
Supplementary Material for the Paper:
Mutually Regressive Point Processes

In the following sections, we denote by

{t1, t2, . . . } ∼ PP(λ(t)), (S1)

a realization of a point process characterized by the intensity function λ(t).

S.I Correctness Proof of a MR-PP simulation

Theorem 1 Assume that a set of events is sampled from a HP HPN (λ∗n(t)). Afterwards, the sim-
ulated events are accepted with probability λn(t)/λ∗n(t) = pn(t), where pn(t) is defined in Equa-
tion (5). In case an event is rejected, its offsprings are pruned so that the intensity λ∗n(t) defined
in Equation (4) depends only on the realized events whose arrival times are notated as ṫmi . Let
Ṡn , {ṫni , żni }

Kn
i=1 be the sequence of the Kn realized (observed) events of type n augmented with

the cluster structure: żni is the arrival time of the event which triggered the i-th event of type n.
Similarly, S̃n , {t̃ni , z̃ni }

Mn
i=1 is the sequence of the thinned events of type n. Then,

Ṡn ∼ PP(λ∗n(t)pn(t)), and (S2)

S̃n ∼ PP(λ∗n(t)(1− pn(t))). (S3)

Proof: Note in the above description that the thinned events are not observed; hence they constitute
latent variables of the model. Moreover, the variables żni and z̃ni are latent for both the observed
events and the thinned events. The proof is similar to the proof in [S1]. We assume a temporal order
of the observed events such that 0 < ṫn1 < ṫn2 < ṫn3 < · · · < ṫnKn

. Similarly, for the thinned events,
0 < t̃n1 < t̃n2 < t̃n3 < · · · < t̃nMn

. The merged sequence of the realized and thinned events is denoted
by:

Sn , {tni , zni , sni , }
Kn+Mn
i=1 , (S4)

such that 0 < tn1 < tn2 < ti3 < · · · < tnKn+Mn
. The variables sni correspond to the label that

indicates whether the event will be realized (sni = 1) or thinned (sni = 0).

For Equation (S2), we will prove that:

p(Ṡn | λ∗n(t), pn(t)) = exp

{
−
∫ T

0

λ∗n(τ) pn(τ) dτ

}
×

Kn∏
i=1

λ∗n(ṫni ) pn(ṫni ). (S5)

Then, Equation (S3) can follow from Bayes rule. From the generative procedure described above, it
holds that:

p(Sn | λ∗n(t), pn(t)) =

exp

{
−
∫ T

0

λ∗n(τ) dτ

}
×
Kn+Mn∏
i=1

λ∗n(tni )×
Mn+Kn∏
i=1

pn(tni )s
n
i (1− pn(tni ))1−s

n
i . (S6)

The first two terms in Equation (S6) are related to the generation of the arrival times from the Hawkes
process. The last one is associated with the labeling of the events and can be derived by the chain
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rule according to the chronological order of the events. Note that this likelihood is different from
the joint probability p(tn1 , t

n
2 , . . . , t

n
Kn+Mn

) since it also involves the probability of the outcome of
the thinning for each event. Then, from Bayes rule and Equations (S5), (S6), Equation (S3) follows:

p(S̃n | λ∗n(t), pn(t)) =
p(Sn | λ∗n(t), pn(t))

p(Ṡn | λ∗n(t), pn(t))
⇒

p(S̃n | λ∗n(t), pn(t)) = exp

{
−
∫ T

0

λ∗n(t) (1− pn(τ)) dτ

}
×

Mn∏
i=1

λ∗n(t̃ni ) (1− pn(t̃ni )). (S7)

Assuming a cluster representation [S2], Equation (S6) can be rewritten as [S3]:

p(Sn | λ∗n(t), pn(t)) = p(S0n | λ∗n(t), pn(t))×
N∏
m=1

Km∏
j=1

p(S ṫ
m
j
n | λ∗n(t), pn(t)), (S8)

p(S0n | λ∗n(t), pn(t)) = exp(−λ∗nT )×
Kn∏
i=1

(λ∗npn(ṫni ))I(ż
n
i =0) ×

Mn∏
i=1

(λ∗n(1− pn(t̃ni ))I(z̃
n
i =0),

(S9)

p(S ṫ
m
j
n | λ∗n(t), pn(t)) =

exp

{
−
∫ T

ṫmj

λm,n(τ, ṫmj )dτ

}
×

Kn∏
i=1

(λm,n(ṫni , ṫ
m
j )pn(ṫni ))I(ż

n
i =ṫmj )

×
Mn∏
i=1

(λm,n(t̃ni , ṫ
m
j )(1− pn(t̃ni )))I(z̃

n
i =ṫmj ), (S10)

where S0n are the events with zni = 0 that are generated by the exogenous intensity λ∗n, and S ṫ
m
j
n the

events that are generated by the observed event of type m occurred at ṫmj . Time 0 is associated with
a virtual event which generates events according to the exogenous intensity. zni equals the arrival
time of the parent of the event at tni . In order to obtain Equation (S5) from Equation (S8), we will
marginalize the thinned events. Equivalently, we will marginalize the thinned events in each one of
Equations (S9), (S10). We first marginalize over the arrival times of the thinned events:

p(Ṡ ṫ
m
j
n ,M

ṫmj
n | λ∗n(t), pn(t)) =

exp

{
−
∫ T

ṫmj

λm,n(τ, ṫmj )dτ

}
×

Kn∏
i=1

(λm,n(ṫni , ṫ
m
j )pn(ṫni ))I(ż

n
i =ṫmj )

×
(
∫ T
ṫmj
λm,n(τ, ṫmj ) (1− pn(τ))dτ)M

ṫmj
n

M
ṫmj
n !

. (S11)

In the above equation, M
ṫmj
n is the number of thinned events generated by the observed event at ṫmj .

Note that the ordering of t̃ni reduces the integration interval for the marginalization. Subsequently,
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we marginalize over the number of the thinned events M
ṫmj
n :

p(Ṡ ṫ
m
j
n | λ∗n(t), pn(t)) =

exp

{
−
∫ T

ṫmj

λm,n(τ, ṫmj )dτ

}
×

Kn∏
i=1

(λm,n(ṫni , ṫ
m
j )pn(ṫni ))I(ż

n
i =ṫmj )

×
∞∑

M
ṫm
j

n =0

(
∫ T
ṫmj
λm,n(τ, ṫmj ) (1− pn(τ))dτ)M

ṫmj
n

M
ṫmj
n !

⇒

p(Ṡ ṫ
m
j
n | λ∗n(t), pn(t)) =

exp

{
−
∫ T

ṫmj

λm,n(τ, ṫmj )dτ

}
×

Kn∏
i=1

(λm,n(ṫni , ṫ
m
j )pn(ṫni ))I(ż

n
i =ṫmj )

× exp

{∫ T

ṫmj

λm,n(τ, ṫmj )(1− pn(τ))dτ

}
⇒

p(Ṡ ṫ
m
j
n | λ∗n(t), pn(t)) = exp

{
−
∫ T

ṫmj

λm,n(τ, ṫmj )pn(τ)dτ

}
×

Kn∏
i=1

(λm,n(ṫni , ṫ
j
m)pn(ṫni ))I(ż

n
i =ṫmj ).

(S12)

An identical analysis holds for p(Ṡ0n | λ∗n(t), pn(t)). By multiplying Equations (S12), for m =
1, 2, . . . , N and j = 1, 2, . . . ,Km (assuming a cluster representation similar to that in Equation (S8)
for the observed events), Equation (S5) is obtained.

S.II Details of the Bayesian Inference Algorithm

In Section S.II.A, we provide the computation of the likelihood that will be used for the deriva-
tions of the posterior distributions and the Metropolis-Hastings ratios of the inference algorithm. In
Section S.II.B, we provide the Gibbs updates for the parameters in the intensity function λ∗n(t). In
Section S.II.C, we provide the derivations for the conjugate Gibbs update of the interaction weights.
In Section S.II.D, we derive the collapsed Metropolis-Hastings ratio for the update of the mean and
precision of the Gaussian prior for the interaction weights. Finally, in Section S.II.E, we derive the
updates for the parameters of the history kernel function.

The model parameters related to the effect on the point process of events of type n are represented
as vectors. Specifically, the excitatory and decaying coefficients in the intensity function in Equa-
tions (4),(2) are represented as:

αn = [α1,n, α2,n, . . . , αN,n], and δn = [δ1,n, δ1,n, . . . , δN,n]. (S13)

Similarly, the weights, the precision and the mean of their priors are represented as:

wn = [bn, w1,n, w2,n, . . . , wN,n]T , (S14)

τn = [1/σ2
0 , τ1,n, τ2,n, . . . , τN,n]T , (S15)

µn = [µ0, µ1,n, µ2,n, . . . , µN,n]T , (S16)

Σn = diag(τn)−1. (S17)

We assume the following priors, unless otherwise mentioned,:

λ∗n ∼ Gamma(αe, βe), (S18)
αm,n ∼ Gamma(αm, βm), (S19)
δm,n ∼ Exp(λδ), (S20)
c ∼ Gamma(αc, βc), (S21)
γ ∼ Exp(λγ), (S22)
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where αe > 0, βe > 0, αm > 0, βm > 0, λδ > 0, αc > 0, βc > 0, and λγ > 0. We denote by p(α)
the probability density of the prior of the scalar parameter α.

Let θ be the set of the hyperparameters in Equations (S18)-(S22), and (8)-(11):

θ , {αe, βe, αm, βm, λδ, αc, βc, λγ , µ0, σ
2
0 , ντ , ατ , βτ , νµ, αµ, λµ, α0, δ0}. (S23)

S.II.A Derivation of the data likelihood

The likelihood of the sequence Tn , {tni }
Kn
i=1 of Kn events generated by a point process with

intensity function λn(t) in the time window [0, T ] is [S4]:

p(Tn | λn(t)) = exp

{
−
∫ T

0

λn(t) dt

}
Kn∏
i=1

λn(tni ). (S24)

The likelihood in Equation (S24) will be sequentially augmented with the following latent variables
in order to derive conjugate updates for λ∗n, αm,n (for the case of a flat MR-PP), and wn. These
latent variables are:

1. parent variables zni = ṫmj for the i-th event of type n occurred at time tni , in the sense that
it belongs to the Poisson process λm,n(t, ṫmj ) generated by the j-th observed event of type
m occurred at time ṫmj .

2. Mn thinned events t̃ni of type n.

3. Pólya-Gamma random variables ωni associated with an event at tni .

Each one of the following subsections provides the likelihood for the inclusion of the latent variables
described above.

S.II.A.1 Likelihood of a cluster MR-PP with thinned events

The likelihood of the augmented sequence Sn according to Equation (S4) given the model parame-
ters is:

p(Sn | λ∗n,αn, δn,wn, c, γ) =

exp(−λ∗nT )×
N∏
m=1

Km∏
j=1

exp

{
−
∫ T

ṫmj

αm,ne
−δm,n(τ−ṫmj )dτ

}
×

Kn+Mn∏
i=1

[λ∗n
I(zni =0) ×

N∏
m=1

Km∏
j=1

(αm,ne
−δm,n(t

n
i −ṫ

m
j ))I(z

n
i =ṫmj )]×

Kn+Mn∏
i=1

e(w
T
nh(tni ))×s

n
i

ew
T
nh(tni ) + 1

. (S25)

Intuitively, Equation (S25) can be viewed as the likelihood of two constituent procedures: a point
process PP(λ∗n(t)), which generates the arrival times Tn, and a thinning procedure which generates
the labels of the events. Note that there is no circularity since the probability pn(t) and the intensity
λ∗n(t) depend on the realized events which occurred before time t. Therefore, the likelihood in
Equation (S25) is well defined. The first term in Equation (S25) stems from the fact that there are
1 +

∑N
m=1Km processes which generate events of type n: the exogenous, homogeneous Poisson

PP(λ∗n) and the non-homogeneous Poisson processes generated by the Km realized events of type
m. Each one of them contributes an exponential term to the likelihood according to Equation (S24).
The second term is related to the assignment of the events to their parents, so that the product in
Equation (S25) contains only the events that belong to the point process trigerred by the event ṫmj .
The last term in Equation (S25) accounts for the label of the events (whether the event is realized or
not). Note that the dependence on the realized events of the rest of the types is implicitly assumed
in the aforementioned formulas.
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S.II.A.2 Pólya-Gamma augmented likelihood of a cluster MR-PP with thinned events

We define the likelihood contribution of the thinning acceptance/ rejection of an event at time tni as:

`ni ,
e(w

T
nh(tni ))×s

n
i

ew
T
nh(tni ) + 1

. (S26)

According to Theorem 1 in [S5], it can be rewritten as:

`ni ∝ exp(νni wn
Th(tni ))

∫ ∞
0

exp

{
−1

2
ωni (wT

nh(tni ))2
}
PGm(ωni ; 1, 0) dωni , (S27)

where νni = sni −1/2, and PGm(ωni ; 1, 0) is the density of a Pólya-Gamma distribution with param-
eters (1, 0). Combined with a prior onwn, the integrand in Equation (S27) defines a joint density on
(sni , ω

n
i ,wn), where ωni is a latent Pólya-Gamma random variable. We associate a Pólya-Gamma

random variable with each event, and the event sequences become: ˙SPn , {ṫni , żni , ω̇ni }
Kn
i=1,

S̃Pn , {t̃ni , z̃ni , ω̃ni }
Mn
i=1, SPn , {tni , sni , zni , ωni }

Kn+Mn
i=1 . Therefore, Equation (S25) becomes:

p(SPn | λ∗n,αn, δn,wn, c, γ) ∝

exp(−λ∗nT )×
N∏
m=1

Km∏
j=1

exp

{
−
∫ T

ṫmj

αm,ne
−δm,n(τ−ṫmj )dτ

}
×

Kn+Mn∏
i=1

[λ∗n
I(zni =0) ×

N∏
m=1

Km∏
j=1

(αm,ne
−δm,n(t

n
i −ṫ

m
j ))I(z

n
i =ṫmj )]×

Kn+Mn∏
i=1

exp
{
νni wn

Th(tni )− 1
2ω

n
i (wT

nh(tni ))2
}
PGm(ωni ; 1, 0). (S28)

S.II.B Gibbs updates for the intensity functions

S.II.B.1 Gibbs update for the exogenous rates λ∗n
Given Sn as defined in Equation (S4), conjugate updates are possible for the intensity parameters
λ∗n [S6].

From Equations (S18), (S28), and by keeping the terms in which λ∗n appears, we obtain:

p(λ∗n | Sn) ∝ λ∗n
N∗n exp(−λ∗n T ) Gamma(λ∗n;αe, βe), (S29)

where N∗n is the number of events of type n which belong to the exogenous process λ∗n. Therefore,

p(λ∗n | Sn) = Gamma(λ∗n; α̃ne , β̃
n
e ), (S30)

α̃ne = N∗n + αe, (S31)

β̃ne = T + βe. (S32)

S.II.B.2 Gibbs update for the endogenous rates αm,n

Given Sn and Ṫm, conjugate prior updates are possible for the endogenous intensity parameters
αm,n for a flat MR-PP [S6] and a Gamma prior. This is due to the independence between the
parameters in the thinning portion pn(t) and the intensity-related portion λ∗n(t) of the model.

From Equations (S19), (S28), the update for the mutually excitatory coefficients αm,n is given by:

p
(
αm,n | {zni }

Kn+Mn
i=1 , {ṫmi }

Km
i=1 , δm,n

)
∝ Lαm,n

× p(αm,n), (S33)

where Lαm,n the factors of the likelihood in (S28) that include αm,n:

Lαm,n = exp

{
−αm,n

Km∑
i=1

∫ T

ṫmi

exp
(
−δm,n(τ − ṫmi )

)
dτ

}
αNm,n
m,n

= exp

{
−αm,n

( Km

δm,n
− 1

δm,n

Km∑
i=1

exp(−δm,n(T − ṫmi ))
)}

αNm,n
m,n , (S34)
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and Nm,n is the number of events of type n triggered by an event of type m. Finally, if a gamma
prior is assumed, i.e. p(αm,n) = Gamma(αm,n;αm, βm),

p(αm,n | . . . ) = Gamma(αm,n; α̃m,nm , β̃m,nm ), (S35)
α̃m,nm = αm +Nm,n, (S36)

β̃m,nm = βm +
1

δm,n

(
Km −

Km∑
i=1

exp(−δm,n(T − ṫmi ))
)
. (S37)

In case of a hierarchical MR-PP, αm,n will be updated jointly with the hyperparameters of the
corresponding weight, see Subsection S.II.D.

S.II.B.3 Gibbs sampling for the events’ cluster structure

The parent of each event follows a categorical posterior distribution. Let żni be the arrival time of
the observed event which triggered the i-th observed event of type n. The set of potential parent
events consists of the observed events (of the same or different type) that occurred before ṫni and it
is denoted by

Zni ,
{
{ṫmj : ṫmj < ṫni }

Km
j=1

}N
m=1

. (S38)

Let Pni ,
{
p(żni = ṫ | . . . )

}
ṫ∈Zn

i

be the corresponding posterior selection probabilities. From
Equation (S28), we can obtain:

p(żni = 0 | . . . ) =
λ∗n
Z
, (S39)

p(żni = ṫmj | . . . ) =
αm,ne

−δm,n(ṫ
n
i −ṫ

m
j )

Z
, (S40)

Z = λ∗n +

N∑
m=1

Km∑
j=1

αm,ne
−δm,n(ṫ

n
i −ṫ

m
j )I(ṫmj < ṫni ). (S41)

Although there are
∑N
n=1Kn parent variables, they are conditionally independent and may be sam-

pled in parallel.

S.II.B.4 Metropolis update for the decaying coefficients δm,n

A Gaussian proposal distribution that is updated according to the adaptive Metropolis algorithm [S7]
is used for δm,n.

Let δ′m,n be the proposed value of δm,n. From Equations (S20), (S28), the Metropolis ratio Hδm,n

will be:

Hδm,n
= H1

δm,n
×H2

δm,n
×H3

δm,n
, (S42)

H1
δm,n

= exp{−λδ(δ′m,n − δm,n)}, (S43)

H2
δm,n

= exp

(δm,n − δ′m,n)×
Km∑
j=1

Kn+Mn∑
i=1

(tni − ṫmi )I(zni = ṫmj )

 , (S44)

H3
δm,n

=

exp

{
αm,n

[
Km

(
1

δm,n
− 1

δ′m,n

)
+

Km∑
i=1

(
exp(−δ′m,n(T − ṫmi ))

δ′m,n
− exp(−δm,n(T − ṫmi ))

δm,n

)]}
(S45)
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S.II.C Gibbs Sampling for the interaction weights

For obtaining the posterior of the interaction weights, we keep from Equations (10), (S28) only the
terms which contain wn:

p(wn | . . . ) ∝

N (wn;µn,Σn)×
Kn+Mn∏
i=1

exp
{
νinwn

Th(tni )− 1
2ω

i
n(wT

nh(tni ))2
}
∝

N (wn;µn,Σn)×
Kn+Mn∏
i=1

exp

{
−ω

n
i

2
(wT

nh(tni )− νni /ωni )2
}
∝

exp

{
−1

2
(wn − µn)TΣ−1n (wn − µn)

}
× exp

{
−1

2
(zn −Hnwn)TΩn(zn −Hnwn)

}
,

(S46)

where:

Ωn = diag(ωn1 , ω
n
2 , . . . , ω

n
Kn+Mn

), (S47)

zn = [νn1 /ω
n
1 , . . . , ν

n
Kn+Mn

/ωnKn+Mn
]T , (S48)

Hn = [h(tn1 ), . . . ,h(tnKn+Mn
)]T . (S49)

Finally,

p(wn | . . . ) = N (wn; Σ̃n, µ̃n). (S50)

By equating the quadratic and linear terms of wn, we get Σ̃n and µ̃n respectively:

Σ̃n =
(
Σ−1n +HT

nΩnHn

)−1
, (S51)

µ̃n = Σ̃n

(
Σ−1n µn +HT

nΩnzn
)
. (S52)

Note that the labels of the events contribute to the new sample of the weight through the terms
νni . The sign of these terms (positive for a realized event and negative for a thinned event) steers
the new sample of the weight to either a positive or a negative value according to Equation (S52).
The contribution of these terms is weighted by the history of the corresponding event. In case of
negligible history the second terms of the summation in the updates of Equations (S51) and (S52)
have small effect.

From Theorem 1 in [S5], for α = 1 and β = 1, the posterior for sampling ωni is

p(ωni | . . . ) = p(ωni | {Ṫn′}Nn′=1,wn, c, γ) = PGm(ωni ; 1,wT
nh(tin)). (S53)

Although there are
∑N
n=1Kn +Mn Pólya-Gamma random variables that have to be sampled, they

are independent and can be sampled in parallel.

S.II.D Collapsed Metropolis-Hastings for the weights’ prior mean µm,n and precision τm,n
and the endogenous excitation rate αm,n

In case of a hierarchical MR-PP, αm,n is coupled with µm,n, and τm,n through the Equa-
tions (8)-(10). Therefore, the conjugate update of Equations (S35)-(S37) is no longer available
and αm,n, µm,n and τm,n will be jointly updated with a Metropolis-Hastings step. From Equa-
tions (S19), (8), (9), (10), (S28), and by keeping only the terms in the likelihood that include
µm,n, τm,n, αm,n,wn, we will first find the joint posterior up to a normalization constant:

p(αm,n, µm,n, τm,n,wn | . . . ) ∝
p(αm,n)× p(τm,n | αm,n)× p(µm,n | αm,n, τm,n)× p

(
wn|µn, τn;θ

)
×

p(SPn | λ∗n,αn, δn,wn, c, γ). (S54)

The collapsed, with respect to the interaction weights wn, joint posterior will be:

p
(
αm,n, µm,n, τm,n | . . .

)
=

∫
p
(
αm,n, µm,n, τm,n,wn | . . .

)
dwn. (S55)
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From Equations (S46), (S50), (S54), (S34), (S55), by keeping only the terms which depend on wn

inside the integration and by making use of the normalization constant of the multivariate Gaussian
distribution, we obtain:

p(αm,n, µm,n, τm,n | . . . ) ∝

p(αm,n)× p(τm,n | αm,n)× p(µm,n | αm,n, τm,n)× Lαm,n × τ
1/2
m,n × exp{−µ

2
m,nτm,n

2 }
|Σ̃n|−1/2 exp

{
− 1

2 µ̃
T
n Σ̃−1n µ̃n

} .

(S56)

Equation (S56) is used to compute the Metropolis-Hastings ratio. As proposal for αm,n we can use
the prior in which case p(αm,n) is removed from the ratio since it is cancelled by the probability
density of the proposal. Similarly, the Normal Gamma defined in Equations (8), (9) for the current
sample αm,n is used as proposal distribution for µm,n, and τm,n, hence the second and third terms in
the numerator of Equation (S56) are omitted in the ratio since they are cancelled by the probability
density of the proposal.

S.II.E Metropolis updates for the history kernel functions

A Gaussian proposal distribution that is updated according to the adaptive Metropolis algorithm [S7]
is used for both c and γ.

Recall that the aggregated temporal history of the events of type m at time t is defined as:

hm(t) = c

Km∑
i=1

e−γ(t−ṫ
m
i )I(ṫim < t), (S57)

h(t) = [1, h1(t), h2(t), . . . , hN (t)]T . (S58)

We also define ~~~(t), as

~m(t) =

Km∑
i=1

e−γ(t−ṫ
m
i )I(ṫim < t), (S59)

~~~(t) = [1, ~1(t), ~2(t), . . . , ~N (t)]T . (S60)

Let c′ be the proposed value of c. From Equations (S21), (S28), the Metropolis ratio Hc will be:

Hc = H1
c ×H2

c , (S61)

H1
c =

(c′
c

)αc−1
× exp{−βc(c′ − c)}, (S62)

H2
c = exp

{
∆c

N∑
n=1

Kn+Mn∑
i=1

νni wn
T~~~(tni )−∆2

c

N∑
n=1

Kn+Mn∑
i=1

1
2ω

n
i (wT

n~~~(tni ))2

}
, (S63)

∆c , c′ − c, (S64)

∆2
c , c′2 − c2. (S65)

Let γ′ be the proposed value of γ, and ~′m(t), ~~~′(t) the corresponding history kernel functions. From
Equations (S22), (S28), the Metropolis ratio Hγ will be:

Hγ = H1
γ ×H2

γ , (S66)

H1
γ = exp{−λγ(γ′ − γ)}, (S67)

H2
γ = exp

{
c

N∑
n=1

Kn+Mn∑
i=1

νni wn
T∆~~~(tni )− c2

N∑
n=1

Kn+Mn∑
i=1

1
2ω

n
i [(wT

n~~~′(tni ))2 − (wT
n~~~(tni ))2]

}
,

(S68)

∆~~~(tni ) , ~~~′(tni )− ~~~(tni ). (S69)
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S.III Experimental Details

Table S1 shows the learning parameters related to the Adaptive Metropolis algorithm [S7] that were
used in all of the experiments. The same notation as in [S7] is adopted.

Table S1: Adaptive Metropolis Parameters

AM Parameter
Model Parameter

δm,n c γ

ε 0.0001 0.0001 0.0001

c0 0.001 0.1 0.01

sd 10 10 10

In the next subsections, we elaborate on the hyperparameters used in the experiments. The hyperpa-
rameters were chosen manually so that the predictive log-likelihood on held-out data is maximized.
For the synthetic experiment, the hyperparameters of the true and the learned MR-PP are the same.
We also provide some additional experimental results.
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S.III.A Details of the experimental results on the synthetic validation

Table S2 shows the hyperparameters used in the synthetic experiment. For demonstration purposes,
we assumed an exponential prior for αm,n, i.e. αm,n ∼ Exp(λm).

Note that large values for δ0 = 1e5 in the activation functions φτ (α) and φµ(α) indicate hard
relational constraints so that an effect from a type m on a type n is either inhibitory (when αm,n <
α0) or excitatory (when αm,n > α0). Moreover, the small value for αµ indicates a strong inhibitory
relationship in case the excitation is below the threshold value α0 = 0.015 since the mean µm,n will
be sampled from a Gaussian distribution with a large, negative mean. On the other hand, the large
values for νµ = 1000 and λµ = 100 indicate a vanishing inhibitory relationship when the excitation
is above the threshold value α0. This is because, in this case, µm,n will be sampled from a Gaussian
distribution with almost zero mean and variance.

Specifically, when αm,n > α0, φτ (αm,n) ≈ 1. Subsequently, the precision τm,n is sampled approx-
imately from Gamma(ντ , βτ ). Since ντ > βτ and in combination with the fact that the mean will be
sampled from a Gaussian with almost zero mean and variance, the corresponding weight wm,n will
take a value close to zero with high probability. A symmetric scenario holds when αm,n < α0. In
this case, φτ (αm,n) ≈ 0, and the precision will be sampled approximately from Gamma(ατ , βτ ).
Therefore, τm,n will take a small value with high probability, and inhibitory relationships are en-
abled from type m on type n.

Table S2: Hyperparameters for the Synthetic Experiment
Function Parameter Value

λn(t)

αe 7

βe 1000

λm 10

λδ 20

hm(t)

αc 100

βc 10

λγ 5

wn

µ0 10

σ0 1

ντ 1000

ατ 10

βτ 1

νµ 1000

αµ 0.01

λµ 100

φµ(α)
α0 0.015

δ0 1e5

φτ (α)
α0 0.015

δ0 1e5
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In Figures S1, S2, we plot the autocorrelation coefficients for the endogenous rates αm,n and the
interaction weights wn for n = 1 and n = 2 respectively to demonstrate the convergence of the
MCMC.

(a) Excitation from Type I (b) Inhibition from Type I

(c) Excitation from Type II (d) Inhibition from Type II

Figure S1: Autocorrelation coefficient for the parameters of the effect on events of Type I.

(a) Excitation from Type I (b) Inhibition from Type I

(c) Excitation from Type II (d) Inhibition from Type II

Figure S2: Autocorrelation coefficient for the parameters of the effect on events of Type II.
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S.III.B Details of the experimental results on the stability of single neuron spiking dynamics

S.III.B.1 Monkey cortex, single neuron dynamics

Table S3 provides the hyperparameters used for the dynamics recovery of the spike trains of the
single, monkey cortex neuron. Note that the small value δ0 = 1 allows for the existence of both
a self-exciting and a self-inhibiting behavior. The large value for λδ = 10000 indicates a slowly
decaying self-exciting kernel. On the other hand, the small value for λγ = 10 indicates a fast
decaying history kernel. These facts imply an initially self-exciting behavior followed by a self-
exhaustion phenomenon when the aggregated history becomes large enough so that the thinning
procedure has considerable effect on the intensity.

Table S3: Hyperparameters for the Monkey Cortex, Single-Neuronal Experiment
Function Parameter Value

λn(t)

αe 100

βe 10

αm 1

βm 1

λδ 10000

h(t)

αc 10

βc 1

λγ 10

wn

µ0 0

σ0 10

ντ 1

ατ 10

βτ 1

νµ 10

αµ 0.01

λµ 10

φµ(α)
α0 10

δ0 1

φτ (α)
α0 10

δ0 1

These patterns are further corroborated by Figure S3. The slowly decaying self-exciting kernel
results in a step-like function λ∗(t). However, once the history kernel h(t) obtains a value high
enough due to the occurrence of the past spikes, it starts having a considerable effect on the MR-PP
intensity λ(t) and steers it to a small value. The thinning procedure prevents λ(t) from diverging to
explosive firing rates and therefore generating non-physiological patterns.
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(a) Observation 1 (b) Observation 2

(c) Observation 3 (d) Observation 4

(e) Observation 6 (f) Observation 6

(g) Observation 7 (h) Observation 8

(i) Observation 9 (j) Observation 10

Figure S3: Learned intensity functions for the spike patterns from monkey cortex.
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S.III.B.2 Human cortex, single neuron dynamics

Table S4 provides the hyperparameters used for the dynamics recovery of the spike trains of the
single, human cortex neuron. Note that the small value δ0 = 1 allows for the existence of both a
self-exciting and a self-inhibiting behavior. The small value for λδ = 0.1 indicates a fast decaying
self-exciting kernel. On the other hand, the large value for λγ = 100 indicates a slowly decaying
history kernel. The large value for µ0 = 10 and the small value for the excitation threshold α0 = 2
mediate the thinning effects.

Table S4: Hyperparameters for the Human Cortex, Single-Neuronal Experiment
Function Parameter Value

λn(t)

αe 1

βe 1

αm 0.6

βm 1

λδ 0.1

h(t)

αc 10

βc 1

λγ 100

wn

µ0 10

σ0 10

ντ 1

ατ 10

βτ 1

νµ 10

αµ 0.001

λµ 10

φµ(α)
α0 2

δ0 1

φτ (α)
α0 2

δ0 1

These patterns are further corroborated by Figure S4. Due to the fast decaying triggering intensity
λ∗(t), short-lived spikes are observed. Although the history kernel is slowly decaying, due to the
scarcity of past spikes the aggregated history has limited effect on λ(t). However, in some spike
trains, thinning effects are observed.
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(a) Observation 1 (b) Observation 2

(c) Observation 3 (d) Observation 4

(e) Observation 6 (f) Observation 6

(g) Observation 7 (h) Observation 8

(i) Observation 9 (j) Observation 10

Figure S4: Learned intensity functions for the spike patterns from human cortex.
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Figure S5 illustrates the simulation of the learned MR-PP for the interval [0, 80]. The activity re-
mains stable and similar to the physiological spike train that was used for the training.

(a) Simulated activity in [0,10] (b) Simulated activity in [10,20] (c) Simulated activity in [20,30] (d) Simulated activity in [30,40]

(e) Simulated activity in [40,50] (f) Simulated activity in [50,60] (g) Simulated activity in [60,70] (h) Simulated activity in [70,80]

Figure S5: Observed simulated activity of the MR-PP learned from human cortex spike patterns.
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S.III.C Details of the experimental results on the multi-neuronal spike train data

Table S5 provides the hyperparameters used for learning a MR-PP from the 25-neuron spike trains.
The small value for λδ = 0.1 indicates fast-decaying mutually triggering intensities and is justified
by the presence of short spike bursts. The large value for δ0 = 10000 indicates a distinguishable
relationship between a pair of types. Note that the threshold for the endogenous excitation α0 is
different for φµ(α)(α0 = 0.001) and φτ (α)(α0 = 5). This means that for the endogenous intensity
rates αm,n in the range [0.001, 5], the corresponding weight wm,n may be sampled from a Gaussian
with zero mean but large variance. In turn, this fact can result in a positive wm,n indicating an
additional excitation effect from type m on type n that may cancel repulsive effects from other
types.

Table S5: Hyperparameters for the Multi-Neuronal Experiment
Function Parameter Value

λn(t)

αe 0.1

βe 0.1

αm 10

βm 1000

λδ 0.1

hm(t)

αc 1

βc 100

λγ 5

wn

µ0 10

σ0 1

ντ 1000

ατ 1

βτ 10000

νµ 100

αµ 0.001

λµ 10

φµ(α)
α0 0.001

δ0 10000

φτ (α)
α0 5

δ0 10000
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Our proposed algorithm is implemented in C++. All the tests are run on a Linux machine (Ubuntu
18.04 LTS) with CPU as Intel(R) Xeon(R) CPU E5-4627 v2, 3.30GHz, and 500GB memory.

Figure S6 illustrates the computational demands of the main steps of the inference algorithm. We
plot the time for:

1. the Gibbs update of the parameters of the Hawkes intensity functions λ∗n(t) including the
sampling of the events’ parents.

2. the Gibbs updates of the parameters of the thinning probabilities pn(t), including the pa-
rameters of the history kernel hm(t).

3. the sampling of the thinned events.

The total inference time accounts also for the computation of the events’ history and the sampling
of their latent Pólya-Gamma variables, that are not plotted separately. This time reflects execution
time among 5 threads for the steps of the inference that can be executed in parallel.

Figure S6: Inference Time of a MR-PP from the Multi-Neuronal Spike Trains.
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