives the following result:

∆WOVA(g;η) ≥ inf
g′f=θ

∆WOVA(g′;η)

≥ C−s|ηf − (1− c)|s (by assumption (15))

≥ C−s∆W0-1-c(rf , f ;η)s. (by using (24))

Case (B):
In this case, we can confirm that

∆W0-1-c(rf , f ;η) = ηy∗ − ηf (27)

by (17). Again, we will prove (26) and utilize the property (25) of optimal solution g]. By
assumption c < 1

2 and property
∑
y ηy = 1, we have ηy∗ > 1 − c > ηf . This inequality

together with the assumption φ′(−g]f ) ≤ φ′(g]f ) = φ′(θ) < 0 gives

ηfφ
′(g]f )− (1− ηf )φ′(−g]f ) > (1− c)φ′(g]f )− cφ′(−g]f ) = 0.

Here, we used (25) in the last equality. In addition, since we have Ψ−1f (g) > 1− c in case
(B), together with Ψ−1f (g]) = 1− c, we get the inequality Ψ−1f (g) > Ψ−1f (g]). Note that
Ψ−1f is a non-decreasing function with respect to gf , so it holds that

gf ≥ g]f .
Therefore, following the similar arguments as before, we can conclude that (26) holds,
which gives the following result:

∆WOVA(g;η) ≥ inf
g′f=θ

∆WOVA(g;η)

≥ C−s|ηf − (1− c)|s (by assumption (15))

≥ (2C)−s|ηy∗ − ηf |s (by assumption c < 1
2 )

≥ (2C)−s∆W0-1-c(rf , f ;η)s. (by using (27))

Therefore the proof is completed.

A.2 Derivation of θ, C and s in Table 1

We now derive θ, C and s in Table 1. The derivation goes along a similar discussion as Zhang
[31], Yuan and Wegkamp [29], where they derived C and s in binary classification with rejection.

Define g† = argmingy=θWOVA(g;η), and g∗ = argmingWOVA(g;η). Similarly to (22), we have

φ′(−g†y′)
φ′(−g†y′) + φ′(g†y′)

=

{
ηy′ (y′ 6= y),

1− c (y′ = y),
(28)

φ′(−g∗y′)
φ′(−g∗y′) + φ′(g∗y′)

= ηy′ (y′ ∈ Y). (29)

By recalling the expression of ∆WOVA, we see

inf
gy=θ

∆WOVA(g;η) = WOVA(g†;η)−WOVA(g∗;η)

= ηyφ(g†y) + (1− ηy)φ(−g†y)− ηyφ(g∗y)− (1− ηy)φ(−g∗y). (30)

14



A.2.1 Logistic loss

Observe that when we use logistic loss φ(z) = log (1 + exp(−z)),

φ′(−θ)
φ′(−θ) + φ′(θ)

=
− 1

1+exp(−θ)

− 1
1+exp(−θ) − 1

1+exp(θ)

=
1

1 + exp(−θ) .

Thus, we have (14) by letting θ = log 1−c
c , which means that the requirement for φ in Theorem 7

is satisfied. By (28) and (29), we have g†y = θ = log 1−c
c and g∗y = log

ηy
1−ηy . Define the function

Q(t) = −t log t− (1− t) log(1− t). Then it holds that

inf
gy=θ

∆WOVA(g;η) = −ηy log(1− c)− (1− ηy) log c+ ηy log ηy + (1− ηy) log(1− ηy)

= −(1− c) log(1− c)− c log c+ ηy log ηy + (1− ηy) log(1− ηy)

+
(

log c− log(1− c)
)(
ηy − (1− c)

)
= Q(1− c)−Q(ηy) +Q′(1− c)

(
ηy − (1− c)

)
.

By applying Taylor expansion to Q at t = 1− c, we know that there exists η′ between ηy and 1− c
so that

inf
gy=θ

∆WOVA(g;η) = Q(1− c)−Q(ηy) +Q′(1− c)
(
ηy − (1− c)

)
= −1

2
Q′′(η′)

(
ηy − (1− c)

)2
=

1

2η′(1− η′)
(
ηy − (1− c)

)2
≥ 2
(
ηy − (1− c)

)2
,

where the inequality follows from η′(1− η′) ≤ 1
4 .

A.2.2 Exponential loss

Observe that when we use exponential loss φ(z) = exp(−z),

φ′(−θ)
φ′(−θ) + φ′(θ)

=
− exp(θ)

− exp(θ)− exp(−θ) =
1

1 + exp(−2θ)
.

Thus, we have (14) by letting θ = 1
2 log 1−c

c , which means that the requirement for φ in Theorem 7 is
satisfied. By (28) and (29), we have g†y = θ = 1

2 log 1−c
c and g∗y = 1

2 log
ηy

1−ηy . Define the function

Q(t) = 2
√
t(1− t), then it holds that

inf
gy=θ

∆WOVA(g;η) = ηy

√
c

1− c + (1− ηy)

√
1− c
c
− 2
√
ηy(1− ηy)

= 2
√

(1− c)c− 2
√
ηy(1− ηy) +

1− 2(1− c)√
(1− c)c

(
ηy − (1− c)

)
= Q(1− c)−Q(ηy) +Q′(1− c)

(
ηy − (1− c)

)
.

Applying Taylor expansion to Q at t = 1− c, we know that there exists η′ between ηy and 1− c so
that

inf
gy=θ

∆WOVA(g;η) = Q(1− c)−Q(ηy) +Q′(1− c)
(
ηy − (1− c)

)
= −1

2
Q′′(η′)

(
ηy − (1− c)

)2
=

1

4
[η′(1− η′)]− 3

2

(
ηy − (1− c)

)2
≥ 2
(
ηy − (1− c)

)2
,

where the inequality follows from η′(1− η′) ≤ 1
4 .
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A.2.3 Squared loss

Observe that when we use squared loss φ(z) = (1− z)2, it holds that

φ′(−θ)
φ′(−θ) + φ′(θ)

=
2(−θ − 1)

2(−θ − 1) + 2(θ − 1)
=

1

2
(θ + 1).

Thus, we have (14) by letting θ = 1− 2c, which means that the requirement for φ in Theorem 7 is
satisfied. By (28) and (29), we have g†y = θ = 1− 2c and g∗y = 2ηy − 1. Substitute these values into
(30) gives

inf
gy=θ

∆WOVA(g;η) = 4
(
ηy − (1− c)

)2
.

A.2.4 Squared hinge loss

This is similar to the derivation of squared loss. Observe that when we use squared loss φ(z) =
(1− z)2+, it holds that

φ′(−θ)
φ′(−θ) + φ′(θ)

=
−2(1 + θ)+

−2(1 + θ)+ − 2(1− θ)+
= min

{
1,

(
1

2
(θ + 1)

)
+

}
.

Thus, we have (14) by letting θ = 1 − 2c, which means that the requirement for φ in Theorem 7
is satisfied. By (28) and (29), we have g†y = θ = 1 − 2c and g∗y = 2ηy − 1. Together with the
assumption c < 1

2 , it holds that

inf
gy=θ

∆WOVA(g;η)

= ηy(1− g†y)2+ + (1− ηy)(1 + g†y)2+ − ηy(1− g∗y)2+ − (1− ηy)(1 + g∗y)2+

= 4c2ηy + 4(1− c)2(1− ηy)− 4ηy(1− ηy)2 − 4η2y(1− ηy)

= 4(1− c)2 + 4ηy(2c− 1)− 4ηy(1− ηy)

= 4
(
ηy − (1− c)

)2
.

A.3 Proof of the estimation error bound of OVA loss

For the case where only finite samples are available, we can bound the estimation error with respect
to 0-1-c risk in the following way.

Let G be a family of functions gy : X → R. We denote by f̂ the minimizer over G of the empirical
OVA risk R̂(f) = 1

n

∑n
i=1 LOVA(f ;xi, yi), and its corresponding rejector (10) by rf̂ .

Proposition 9 (Estimation error bound for OVA loss). Assume φ is Lipschitz-continuous with constant
Lφ, and assume all functions in the model class G are bounded. Define Mφ = supx∈X ,g∈G φ

(
g(x)

)
and let Rn(G) be the Rademacher complexity of G for data of size n drawn from p(x). Then under
the assumption of Theorem 7, for any δ > 0, it holds with probability at least 1− δ that

∆R0-1-c(rf̂ , f̂) ≤ 2C

(
inf

g1,...,gK∈G
∆ROVA(f) + 8KLφRn(G) + 4Mφ

√
2 log 2

δ

n

) 1
s

.

This proposition is straightforward from Theorem 7 and the standard argument regarding Rademacher
complexity [18].
Definition 10 (Rademacher Complexity [18]). Let Z1, . . . , Zn be random variables drawn i.i.d. from
a probability distribution D, andH = {h : Z → R} be a family of measurable function. Then the
Rademacher complexity ofH is defined as

Rn(H) = E
Z1,...,Zn∼D

E
σ1,...σn

[
sup
h∈H

1

n

n∑
i=1

σih(Zi)

]
,

where σ1, . . . , σn are Rademacher variables, which are independent uniform random variables taking
values in {−1,+1}.
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We first show the following lemmas. DefineHOVA as
HOVA = {(x, y) 7→ LOVA(g;x, y) | g1, . . . , gK ∈ G} .

Lemma 11. Let Rn(HOVA) be the Rademacher complexity of HOVA for S = {(xi, yi)}ni=1 from
p(x, y), and Rn(G) be the Rademacher complexity of G for data of size n drawn from p(x). Then
we have Rn(HOVA) ≤ 2KLφRn(G).

Proof of Lemma 11. By definition, we can bound Rn(HOVA) as follows:

Rn(HOVA) = E
S

E
σ1,...,σn

 sup
g1,...,gK∈G

1

n

∑
(xi,yi)∈S

σi

φ(gyi(xi))+
∑
y′ 6=yi

φ
(
− gy′(xi)

)
≤ E
S

E
σ1,...,σn

 sup
g1,...,gK∈G

1

n

∑
(xi,yi)∈S

σiφ
(
gyi(xi)

)
︸ ︷︷ ︸

(A)

+ E
S

E
σ1,...,σn

 sup
g1,...,gK∈G

1

n

∑
(xi,yi)∈S

σi
∑
y′ 6=yi

φ
(
− gy′(xi)

)
︸ ︷︷ ︸

(B)

.

where we utilized the sub-additivity of supremum. We shall bound the both terms above. By letting
αi = 21[y=yi] − 1, we can bound the first term (A) as follows:

(A) = E
S

E
σ1,...,σn

 sup
g1,...,gK∈G

1

n

∑
(xi,yi)∈S

σiφ
(
gyi(xi)

)
= E
S

E
σ1,...,σn

 sup
g1,...,gK∈G

1

2n

∑
(xi,yi)∈S

σi
∑
y

φ
(
gy(xi)

)
(αi + 1)


≤ E
S

E
σ1,...,σn

 sup
g1,...,gK∈G

1

2n

∑
(xi,yi)∈S

αiσi
∑
y

φ
(
gy(xi)

)
+ E
S

E
σ1,...,σn

 sup
g1,...,gK∈G

1

2n

∑
(xi,yi)∈S

σi
∑
y

φ
(
gy(xi)

)
= E
S

E
σ1,...,σn

 sup
g1,...,gK∈G

1

n

∑
(xi,yi)∈S

σi
∑
y

φ
(
gy(xi)

) (31)

≤
∑
y

E
S

E
σ1,...,σn

 sup
g1,...,gK∈G

1

n

∑
(xi,yi)∈S

σiφ
(
gy(xi)

)
= KRn(φ ◦ G).

We utilized the sub-additivity again and in (31), we used the fact that αiσi has exactly the same
distribution as σi.

Similarly to term (A), the second term (B) can be bounded by KRn(φ ◦ G).

Consequently, we can bound the Rademacher complexity ofHOVA as follows:
Rn(HOVA) ≤ 2KRn(φ ◦ G) ≤ 2KLφRn(G)

due to Talagrand’s contraction lemma.

Lemma 12. For any δ, with probability at least 1− δ,

sup
g1,...,gK∈G

∣∣∣R̂OVA(g)−ROVA(g)
∣∣∣ ≤ 4KLφR(G) +Mφ

√
8 log 2

δ

n
.
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Proof of Lemma 12. We will only discuss a one-sided bound on supg1,...,gK∈G
(
R̂OVA(g) −

ROVA(g)
)

that holds with probability at least 1− δ
2 . The other side can be derived in a similar way.

To begin with, we first bound the change of supg1,...,gK∈G
(
R̂OVA(g) − ROVA(g)

)
when a sin-

gle entry zi = (xi, yi) of (zi, . . . , zn) is replaced with z′i = (x′i, y
′
i). Define A(z1, . . . , zn) =

supg1,...,gK∈G
(
R̂OVA(g)−ROVA(g)

)
. Then it holds that

A(z1, . . . , zi, . . . , zn)−A(z1, . . . , z
′
i, . . . , zn)

= sup
g1,...,gK∈G

inf
g′1,...,g

′
K∈G

 1

n

n∑
j=1

LOVA(g;xj , yj)− E
p(x,y)

[LOVA(g;x, y)]

− 1

n

∑
j∈{1,...,n}\{i}

LOVA(g′;xj , yj)−
1

n
LOVA(g′;x′i, y

′
i) + E

p(x,y)
[LOVA(g′;x, y)]


≤ sup
g1,...,gK∈G

 1

n

n∑
j=1

LOVA(g;xj , yj)− E
p(x,y)

[LOVA(g;x, y)]

− 1

n

∑
j∈{1,...,n}\{i}

LOVA(g;xj , yj)−
1

n
LOVA(g;x′i, y

′
i) + E

p(x,y)
[LOVA(g;x, y)]


= sup
g1,...,gK∈G

[
1

n
LOVA(g;xi, yi)−

1

n
LOVA(g;x′i, y

′
i)

]

=
1

n
sup

g1,...,gK∈G

φ(gyi(xi))+
∑
y′ 6=yi

φ
(
− gy′(xi)

)
− φ

(
gy′i(x

′
i)
)
−
∑
y′′ 6=y′i

φ
(
− gy′′(x′i)

)
=

1

n
sup

g1,...,gK∈G

[
φ
(
gyi(xi)

)
+ φ

(
− gy′i(xi)

)
− φ

(
gy′i(x

′
i)
)
− φ

(
− gyi(x′i)

)]
≤ 4Mφ

n
,

where we used the boundedness of the loss function.

Thus, we can apply McDiarmid’s inequality to get that with probability at least 1− δ
2 ,

sup
g1,...,gK∈G

(
R̂OVA(g)−ROVA(g)

)
≤ E

[
sup

g1,...,gK∈G

(
R̂OVA(g)−ROVA(g)

)]
+Mφ

√
8 log 2

δ

n
.

Since ROVA(g) = E
[
R̂OVA(g)

]
, thus by applying symmetrization [18], we get

E
[

sup
g1,...,gK∈G

(
R̂OVA(g)−ROVA(g)

)]
≤ 2Rn(HOVA) ≤ 2KLφRn(G),

where the last line inequality follows from Lemma 11.

Lastly, we present the proof for Proposition 9.

Proof of Proposition 9. To begin with, we split the excess risk into two parts: the estimation error
term and the approximation term as follow:

R(ĝ)−R∗ =

(
R(ĝ)− inf

g1,...,gK∈G
R(g)

)
︸ ︷︷ ︸

estimation error

+

(
inf

g1,...,gK∈G
R(g)−R∗

)
︸ ︷︷ ︸

approximation error

.

We focus on the estimation error. Therefore, we assume that for any ε > 0, there exist g◦1 , . . . , g
◦
K ∈ G

such that

R(g◦) = inf
g1,...,gK∈G

R(g)− ε.
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Figure 3: The comparison of the calibration function using the Cross Entropy loss. The blue line
corresponds to the case of ordinary classification, and the red line corresponds to the case of learning
with rejection, which is our framework. As we can see from the graph, both functions show similar
behavior near z ' 0.

Using these notations, we can upper bound the estimation error as follows:

R(ĝ)− inf
g1,...,gK∈G

R(g)

= R(ĝ)−R(g◦)

=
(
R(ĝ)− R̂(ĝ)

)
+
(
R̂(g◦)−R(g◦)

)
+
(
R̂(ĝ)− R̂(g◦)

)
≤ 2 sup

g1,...,gK∈G

∣∣∣R̂(g)−R(g)
∣∣∣+
(
R̂(ĝ)− R̂(g◦)

)
≤ 2 sup

g1,...,gK∈G

∣∣∣R̂(g)−R(g)
∣∣∣ (32)

≤ 4KLφR(G) +Mφ

√
8 log 2

δ

n
, (33)

where we used that R̂(ĝ) ≤ R̂(g◦) by the definition of ĝ in (32), and we used the result of Lemma 11
in (33). The above result together with Theorem 7 gives Proposition 9.

A.4 Proof of Theorem 8

To begin with, we will use the following theorem, which is proved in Pires and Szepesvári [19].
Theorem 13 (Pires and Szepesvári [19]). Define the function ξCE : R→ R≥0 as

ξCE(z) =
1

2

[
(1 + z) log(1 + z) + (1− z) log(1− z)

]
.

Then for all f , we have

ξCE

(
∆R0-1(f)

)
≤ ∆RCE(g).

To compare Theorem 8 with Theorem 13, let us apply Taylor expansion to calibration function ξCE:

ξCE(z) =
1

2
z2 +

1

12
z4 +

1

30
z6 + O(z8) >

1

2
z2.

As we can see from the above, Theorem 8 provides a loosened excess risk bound compared to
Theorem 13. Yet, we can observe that the behavior of ξCE is similar to that of 1

2z
2 when z ∈ [0, 1]

(see also Figure 3), thus gives similar calibration performance.

Now we will prove Theorem 8.
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Proof. The pointwise risk of CE loss is expressed as

WCE(g;η) = −
∑
y

ηygy + log

(∑
y

exp(gy)

)
. (34)

Similarly to the proof of Theorem 7, the main focus in this proof is to show the following inequality:
1

2
∆W0-1-c(rf , f ;η)2 ≤ ∆WCE(g;η).

Note that when we use cross entropy loss, we can rewrite the surrogate excess risk using KL
divergence DKL(· ‖ ·)

∆WCE(g;η) = −
∑
y

ηygy + log

(∑
y

exp(gy)

)
+
∑
y

ηy log ηy (by definition (34))

= −
∑
y

ηy log Ψ−1y (g) +
∑
y

ηy log ηy

=
∑
y

ηy log
ηy

Ψ−1y (g)
= DKL(η ‖ Ψ−1(g))

Now we us Table 5 again. Note that Ψf (x) = maxy∈Y Ψy(x) if we use proper composite loss.

Cases (A)(G)(H):
In this case, we can confirm that ∆W0-1-c(rf , f ;η) = 0 by (17) since (rf , f) makes a
correct prediction. Thus, it holds that

∆W0-1-c(rf , f ;η) = 0 ≤
√

2∆WCE(g;η).

Cases (C)(D):
In this case, we can confirm that ∆W0-1-c(rf , f ;η) = c− (1− ηy∗) by (17), thus, we can
lower bound surrogate excess risk as follows:

∆WCE(g;η) = DKL(η ‖ Ψ−1(g))

≥ 1

2

(∑
y

∣∣ηy −Ψ−1y (g)
∣∣)2

(Pinsker’s inequality)

≥ 1

2

∣∣ηy∗ −Ψ−1y∗ (g)
∣∣2

≥ 1

2
|ηy∗ − (1− c)|2 (35)

=
1

2
∆W0-1-c(rf , f ;η)2,

where in (35), we used the fact that ηy∗ > 1− c in cases (C)(D), and Ψ−1y∗ (g) ≤ Ψ−1y∗ (g) by
maxy Ψ−1y (g) = Ψ−1f (g) ≤ 1− c.

Cases (E)(F):
In this case, we can confirm that ∆W0-1-c(rf , f ;η) = |(1− ηf )− c| by (17), thus, similar
to the case above, we can lower bound surrogate excess risk as follows:

∆WCE(g;η) = DKL(η ‖ Ψ−1(g))

≥ 1

2

(∑
y

∣∣ηy −Ψ−1y (g)
∣∣)2

(Pinsker’s inequality)

≥ 1

2

∣∣∣ηf −Ψ−1f (g)
∣∣∣2

≥ 1

2
|ηf − (1− c)|2 (by ηf ≤ 1− c < Ψ−1f (g) in cases (E)(F))

=
1

2
∆W0-1-c(rf , f ;η)2.
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Case (B):
This case reduces to the excess risk bound in the ordinary classification, which enables us to
utilize the result of Theorem 13. Note that ∆W0-1-c(rf , f ;η) = ∆W0-1(f ;η) = ηy∗ − ηf
by (17). Thus, we can lower bound ∆WCE(g;η) as follows:

∆WCE(g;η) ≥ ξCE

(
∆W0-1(f ;η)

)
= ξCE

(
∆W0-1-c(rf , f ;η)

)
≥ 1

2
∆W0-1-c(rf , f ;η)2,

where in the last inequality, we used the property ξCE(z) ≥ 1
2z

2.

Combining the above analysis completes the proof.

B Analysis for classifier-rejector approach

B.1 Proof of Theorem 4

Define hη(r) =
∂W (r,f†η ;η)

∂r . Note that the minimizer r†η in (3) satisfies the first-order optimality
condition

hη(r†η) = 0. (36)

We first consider the case maxy ηy ≤ 1− c, i.e., sign[r∗] = −1. Recall that W is defined as

W
(
r(x), f(x);η(x)

)
=
∑
y∈Y

ηy(x)L
(
r, f ;x, y

)
is a convex combination of L, which is a convex function of classC1. Thus, hη(r) is a non-decreasing
function with respect to r. Since we assumed that r† is rejection-calibrated, we need sign[r†η] =

sign[r∗] = −1, which implies r†η < 0. Therefore we have hη(0) ≥ 0 by the monotonicity and (36).
Since this argument holds for any η such that maxy ηy ≤ 1−c, we have supη: maxy ηy≤1−c hη(0) ≥ 0.
For the case maxy ηy ≥ 1− c we have infη: maxy ηy≥1−c hη(0) ≤ 0.

Combining the above analysis, we can conclude that r† is rejection-calibrated only if

sup
η: maxy ηy≥1−c

hη(0) ≤ 0 ≤ inf
η: maxy ηy≤1−c

hη(0). (37)

The necessary conditions (6) (left) and (6) (right) are then straightforward, since restricting constraints
does not make the supremum larger and the infimum smaller. We further show in Appendix B.4 that
(37) is also the sufficient condition for rejection calibration.

B.2 Upper bounds of 0-1-c loss

We first present general upper bounds of 0-1-c loss in the multiclass setting.
Lemma 14 (Upper bounds for 0-1-c loss). Let φ(z), ψ(z), ψ1(z), ψ2(z) be convex functions that
bound 1[z≤0] from above, and α, β be the positive constants. Then, Additive Pairwise Comparison
Loss (APC loss) LAPC and Multiplicative Pairwise Comparison Loss (MPC loss) LMPC given below
are upper bounds of 0-1-c loss, where

LAPC(r, f ;x, y) =
∑
y′ 6=y

φ
(
α
(
gy(x)− gy′(x)− r(x)

))
+ cψ

(
βr(x)

)
,

LMPC(r, f ;x, y) =
∑
y′ 6=y

φ
(
α
(
gy(x)− gy′(x)

))
ψ1(−αr(x)) + cψ2

(
βr(x)

)
.

Proof. Define the margin function: m(f(x), y) = gy(x)−maxy′ 6=y gy′(x). Note that the margin
function satisfies

1[f(x)6=y] ≤ 1[m(f(x),y)<0],

φ
(
αm(f(x), y)

)
≤
∑
y′ 6=y

φ
(
α(gy(x)− gy′(x))

)
.
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Using these properties, we can bound L0-1-c from above as follows:

L0-1-c(r, f ;x, y) ≤ 1[m(f(x),y)<0]1[r(x)>0] + c1[r(x)≤0]

= 1[αm(f(x),y)<0]1[αr(x)>0] + c1[βr(x)≤0]

≤ φ
(
αm (f(x), y)

)
ψ1(αr(x)) + cψ2(βr(x))

≤
∑
y′ 6=y

φ
(
α(gy(x)− gy′(x))

)
ψ1(αr(x)) + cψ2(βr(x))

= LMPC(r, f ;x, y).

L0-1-c(r, f ;x, y) ≤ 1[m(f(x),y)<0]1[r(x)>0] + c1[r(x)≤0]

≤ 1[m(f(x),y)<0]1[−r(x)≤0] + c1[r(x)≤0]

= 1[max(m(f(x),y),−r(x))≤0] + c1[r(x)≤0]

≤ 1[ 1
2 (m(f(x),y)−r(x))≤0] + c1[r(x)≤0]

= 1[α(m(f(x),y)−r(x))≤0] + c1[βr(x)≤0]

≤ φ
(
α (m(f(x), y)− r(x))

)
+ cψ(βr(x))

≤ LAPC(r, f ;x, y).

In terms of optimization, LAPC is convex with respect to (r, f), while LMPC is non-convex since it
contains the multiplication of two convex functions, which is not necessarily convex. However, we
can easily confirm that LMPC is biconvex, that is, if we fix either r or f , then this function is convex
with respect to the other.

B.3 Order-preserving property

We first show that these losses in Lemma 14 have the order-preserving property which is defined as
follows.
Definition 15 (Order-preserving property [30]). A loss L is order-preserving if, for all fixed η, its
pointwise risk W has a minimizer g∗ ∈ Ω such that ηi < ηj ⇒ g∗i ≤ g∗j . Moreover, the loss L is
strictly order-preserving if the minimizer g∗ satisfies ηi < ηj ⇒ g∗i < g∗j .

It is known that the order-preserving property is a sufficient condition for classification calibration [19].
Therefore, showing the order-preserving property of a loss function guarantees classification calibra-
tion.

Again, we denote by (r†, f†) the minimizer of the above risks over all measurable functions, and
(r†η, f

†
η) the minimizer of the corresponding pointwise risks over real space:

(r†, f†) = argmin
r,f :measurable

R(r, f),

(r†η, f
†
η) := argmin

r∈R, g∈RK

W (r, f ;η),

where we consider APC loss and MPC loss for the pointwise risk W , which are expressed as

WAPC(r, f ;η) =
∑
y

ηy

∑
y′ 6=y

φ
(
α
(
gy − gy′ − r

))+ cψ
(
βr
)
,

WMPC(r, f ;η) =
∑
y

ηy

∑
y′ 6=y

φ
(
α
(
gy − gy′

))
ψ1(−αr)

+ cψ2

(
βr
)
.

The following theorems show that APC loss an MPC loss have order-preserving property.
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Theorem 16 (Order-preserving property for LAPC). LAPC is order-preserving if φ is a non-
increasing function such that φ(z − αr†η) < φ(−z − αr†η) (z > 0) holds for all η ∈ ΛK . Moreover,
LAPC is strictly order-preserving if φ is differentiable and φ′(−αr†η) < 0 holds for all η ∈ ΛK .
Theorem 17 (Order-preserving property for LMPC). LMPC is order-preserving if φ is a non-
increasing function such that φ(z) < φ(−z) holds for all z > 0. Moreover, LMPC is strictly
order-preserving if φ is differentiable and φ′(0) < 0.

Proof. We will only prove Theorem 16. The proof of Theorem 17 proceeds along the same line as
the proof of Theorem 16 and is thus omitted.

We can fix i = 1, j = 2 without loss of generality. Define g′η,k as

g′η,k =


g†η,2 (k = 1),

g†η,1 (k = 2),

g†η,k (otherwise).

We now prove the first part by contradiction. Assume g†η,1 > g†η,2. Then we have

WAPC(r†η, f
′
η;η)−WAPC(r†η, f

†
η;η)

=
∑
y

ηy

∑
y′ 6=y

φ
(
α
(
g′η,y − g′η,y′ − r†η

))−∑
y

ηy

∑
y′ 6=y

φ
(
α
(
g†η,y − g†η,y′ − r†η

))
=
∑
y=1,2

ηy

∑
y′ 6=y

φ
(
α
(
g′η,y − g′η,y′ − r†η

))− ∑
y=1,2

ηy

∑
y′ 6=y

φ
(
α
(
g†η,y − g†η,y′ − r†η

))
= (η2 − η1)

[
φ
(
α(g†η,1 − g†η,2 − r†η)

)
− φ

(
α(g†η,2 − g†η,1 − r†η)

)
+
∑
y′>2

(
φ
(
α(g†η,1 − g†η,y′ − r†η)

)
− φ

(
α(g†η,2 − g†η,y′ − r†η)

))]
< (η2 − η1)[0 + 0] = 0,

which contradicts the optimality of f†η . Therefore we must have g†η,1 ≤ g†η,2, which proves the first
part.

Next we assume φ is differentiable. In this case, the first-order optimality condition gives

η1
∑
y′∈Y

φ′
(
α(g†η,1 − g†η,y′ − r†η)

)
=
∑
y′∈Y

ηy′φ
′(α(g†η,y′ − g†η,1 − r†η)

)
(38)

η2
∑
y′∈Y

φ′
(
α(g†η,2 − g†η,y′ − r†η)

)
=
∑
y′∈Y

ηy′φ
′(α(g†η,y′ − g†η,2 − r†η)

)
(39)

by taking the derivative of WAPC(r, f ;η) with respect to g1 and g2, and then substituting (r†η, f
†
η)

for (r, f). We again prove the second part by contradiction. Assume g†η,1 = g†η,2 = g†η . In this case,
the RHSs of (38) and (39) are the same, which gives

η1
∑
y′∈Y

φ′
(
α(g†η − g†η,y′ − r†η)

)
= η2

∑
y′∈Y

φ′
(
α(g†η − g†η,y′ − r†η)

)
,

or equivalently,

(η1 − η2)
∑
y′∈Y

φ′
(
α(g†η − g†η,y′ − r†η)

)
= 0. (40)

Note that
∑
y′∈Y φ

′(α(g†η − g†η,y′ − r†η)
)
≤ 2φ′(−αr†η) < 0 holds since φ is a non-increasing

function. Therefore we must have η1 = η2 for (40) to hold. However, this contradicts the assumption
η1 < η2, therefore, we have g†η,1 6= g†η,2. Together with the fact of the first part, we have g†η,1 < g†η,2
in this case.
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To compute r†η, we need true class distribution η, which is unknown to the learner. Thus, it is
difficult to verify the requirement φ(z − αr†η) < φ(−z − αr†η) (z > 0) for LAPC. However, the
following corollary, which immediately follows from Theorems 16 and 17, implies that logistic loss
and exponential loss are good candidates for φ in LAPC and LMPC, respectively.

Corollary 18 (Strictly order-preserving property for LAPC,LMPC). LAPC and LMPC are strictly
order-preserving if φ is a differentiable function such that φ′(z) < 0 holds for all z ∈ R.

B.4 Rejection calibration

In the following, we give a simple example to illustrate the intuition of Theorem 4 and Corollary 5.
Throughout this section, we consider APC loss with exponential loss for φ and ψ.

LAPC(r, f ;x, y) =
∑
y′ 6=y

exp
(
α
(
r(x) + gy′(x)− gy(x)

))
+ c exp

(
−βr(x)

)
,

WAPC(r, f ;η) =
∑
y

ηy

∑
y′ 6=y

exp
(
α
(
r + gy′ − gy

))+ c exp
(
−βr

)
.

Note that LMPC = LAPC when we use exponential loss for binary losses.

Binary Case In the binary case, LAPC and WAPC are expressed as

LAPC(r, f ;x, y) = exp
[
α(r(x)− yf(x))

]
+ c exp

[
− βr(x)

]
,

WAPC(r, f ;η) = η+ exp
[
α(r − f)

]
+ η− exp

[
α(r + f)

]
+ c exp(−βr),

which coincide with the losses defined in Cortes et al. [9]. Since f†η is the minimizer of WAPC, by
taking the derivative of WAPC with respect to f and setting it to zero, we get f†η = 1

2α log η+
η−

. Thus,
∂WAPC(r,f†η ;η)

∂r can be expressed as follows:

∂WAPC(r, f†η;η)

∂r
= αη+ exp

[
α(r − f†η)

]
+ αη− exp

[
α(r + f†η)

]
− cβ exp(−βr)

= 2α
√
η+η− exp(αr)− cβ exp(−βr).

Hence, we have

sup
maxy ηy≥1−c

∂WAPC(r, f†η;η)

∂r

∣∣∣∣∣
r=0

= sup
maxy ηy=1−c

2α
√
η+η− − cβ = 2α

√
c(1− c)− cβ,

inf
maxy ηy=1−c

∂WAPC(r, f†η;η)

∂r

∣∣∣∣∣
r=0

= inf
maxy ηy=1−c

2α
√
η+η− − cβ = 2α

√
c(1− c)− cβ.

Using the result of Theorem 4, we can confirm that rejection calibration holds if and only if

2α
√
c(1− c)− cβ = 0 ⇔ β

α
= 2

√
1− c
c

, (41)

which coincides with the result of Theorem 1 of Cortes et al. [9]. This suggests that Theorem 4 is a
general extension of their result.

Multiclass case Next, we consider the multiclass case, i.e., the case where K > 2. We assume
that c < 1

2 , otherwise, even data points with low confidence will also be accepted. Since g†η is the
minimizer of WAPC, by taking the derivative of WAPC with respect to g and setting it to zero, we
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get g†η,y − g†η,y′ = 1
2α log

ηy
ηy′

. Thus,
∂WAPC(r,f†η ;η)

∂r can be calculated as follows:

∂WAPC(r, f†η;η)

∂r
= α exp(αr)

∑
y

ηy
∑
y 6=y′

exp
[
α(g†η,y′ − g†η,y)

]
− cβ exp(−βr)

= α exp(αr)
∑
y

∑
y′ 6=y

√
ηyηy′ − cβ exp(−βr)

= α exp(αr)
∑
y

∑
y′

√
ηyηy′ − ηy

− cβ exp(−βr)

= α exp(αr)

(∑
y

√
ηy

)2

− 1

− cβ exp(−βr),

where in the last line we used the condition
∑
y ηy = 1. We next see how Eqs. (6) (left) and (6)

(right) behave. As for the Eq. (6) (left), we have

sup
maxy ηy=1−c

∂WAPC(r, f†η;η)

∂r

∣∣∣∣∣
r=0

= sup
maxy ηy=1−c

α

(∑
y

√
ηy

)2

− 1

− cβ
= α

((√
1− c+

√
c

K − 1
(K − 1)

)2

− 1

)
− cβ

= α
(

(K − 2)c+ 2
√

(K − 1)c(1− c)
)
− cβ.

Note that since c < 1
2 , the supremum is satisfied when maxy ηy = 1 − c, and ηy′ = c

K−1 for the
others. The above calculation gives the condition

β

α
≥ (K − 2) + 2

√
(K − 1)

1− c
c

. (42)

When K = 2, the RHS of (42) is the same as RHS of (41). As for Eq. (6) (right), we get

inf
maxy ηy≤1−c

∂WAPC(0, f†;η)

∂r
= inf

maxy ηy≤1−c
α

(∑
y

√
ηy

)2

− 1

− cβ
= 2α

√
c(1− c)− cβ.

Note that since c < 1
2 , the infimum is satisfied when maxy ηy = 1− c, and ηy′ = c, and ηy′′ = 0 for

the others. The above calculation gives the condition:

β

α
≤ 2

√
1− c
c

. (43)

Again, when K = 2, the RHS of (43) is the same as RHS of (41).

However, when we deal with multiclass classification, we can easily confirm that (42) and (43) cannot
simultaneously be satisfied, since

(K − 2) + 2

√
(K − 1)

1− c
c

> 2

√
1− c
c

.

The intuition of this result is that we cannot achieve rejection calibration in multiclass setting, using
classifier-rejector approach. More precisely, if we set hyper-parameters α and β to satisfy (42), we
can make FR to zero, but we cannot make FA to zero. Conversely, if we set hyper-parameters α and
β to satisfy (43), we can make FA to zero, but we cannot make FR to zero.

For the logistic loss, we get g†η,y − g†η,y′ = 1
α log

ηy
ηy′

. After applying the same procedure as we did
for the proof of the exponential loss, the failure result of the logistic loss can be obtained.
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C Experiment details

C.1 Synthetic datasets

• Goal: To see the calibration result of proposed method.
• Datasets:

– We randomly select 8 two-dimensional vectors µ1, . . . ,µ8 ∈ R2. These 8 vectors
correspond to 8 classes.

– Each sample (x, y) is sampled from p(y)p(x|y), where p(y) is a uniform distribution
p(y) = 1

8 , and p(x|y) is a Gaussian distribution N (µy, 0.2I2). Here, I2 is a 2 × 2
identity matrix.

– (# training data): {20, 50, 100, 200, 500, 1000, 1500, 2000, 5000, 10000} for each
class.

• Rejection Cost: c ∈ {0.05, 0.1, 0.2, 0.3, 0.4}.
• Methods:

– APC loss (8) with logistic loss and exponential loss. We set α = 1 for simplicity and
β is set to satisfy (6) (left) and (6) (right) respectively (APC+log+acc, APC+log+rej,
APC+exp+acc, APC+exp+rej).

– MPC loss (7) with logistic loss (MPC+log). Note that MPC loss with exponential loss
reduces to APC+exp. We set α = 1 for simplicity and β is set to satisfy (6) (left) and
(6) (right) respectively (MPC+log+acc, MPC+log+rej).

– OVA loss with logistic loss and exponential loss (OVA+log, OVA+exp)
– CE loss (CE)

• Hyper-parameter Selection:
– `2 regularization, where weight decays are chosen from {10−7, 10−4.10−1}.
– We did 80-20 split for each training data for validation for hyper-parameter tuning.
– Using a different random partition, we repeated the experiments three times.

• Optimization:
– AMSGRAD with 100 epochs.

• Model:
– one-hidden-layer neural network (d-3-1) with rectified linear units (ReLU) as activation

functions.

C.2 Benchmark datasets

• Goal: To see the empirical performance including the existing method.
• Datasets: see Table 3. They can all be downloaded from https://archive.ics.
uci.edu/ml/ or https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/multiclass.html.

• Rejection Cost: c ∈ {0.05, 0.1, 0.2, 0.3, 0.4}.
• Methods:

– APC loss (8) with logistic loss and exponential loss (APC+log, APC+exp).
– MPC loss (7) with logistic loss (MPC+log). Note that MPC loss with exponential loss

reduces to APC+exp.
– OVA loss with logistic loss and exponential loss (OVA+log, OVA+exp)
– CE loss (CE)
– existing method in Ramaswamy et al. [20] (OVA+hin)

• Hyper-parameter Selection:
– `2 regularization, where weight decays are chosen from {10−7, 10−4.10−1}.
– For APC+log, APC+exp, MPC+log, we need to decide the parameter α and β. We

set α = 1. For β, three candidates are chosen from (6) (left), (6) (right) and the mean
value of these values.
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– For OVA+hin, five candidates of threshold parameter are chosen from
{−0.95,−0.5, 0, 0.5, 0.95}.

– We did 80-20 split for each training data for validation for hyper-parameter tuning.
– Using a different random partition, we repeated the experiments ten times.

• Optimization:
– AMSGRAD with 150 epochs.

• Model:
– one-hidden-layer neural network (d-50-1) with rectified linear units (ReLU) as activa-

tion functions.
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Figure 4: Average 0-1-c risk on the test set as a function of the rejection cost on benchmark datasets
(full version).
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Table 6: Mean and standard deviation of 0-1-c risks for 10 trials. Best and equivalent methods (with
5% t-test) are shown in bold face.

dataset c APC+log APC+exp MPC+log OVA+log OVA+exp CE OVA+hin

vehicle

0.05 0.045 0.038 0.044 0.043 0.035 0.036 0.042
(0.0023) (0.0081) (0.0101) (0.0008) (0.0030) (0.0007) (0.0049)

0.1 0.074 0.073 0.07 0.074 0.064 0.063 0.085
(0.0038) (0.0171) (0.0092) (0.0036) (0.0033) (0.0032) (0.0060)

0.2 0.12 0.117 0.125 0.117 0.108 0.110 0.147
(0.0044) (0.0108) (0.0142) (0.0039) (0.0037) (0.0020) (0.0089)

0.3 0.157 0.157 0.163 0.156 0.152 0.148 0.184
(0.0068) (0.0076) (0.0150) (0.0058) (0.0106) (0.0046) (0.0088)

0.4 0.182 0.205 0.195 0.205 0.193 0.182 0.211
(0.0130) (0.0182) (0.0118) (0.0092) (0.0058) (0.0057) (0.0073)

satimage

0.05 0.030 0.039 0.039 0.030 0.030 0.030 0.032
(0.0013) (0.0052) (0.0070) (0.0011) (0.0011) (0.0006) (0.0003)

0.1 0.052 0.057 0.063 0.049 0.050 0.049 0.057
(0.0013) (0.0041) (0.0069) (0.0014) (0.0008) (0.0009) (0.002)

0.2 0.087 0.093 0.094 0.081 0.081 0.078 0.080
(0.0027) (0.0055) (0.0048) (0.0016) (0.0029) (0.0009) (0.0012)

0.3 0.104 0.111 0.112 0.102 0.102 0.097 0.103
(0.0037) (0.0048) (0.0033) (0.0026) (0.0028) (0.0013) (0.0010)

0.4 0.115 0.113 0.116 0.114 0.116 0.107 0.122
(0.0036) (0.0030) (0.0026) (0.0036) (0.0033) (0.0025) (0.0019)

yeast

0.05 0.050 0.057 0.052 0.050 0.051 0.050 0.050
(0.0000) (0.0109) (0.0023) (0.0000) (0.0009) (0.0000) (0.0002)

0.1 0.100 0.104 0.102 0.100 0.102 0.100 0.100
(0.0000) (0.0071) (0.0035) (0.0006) (0.0011) (0.0006) (0.0002)

0.2 0.200 0.222 0.200 0.201 0.201 0.200 0.200
(0.0000) (0.0297) (0.0001) (0.0009) (0.0023) (0.0013) (0.0007)

0.3 0.300 0.317 0.299 0.297 0.298 0.292 0.295
(0.0000) (0.0214) (0.0009) (0.0020) (0.0033) (0.0020) (0.0036)

0.4 0.400 0.410 0.412 0.388 0.395 0.374 0.372
(0.0009) (0.0104) (0.0117) (0.0031) (0.0050) (0.0029) (0.0046)

covtype

0.05 0.052 0.057 0.059 0.055 0.056 0.056 0.050
(0.0007) (0.0016) (0.0012) (0.0012) (0.0015) (0.0018) (0.0001)

0.1 0.107 0.112 0.114 0.110 0.114 0.111 0.102
(0.0014) (0.0046) (0.0034) (0.0019) (0.0035) (0.0034) (0.0005)

0.2 0.211 0.210 0.216 0.210 0.216 0.208 0.196
(0.0039) (0.0059) (0.0061) (0.0028) (0.0070) (0.0064) (0.0011)

0.3 0.295 0.287 0.292 0.293 0.300 0.285 0.287
(0.0024) (0.0046) (0.0041) (0.0046) (0.0090) (0.0090) (0.0015)

0.4 0.349 0.364 0.366 0.353 0.360 0.339 0.373
(0.0047) (0.0123) (0.0147) (0.0063) (0.0113) (0.0117) (0.002)

letter

0.05 0.040 0.038 0.033 0.041 0.036 0.032 0.041
(0.0013) (0.0015) (0.0013) (0.0007) (0.0010) (0.0008) (0.0007)

0.1 0.067 0.066 0.057 0.071 0.064 0.054 0.080
(0.0024) (0.0019) (0.0028) (0.0011) (0.0015) (0.0019) (0.0018)

0.2 0.103 0.109 0.093 0.118 0.110 0.083 0.146
(0.0035) (0.0025) (0.0045) (0.0018) (0.0028) (0.0018) (0.0046)

0.3 0.131 0.148 0.121 0.154 0.143 0.105 0.191
(0.0094) (0.0064) (0.0041) (0.0024) (0.0032) (0.0016) (0.0078)

0.4 0.149 0.166 0.148 0.179 0.168 0.120 0.214
(0.0080) (0.0076) (0.0097) (0.0033) (0.0036) (0.0021) (0.0094)
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Table 7: Mean and standard deviation of accuracy on non rejected data for 10 trials. “-" corresponds
to the case where all the test data samples are rejected.

dataset c APC+log APC+exp MPC+log OVA+log OVA+exp CE OVA+hin

vehicle

0.05 - 0.981 0.966 1.000 0.991 1.000 0.996
( - ) (0.0204) (0.0231) (0.0000) (0.0089) (0.0000) (0.0111)

0.1 1.000 0.962 0.958 0.989 0.981 0.990 0.947
(0.0000) (0.0348) (0.0209) (0.0115) (0.0064) (0.0081) (0.0282)

0.2 0.984 0.937 0.924 0.979 0.972 0.974 0.964
(0.0188) (0.0289) (0.0301) (0.0072) (0.0044) (0.0005) (0.0535)

0.3 0.946 0.905 0.894 0.960 0.945 0.959 0.941
(0.0250) (0.0195) (0.0384) (0.0093) (0.0198) (0.0073) (0.0265)

0.4 0.891 0.831 0.853 0.902 0.904 0.917 0.887
(0.0288) (0.0543) (0.0418) (0.0164) (0.0107) (0.0087) (0.0375)

satimage

0.05 0.991 0.973 0.972 0.987 0.982 0.983 0.995
(0.0025) (0.0148) (0.0141) (0.0014) (0.0020) (0.0011) (0.0010)

0.1 0.975 0.966 0.957 0.980 0.973 0.975 0.974
(0.0034) (0.0095) (0.0170) (0.0023) (0.0010) (0.0015) (0.0093)

0.2 0.950 0.930 0.926 0.962 0.954 0.957 0.965
(0.0102) (0.0117) (0.0119) (0.0022) (0.0043) (0.0013) (0.0018)

0.3 0.929 0.904 0.905 0.944 0.935 0.938 0.952
(0.0055) (0.0196) (0.0153) (0.0031) (0.0023) (0.0020) (0.0013)

0.4 0.915 0.890 0.890 0.922 0.915 0.918 0.933
(0.0066) (0.0049) (0.0109) (0.0034) (0.0029) (0.0023) (0.0028)

yeast

0.05 - - - - - - -
( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - )

0.1 - - - - 0.593 - -
( - ) ( - ) ( - ) ( - ) (0.2699) ( - ) ( - )

0.2 - - - - 0.742 0.806 -
( - ) ( - ) ( - ) ( - ) (0.1538) (0.0615) ( - )

0.3 - - - 0.822 0.733 0.805 -
( - ) ( - ) ( - ) (0.0780) (0.0577) (0.0301) ( - )

0.4 - - - 0.750 0.630 0.766 0.760
( - ) ( - ) ( - ) (0.0393) (0.0353) (0.0169) (0.0394)

covtype

0.05 0.795 0.797 0.798 0.821 0.803 0.820 0.886
(0.0205) (0.0764) (0.0169) (0.0267) (0.0313) (0.0321) (0.0314)

0.1 0.765 0.806 0.793 0.781 0.767 0.796 0.812
(0.0176) (0.0177) (0.0185) (0.0200) (0.0375) (0.0285) (0.0216)

0.2 0.740 0.759 0.738 0.749 0.732 0.771 0.850
(0.0181) (0.0185) (0.0102) (0.0135) (0.0317) (0.0235) (0.0161)

0.3 0.719 0.743 0.722 0.719 0.699 0.733 0.795
(0.0115) (0.0156) (0.0116) (0.0126) (0.0231) (0.0204) (0.0133)

0.4 0.698 0.638 0.649 0.687 0.669 0.694 0.768
(0.0134) (0.0128) (0.0340) (0.0109) (0.0183) (0.0180) (0.0135)

letter

0.05 0.998 0.986 0.986 0.996 0.994 0.998 0.996
(0.0010) (0.0046) (0.0021) (0.0015) (0.0019) (0.0008) (0.0021)

0.1 0.993 0.978 0.980 0.994 0.986 0.994 0.963
(0.0013) (0.0045) (0.0034) (0.0014) (0.0019) (0.0015) (0.0044)

0.2 0.979 0.966 0.969 0.983 0.968 0.984 0.913
(0.0027) (0.0049) (0.0046) (0.0015) (0.0019) (0.0014) (0.0227)

0.3 0.969 0.948 0.961 0.966 0.950 0.969 0.942
(0.0054) (0.0355) (0.0038) (0.0025) (0.0023) (0.0024) (0.0446)

0.4 0.952 0.852 0.946 0.946 0.930 0.949 0.892
(0.0051) (0.0379) (0.0383) (0.0023) (0.0027) (0.0026) (0.0484)
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Table 8: Mean and standard deviation of rejection ratio (the ratio of rejected data samples over whole
test data) for 10 trials.

dataset c APC+log APC+exp MPC+log OVA+log OVA+exp CE OVA+hin

vehicle

0.05 0.909 0.605 0.570 0.868 0.623 0.721 0.825
(0.0460) (0.0486) (0.0400) (0.0156) (0.0179) (0.0137) (0.0914)

0.1 0.740 0.525 0.469 0.708 0.556 0.590 0.567
(0.0383) (0.0812) (0.0465) (0.0271) (0.0129) (0.0105) (0.1859)

0.2 0.564 0.381 0.374 0.538 0.466 0.483 0.620
(0.0365) (0.0842) (0.0852) (0.0131) (0.0224) (0.0098) (0.1821)

0.3 0.410 0.299 0.276 0.447 0.396 0.412 0.512
(0.0633) (0.0616) (0.0841) (0.0080) (0.0200) (0.0149) (0.0535)

0.4 0.247 0.123 0.173 0.353 0.321 0.313 0.332
(0.0450) (0.1347) (0.1082) (0.0127) (0.0126) (0.0092) (0.0839)

satimage

0.05 0.504 0.428 0.411 0.462 0.385 0.400 0.603
(0.0359) (0.1361) (0.1312) (0.0125) (0.0105) (0.0125) (0.0060)

0.1 0.360 0.347 0.314 0.357 0.311 0.313 0.409
(0.0245) (0.0466) (0.0981) (0.0050) (0.0065) (0.0082) (0.0781)

0.2 0.245 0.173 0.158 0.264 0.228 0.221 0.275
(0.0407) (0.0432) (0.0560) (0.0032) (0.0094) (0.0075) (0.0042)

0.3 0.142 0.069 0.074 0.187 0.155 0.145 0.219
(0.0247) (0.0679) (0.0609) (0.0050) (0.0077) (0.0079) (0.0037)

0.4 0.094 0.011 0.020 0.113 0.096 0.078 0.166
(0.0221) (0.0090) (0.0301) (0.0030) (0.0051) (0.0042) (0.0066)

yeast

0.05 1.000 0.970 0.985 1.000 0.999 1.000 0.998
(0.0000) (0.0441) (0.0134) (0.0000) (0.0010) (0.0000) (0.0036)

0.1 1.000 0.971 0.982 0.999 0.995 0.999 0.999
(0.0000) (0.0265) (0.0224) (0.0010) (0.0026) (0.0019) (0.0025)

0.2 1.000 0.879 0.999 0.992 0.977 0.979 0.994
(0.0000) (0.1466) (0.0025) (0.0039) (0.0062) (0.0055) (0.0116)

0.3 1.000 0.858 0.996 0.974 0.931 0.918 0.950
(0.0000) (0.1741) (0.004) (0.0088) (0.0105) (0.0068) (0.0271)

0.4 0.998 0.581 0.593 0.919 0.843 0.845 0.816
(0.0068) (0.3448) (0.3394) (0.0135) (0.0197) (0.0158) (0.0434)

covtype

0.05 0.985 0.950 0.943 0.964 0.957 0.955 0.995
(0.0025) (0.0194) (0.0102) (0.0037) (0.0059) (0.0051) (0.0009)

0.1 0.947 0.877 0.866 0.913 0.895 0.892 0.982
(0.0104) (0.0304) (0.0188) (0.0062) (0.0132) (0.0073) (0.0019)

0.2 0.816 0.762 0.736 0.793 0.759 0.733 0.924
(0.0293) (0.0426) (0.0747) (0.0098) (0.0238) (0.0136) (0.0072)

0.3 0.671 0.688 0.614 0.641 0.600 0.553 0.860
(0.0657) (0.0328) (0.0562) (0.0141) (0.0344) (0.0141) (0.007)

0.4 0.470 0.031 0.156 0.457 0.421 0.346 0.839
(0.0647) (0.0091) (0.2154) (0.0163) (0.0391) (0.0120) (0.0072)

letter

0.05 0.792 0.660 0.538 0.802 0.682 0.628 0.810
(0.0265) (0.0245) (0.0333) (0.0107) (0.0119) (0.0180) (0.0192)

0.1 0.646 0.571 0.460 0.695 0.585 0.506 0.677
(0.0283) (0.0291) (0.0475) (0.0103) (0.0130) (0.0164) (0.0210)

0.2 0.461 0.451 0.366 0.552 0.463 0.365 0.507
(0.0251) (0.0205) (0.0387) (0.0076) (0.0123) (0.0123) (0.0804)

0.3 0.371 0.369 0.316 0.451 0.372 0.273 0.528
(0.0444) (0.1188) (0.0218) (0.0063) (0.0101) (0.0091) (0.1163)

0.4 0.286 0.055 0.262 0.363 0.295 0.198 0.346
(0.0280) (0.1173) (0.0785) (0.0075) (0.0112) (0.0078) (0.1134)
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