
Appendices

A Comparison to Previous Works

A.1 Optimization with Coupling

The method from Subsection 2.1 is used in several works, for example:

• Li and Liang [23] show a generalization bound for ReLU neural networks where there
is a strong separability assumption on the distribution of the data, which is critical in the
analysis.

• In Du et al. [15], it is shown that under some assumptions on the data, neural network with
ReLU activation would reach a global minimum of the empirical risk in polynomial time.

• Allen-Zhu et al. [3] also show an empirical risk bound on a multi-layer feed-forward neural
network with ReLU activation and relies on separability assumption on the data.

• Allen-Zhu et al. [2] show with almost no assumptions on the distribution of the data that the
generalization of neural networks with two or three layers is better then the generalization
of a "ground truth" function for a large family of functions, which includes polynomials.

• In Allen-Zhu and Li [1] similar techniques are used to show a generalization bound on
recurrent neural networks.

• Cao and Gu [9] show a generalization result for multi-layered networks, where the general-
ization is compared to a family of functions that take an integral form, similar to the one
developed in Theorem C.4. This integral form is also studied in [38], [21] in the context of
studying neural networks as random features.

All the above fix the weights of the output layer and consider only the ReLU activation function.
Note that while using ReLU as an activation function, it is possible to show that fixing the output
layer does not change the expressive power of the network. With that said, in practice all layers of
neural networks are being optimized, and the optimization process may not work as well if some of
the layers are fixed.

A.2 Optimization on all the Layers

The methods from Subsection 2.2 are also used in several works, for example:

In Andoni et al. [4] this approach is also used to prove that neural networks can approximate
polynomials. There the weights are drawn from a complex distribution, thus optimization is done on
a complex domain which is non standard. Moreover, that paper uses the exponent activation function
and assumes that the distribution on the data is uniform on the complex unit circle.

In Daniely et al. [12] and Daniely [11] this approach is used to get a generalization bound with respect
to a large family of functions, where the network may have more than two layers and a different
architecture than simple feed-forward. The methods used there are through the "conjugate kernel",
which is a function corresponding to the activation and architecture of the network. The proof of
our result is relatively more direct, and gives a bound which correspond directly to the activation
function, without going through the conjugate kernel. Moreover, those papers do not quantitatively
characterize the class of polynomials learned by the network, with an explicit proof.

Du and Lee [14] rely on the same methods and assumptions as Du et al. [15] to show an empirical
risk bound on multi-layer neural network where a large family of activations is considered and with
several architectures, including ResNets and convolutional ResNets. However, this does not imply a
bound on the population risk.

12

B Proofs from section 4

Proof of Proposition 4.1. By definition of our norm and the fact that E[xx>] = I for a standard
Gaussian distribution, it is enough to show that

min
u1...ur

‖
r∑
i=1

uiwi − w∗‖2 ≥
1

4
.

Re-writing
∑r
i=1 uiwi as Wu (where W is a d × r matrix and u is a vector in Rd), the left hand

side is equivalent to minu ‖Wu − w∗‖2, which is a standard linear least square problem, with a
minimum at u = (W>W)†W>w∗, and a minimal value of ‖(W (W>W)†W> − I)w∗‖2. Letting
W = USV > be an SVD decomposition of W (where U, V are orthogonal matrices) and simplifying
a bit, we get:

‖(W (W>W)†W> − I)w∗‖2 = ‖(USV >(V SU>USV >)†V SU> − UU>)w∗‖2

= ‖U‖2 · ‖(SV >(V S2V >)†V SU> − U>)w∗‖2 = ‖MU>w∗‖2,
where M is (with probability 1) a fixed d× d diagonal matrix, with a diagonal composed of d− r
ones and r zeros. Moreover, by symmetry, U>w∗ is uniformly distributed on the unit sphere,
so it is enough to understand the distribution of ‖Mz‖2 for a random unit vector z. Since the
function z 7→ ‖Mz‖2 is 1-Lipschitz on the unit sphere, it follows by standard concentration results
for Lipschitz functions (see for example [22]) that with probability at least 1 − exp(−cd) (for
some universal constant c), E[‖Mz‖2] − ‖Mz‖2 ≤ 1

4 . Finally, E[‖Mz‖2] ≥ 1
2 , since clearly

E[‖Mz‖2] ≥ E[‖(I −M)z‖2] (note that M has more ones than zeros on the diagonal, as d− r ≥ r),
yet E[‖Mz‖2] + E[‖(I −M)z2‖] = E[‖z‖2] = 1. Combining the above, the result follows.

In the proof of Proposition 4.6 we rely on the following claim from [33, Lemma 5] 1:
Claim B.1. For any f ∈ L2(Rd), and odd periodic function ψ : R→ R if d > 40, and we sample
wRd uniformly from {w : ‖w‖ = 2r}, it holds that:

Ew
(
〈f(·), ψ

(
〈w, ·〉

)
〉2
)
≤ 10‖f‖2 · (exp(−d/20) +

∞∑
n=1

exp(−nr2))

for a universal constant c > 0.

Proof of Proposition 4.6. For every x0 ∈ [−a, a− 4] we have that:

ψ(x0 + 4) = [x0 + 4 + a]+ +

a∑
n=1

2[x0 + 4 + a− 2n]+(−1)n − 1

= x0 + a+ 4 +

b x0+a
2 c+2∑
n=1

2(x0 + 4 + a− 2n)(−1)n − 1

= x0 + a+

b x0+a
2 c∑

n=1

2(x0 + a− 2n)− 1 + 4+

+

b x0+a
2 c∑

n=1

8(−1)n + (−1)b
x0+a

2 c+12(x0 + 4 + a− (x0 + a+ 2))+

+ (−1)b
x0+a

2 c+22(x0 + 4 + a− (x0 + a+ 4))

= [x0 + a]+ +

a∑
n=1

2[x0 + a− 2n]+ − 1 = ψ(x0),

1In order to deduce it we only need to note that since ψ is odd, its first Fourier coefficient is a0 = 0, and we
can take g = f̂ϕ and use the fact that Fourier transform preserves inner products and norms.

13

where we used the fact that a is odd. This proves that ψ(x) is periodic in [−a, a] with a period of 4.
To prove that ψ(x) is an odd function, note that:

ψ(−2) = ψ(2) = ψ(0) = 0

and also that ψ(1) = −ψ(−1) = ±1, and between every two integers ψ(x) is a linear function.
The exact value of ψ(1) and ψ(−1) depends on whether a+1

2 is even or odd. Thus, ψ(x) is an odd
function in the interval [−2, 2], and because it is periodic with a period of 4, it is also an odd function
in the interval [−a, a]. This proves item 1 in the proposition.
For item 2, using the fact that x ∈ Rd is distributed symmetrically we can assume w.l.o.g that

w∗ =

d
0
...
0

. Thus,

‖ψ(〈w∗, ·〉)‖2 = cd

∫
x∈Rd

|ψ
(
〈w∗, x〉

)
|2e
−‖x‖2

2 dx

= cd

∫ ∞
−∞
|ψ(dx1)|2e

−x2
1

2 dx1 ·
∫ ∞
∞

e
−x2

2
2 dx2 · · ·

∫ ∞
∞

e
−x2

d
2 dxd

≥ 1

d
√

2π

∫ ∞
−∞
|ψ(x1)|2e−(x1

d)
2

dx1 ≥
1

d
√

2π

∫ a

−a
|ψ(x1)|2e−1dx1

≥ 1

d
√

2π
ae−1 · 4

3
≥ 1

d
√

2π
6d2e−1 · 4

3
≥ d.

In the above, we used the fact that for every interval of the form [n, n+ 2] for n ∈ [−a, a− 2], the
integral ∫

[n,n+2]

|ψ(x1)|2dx1 =
4

3
,

and there are a such intervals in [−a, a].
For item 3, define ψ̃(x) to be equal to ψ(x) on [−a, a], and continue it to [−∞,∞] such that it is
periodic. Let g(x) = ψ̃(x)− ψ(x), then g(x) = 0 for x ∈ [−a, a] and |g(x)| ≤ x for |x| > a. Now
for every w ∈ Rd with ‖w‖ = d we get that:

‖g(〈w, ·〉)‖2 = Ex
[
g2(〈w, x〉)

]
≤ Ex

[
1|〈w,x〉|≥a〈w, x〉2

]
≤
√
Ex
[
1
2
|〈w,x〉|≥a

]
·
√
Ex [〈w, x〉4]

≤
√
Ex
[
1|〈w,x〉|≥a

]
· ‖w‖2

√
Ex
[
〈 w
‖w‖

, x〉4
]

(9)

= 3d2
√
P (|〈w, x〉| ≥ a) (10)

where we used the fact that since x ∼ N(0, Id) then 〈 w
‖w‖ , x〉 has a standard Gaussian distribution,

hence its fourth moment is 3. Also 〈w, x〉 ∼ N(0, d), Hence

P
(
|〈w, x〉| ≥ 6d2 + 1

)
≤ exp(−d),

and using Eq. (10) we get:

‖g(〈w, ·〉)‖2 ≤ 3d2 exp(−d) ≤ exp(−cd), (11)

for a constant c. Now for every f ∈ L2(Rd):

Ew
(
〈f(·), ψ

(
〈w, ·〉

)
〉2
)
≤ 2Ew

(
〈f(·), ψ̃ (〈w, ·〉)〉2

)
+ 2Ew

(
〈f(·), ψ̃ (〈w, ·〉)− ψ (〈w, ·〉)〉2

)
.

(12)
Using Cauchy-Schwartz and Eq. (11) we can bound the second term:

Ew
(
〈f(·), ψ̃ (〈w, ·〉)− ψ (〈w, ·〉)〉2

)
= Ew

(
〈f(·), g(〈w, ·〉〉2

)
≤ ‖f‖2 exp(−cd),

14

and finally using Claim B.1 on ψ̃(x), and taking r = d we can bound the first term of Eq. (12), by
changing the constant from the claim by a factor of at most 4. Thus, there exists a universal constant
c such that:

Ew
(
〈f(·), ψ

(
〈w, ·〉

)
〉2
)
≤ ‖f‖2 exp(−cd)

Proof of Theorem 4.8. Take ψ(x) from Proposition 4.6 and denote for w ∈ Rd, ψw(x) = ψ(〈w, x〉).
If we sample w∗ uniformly from {w : ‖w‖ = d} and (f1, . . . , fr) ∼ D then:

Ew∗
[
E(f1,...,fr)

[∣∣∣∣∣〈
r∑
i=1

fi, ψw∗〉

∣∣∣∣∣
]]

= E(f1,...,fr)

[
Ew∗

[∣∣∣∣∣〈
r∑
i=1

fi, ψw∗〉

∣∣∣∣∣
]]

≤ E(f1,...,fr)

[
20

∥∥∥∥∥
r∑
i=1

fi

∥∥∥∥∥ exp(−c′d)

]
≤ E(f1,...,fr)

[
r∑
i=1

20‖fi‖ exp(−c′d)

]
≤ r exp(−cd)

where c is a universal constant that depends only on the constant c′ from Proposition 4.6. Thus, there
exists w∗ such that:

E(f1,...,fr)

[∣∣∣∣∣〈
r∑
i=1

fi, ψw∗〉

∣∣∣∣∣
]
≤ r exp(−cd. (13)

Using Markov’s inequality on Eq. (13), with the fixed w∗ that was found and dividing c by a factor of
2, we get w.p > 1− r exp (−cd) over sampling of (f1, . . . , fr) ∼ D that:∣∣∣∣∣〈

r∑
i=1

fi, ψw∗〉

∣∣∣∣∣ ≤ r exp(−cd)

The rest of the proof is the same as the proof of Theorem 4.2, except for fixing the w∗ we found
above.

C Neural Networks Learn Polynomials

The data for our network is (x, y) ∈ Rd ×R, drawn from an unknown distribution D. We assume for
simplicity that ‖x‖ ≤ 1 and y = {−1,+1}.
We consider one-hidden-layer feed-forward neural networks which are defined as:

N(x) = N(W,U, x) = Uσ(Wx),

where σ is an activation function which acts coordinate-wise and W ∈ Rr×d, U ∈ Rr. We will also
use the following form for the network:

N(x) =
r∑
i=1

uiσ(〈wi, x〉) (14)

here ui ∈ R and wi ∈ Rd.

For simplicity we will use the hinge loss, which is defined by: l(ŷ, y) = max{0, 1 − ŷy}, thus
the optimization will be done on the function l(N(x), y) = l(N(W,U, x), y). We will also use the
notation:

LD(W,U) = E(x,y)∼D [l(N(W,U, x), y)]

We will use the standard form of SGD to optimize LD, where at each iteration a random sample
(xi, yi) is drawn from D and we update:

Wi+1 = Wi − η
∂l(N(Wi, Ui, xi), yi)

∂Wi

Ui+1 = Ui − η
∂l(N(Wi, Ui, xi), yi)

∂Ui

15

The initialization of W0 is a standard Xavier initialization [18], that is wi ∼ U

([
−1√
d
, 1√

d

]d)
. U0

can be initialized in any manner, as long as its norm is smaller than 1√
r

, e.g. we can initialize U0 = 0.
This kind of initialization for the outer layer has been used also in other works (see [11], [4]).

The main result of this section is the following:
Theorem C.1 (Formal statement of Theorem 3.1). Let σ : R→ R be an analytic activation function,
which is L-Lipschitz with σ(0) ≤ L. LetD be any distribution over the labelled data (x, y) ∈ Rd×R
with ‖x‖ ≤ 1, y ∈ {−1,+1}, and let ε > 0, δ > 0, α > 0, and k be some positive integer. Suppose
we run SGD on the neural network:

N(W,U, x) = Uσ(Wx) =

r∑
i=1

uiσ (〈wi, x〉)

with the following parameters:

1. r neurons with r ≥ 64β6L2

ε4 log
(
1
δ

)
2. W0 is initialized with wi ∼ U

([
−1√
d
, 1√

d

]d)
for i = 1, . . . , r and U0 is initialized s.t

‖U0‖ ≤ 1√
r

3. learning rate η = ε
8r

4. T steps with T = 4β2

ε2

here β = αk
(
A
a

)k
(12d)2k

2

, where a ≤ ai ≤ A, bounds the first k coefficients a1, . . . , ak of
the Taylor series expansion of the activation σ. Then for every polynomial P (x1, . . . , xd) with
deg(P) ≤ k, the coefficients of P are bounded by α and all the monomials of P which have a
non-zero coefficient also have a non-zero coefficient in the Taylor series of σ, w.p > 1− δ over the
initialization there is t ∈ [T] such that:

E [LD (Wt, Ut)] ≤ LD(P (x)) + ε.

Here the expectation is over the random choice of (xi, yi) in each iteration of SGD.

We note that for simplicity, we focused on analytic activation functions, although it is possible to
derive related results for non-analytic activations such as a ReLU (see Appendix G for a discussion).
Also, note that we did not use a bias term in the architecture of the network in the theorem (namely,
we have σ(〈wi, x〉) and not σ(〈wi, x〉 + bi)). This is because if the polynomial we are trying to
compete with has a constant factor, then we require that the Taylor expansion of the activation also
has a constant factor, thus the bias term is already included in the Taylor expansion of the activation
function.
Remark C.2. Suppose we are given a sample set S = {(xi, yi)}mi=1. By choosing D uniform on the
sample set S, Theorem C.1 shows that SGD over the sample set will lead to an average loss not much
worse than the best possible polynomial predictor with bounded degree and coefficients.

At high level, the proof idea of Theorem C.1 is divided into three steps. In the first step we show
that with an appropriate learning rate and limited amount of iterations, neural networks generalize
better than random features. This step allows us to focus our analysis on the behaviour of a linear
combination of random features instead of the more complicated architecture of neural networks.
In the second step using McDiarmid’s theorem we show that by taking enough random features,
they concentrate around their expectation. In the third step we use Legendre’s polynomials to show
that any polynomial can be represented as an expectation of random features. For a full proof see
Appendix C.

First we introduce some notations regarding multi-variable polynomials: Letting J = (j1, . . . , jd)

be a multi index, and given x ∈ Rd, we define xJ = xj11 · · ·x
jd
d , and also |J | = j1 + · · ·+ jd. We

say for two multi indices J ′, J that J ′ ≤ J if for all 1 ≤ i ≤ d, j′i ≤ ji and that J ′ < J if J ′ ≤ J
and also there is an index 1 ≤ s ≤ d such that j′s < js. For k ∈ N and multi index J = (j1, . . . , jd)

16

we say that J ≤ k if j1 + . . . jd ≤ k. Lastly, given a multi-variable polynomials P (x) =
∑
J cJx

J ,
where cJ ∈ R we define:

|P | = max
J
|cJ |.

We break the proof to three steps, where each step contains a theorem which is independent of the
other steps. Finally we combine the three steps to prove the main theorem.

Step 1: SGD on Over-Parameterized Networks Competes with Random Features

Recall we use a network of the form:

N(W,U, x) = Uσ(Wx) =

r∑
i=1

uiσ(〈wi, x〉), (15)

where W0, U0 are initialized as described in the theorem We show that for any target matrix U∗
with a small enough norm and every ε > 0, if we run SGD on l(N(W0, U0, x), y) with appropriate
learning rate η and number of iterations T , there is some t ∈ [T] with:

E (LD(Wt, Ut)) ≤ LD(W0, U
∗) + ε (16)

where the expectation is over the random choices of examples in each round of SGD.
The bound in Eq. (16) means that SGD on randomly initialized weights competes with random
features. By random features here we mean any linear combination of neurons of the form σ(〈wi, x〉)
where the wi are randomly chosen, and the norm of the weights of the linear combination are bounded.
In more details:

Theorem C.3. Assume we initialize U0,W0 such that ‖U0‖ ≤ 1√
r

and ‖W0‖ ≤
√
r. Also assume

that σ is L-Lipschitz with σ(0) ≤ L, and let C ≥ 1 be a constant. Letting ε > 0, we run SGD with
step size η = ε

8r and T steps with T = 4C2

ε2 and let W1, . . . ,WT be the weights produced at each
step. If we pick r such that r ≥ 64C6L2

ε4 then for every target matrix U∗ with ‖U∗‖ ≤ C√
r

there is a
t ∈ [T] s.t:

E [LD(Wt, Ut)] ≤ LD(W0, U
∗) + ε.

Here the expectation is over the random choice of the training examples in each round of SGD.

In the proof of Theorem C.3 we first show that for the chosen learning rate η and limited number of
iterations T , the matrix W does not change much from its initialization. After that we use results
from online convex optimization for linear prediction with respect to U∗ with a sufficiently small
norm to prove the required bound. For a full proof see Appendix F. Note that in the theorem we did
not need to specify the initialization scheme, only to bound the norm of the initialized weights. The
optimization analysis is similar to the one done in Daniely [11].

Step 2: Random Features Concentrate Around their Expectation

In the previous step we showed that in order to bound the expected loss of the network, it is enough
to consider a network of the form

∑
i uiσ(〈wi, x〉), where the wi are randomly initialized with

wi ∼ U
(
[−1√
d
, 1√

d
]d
)
. We now show that if the number of random features r is large enough,

then a linear combination of them approximates functions of the form x 7→ Ew[σ(〈w, x〉)g(w)] =
cd
∫
w∈

[
−1√

d
, 1√

d

]d g(w)σ(〈w, x〉)dw for an appropriate normalization factor cd:

Theorem C.4. Let f(x) = cd
∫
w∈

[
−1√

d
, 1√

d

]d g(w)σ(〈w, x〉)dw where σ : R→ R is L-Lipschitz on

[−1, 1] with σ(0) ≤ L, and cd =
(√

d
2

)d
a normalization term. Assume that max‖w‖≤1|g(w)| ≤ C

for a constant C. Then for every δ > 0 if w1, . . . , wr are drawn i.i.d from the uniform distribution on[
−1√
d
, 1√

d

]d
, w.p > 1− δ there is a function of the form

f̂(x) =

r∑
i=1

uiσ(〈wi, x〉)

17

where |ui| ≤ C
r for every 1 ≤ i ≤ r, such that:

sup
x

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ LC√

r

(
4 +

√
2 log

(
1

δ

))

Theorem C.4 basically states that random features concentrate around their expectation, and the rate
of convergence is O

(
1√
r

)
where r is the amount of random features that were sampled. The proof is

based on concentration of measure and Rademacher complexity arguments, and appears in Appendix
E.

Step 3: Representing Polynomials as Expectation of Random Features

In the previous step we showed that random features can approximate functions with the integral
form:

f(x) = cd

∫
w∈

[
−1√

d
, 1√

d

]d g(w)σ(〈w, x〉)dw

In this step we show how a a polynomial P (x) with bounded degree and coefficients can be repre-
sented in this form. This means that we need to find a function g(w) for which f(x) = P (x). To do
so we use the fact that σ(x) is analytic, thus it can be represented as an infinite sum of monomials
using a Taylor expansion, and take g(w) to be a finite weighted sum of Legendre polynomials, which
are orthogonal with respect to the appropriate inner product. The main difficulty here is to find a
bound on max

w∈
[
−1√

d
, 1√

d

]d |g(w)|, which in turn also bounds the distance between the sum of the

random features and its expectation. The main theorem of this step is:

Theorem C.5. Let σ : R → R be an analytic function, and P (x) =
∑
J αJx

J be a polynomial,
where x ∈ Rd, and all the monomials of P which have a non-zero coefficient also have a non-zero
coefficient in the Taylor series of σ. Assume that deg(P) ≤ k and |αJ | ≤ α for all J , with α ≥ 1.
Then there exists a function g(w) : Rd → R that satisfies the following:

1. cd
∫
w∈

[
−1√

d
, 1√

d

]d σ(〈w, x〉)g(w)dw = P (x)

2. max
w∈

[
−1√

d
, 1√

d

]d |g(w)| ≤ αk
(
A
a

)k
(12d)2k

2

Here cd =
(√

d
2

)d
is a normalization term, and a ≤ ai ≤ A, bounds the first k coefficients a1, . . . , ak

of the Taylor series expansion of the activation σ.

For a full proof of Theorem C.5 and an overview of Legendre polynomials see Appendix D.

Step 4: Putting it all Together

We are now ready to prove the main theorem of this section. The proof is done for convenience in
reverse order of the three steps presented above.

Proof of Theorem C.1. Let a0, a1, . . . , ak be the coefficients of the Taylor expansion of σ up to
degree k, and let P (x) be a a polynomial with deg(P) ≤ k and |P | ≤ α, such that if aj = 0 then the
monomials in P (x) of degree j also have a zero coefficient.

First, we use Theorem C.5 to find a function g(w) such that:

cd

∫
w∈

[
−1√

d
, 1√

d

]d σ(〈w, x〉)g(w) = P (x). (17)

18

Then we consider drawing random features w1, . . . , wr ∼ U

([
−1√
d
, 1√

d

]d)
i.i.d. Using Theorem

C.4, the choice of r and Eq. (17), w.p > 1− δ there is U∗ = (u1, . . . , ur) such that:

sup
x

∣∣∣∣∣
r∑
i=1

uiσ(〈wi, x〉)− P (x)

∣∣∣∣∣
= sup

x

∣∣∣∣∣
r∑
i=1

uiσ(〈wi, x〉)− cd
∫
w∈

[
−1√

d
, 1√

d

]d σ(〈w, x〉)g(w)

∣∣∣∣∣ ≤ ε, (18)

and also |ui| ≤ max‖w‖≤1
|g(w)|
r ≤ αk

(
A
a

)k
(12d)2k

2

, thus ‖U∗‖ ≤ αk(A
a)

k
(12d)2k

2

√
r

.

Finally, we use Theorem C.3 with the defined learning rate η and iterations T to find t ∈ [T] such
that:

E
(
LD(Wt, Ut)

)
≤ LD(W0, U

∗) + ε. (19)

Combining Eq. (18) with Eq. (19) gives:

E
(
LD(Wt, Ut)

)
≤ LD(P (x)) + 2ε.

Re-scaling ε finishes the proof.

D Representing Polynomials as Expectation of Random Features

We will use the Legendre polynomials in the one variable and multi-variable case. Let
p1(w), . . . , pk(w) be the one variable Legendre polynomials, these polynomials are an orthogo-
nal basis for one variable polynomials with respect to the inner product:

〈f, g〉 =

∫ 1

−1
f(w)g(w)dw.

They are normalized by p0(w) = 1, and their inner product is:

〈pi, pj〉 = δi,j
2

2i+ 1
,

where δi,j = 1 if i = j and 0 otherwise. Let J = (j1, . . . , jd) be a multi index, and define for
w ∈ Rd:

pJ(w) = pj1(w1) · · · pjd(wd).

Using tensor product of polynomial spaces, the polynomials pJ for all multi-indices J form an
orthogonal base for d-dimensional polynomials (see [16]), with respect to the inner product:

〈f, g〉 =

∫
w∈[−1,1]d

f(w)g(w)dw.

The next lemma gives the coefficient of the Legendre expansion of monomials in one variable:

Lemma D.1. Let:

I(m,n) =

∫ 1

−1
wmpn(w)dw (20)

Then:

1. If m < n or m+ n is odd then I(m,n) = 0

2. If m ≥ n and m+ n is even then:

I(m,n) = 2n+1(n+ 1)
m!
(
m+n+1

2

)
!(

m−n
2

)
!(m+ n+ 1)!

and in this case: 1
2m ≤ I(m,n) ≤ 1

19

Proof. If m < n then wm is in the span of p0(w), . . . , pn(w) thus by orthogonality of the Legendre
polynomials we get that I(m,n) = 0.
If m+ n is odd, then wmpn(w) is an odd polynomial, thus its integral over a symmetric interval is
zero, this concludes the first case.
Assume now that m ≥ n and m+ n is even. Plugging Rodrigues formula:

pn(w) =
1

2nn!

(
dn

dwn
(
w2 − 1

)n)
,

in Eq. (20) and doing integration by parts n times yields:

I(m,n) =
1

2n

(
m

n

)∫ 1

−1
wm−n(w2 − 1)ndw.

By the assumption m − n is even, we can do a change of variables t = w2 to get a beta function
integral:

I(m,n) =
1

2n

(
m

n

)
B

(
m− n+ 1

2
, n+ 1

)
=

1

2n
m!

n!(m− n)!

(
m−n+1

2

)
!(n+ 1)!(

m+n+3
2

)
!

. (21)

Using the known identity about Gamma function(
n+

1

2

)
! = Γ

(
n+

1

2

)
=

(2n)!

4nn!

√
π,

and plugging it into Eq. (21), we get:

I(m,n) = 2n+1(n+ 1)
m!
(
m+n+1

2

)
!(

m−n
2

)
!(m+ n+ 1)!

. (22)

Note that for a given m, I(m,n) is largest when n = 0 and smallest when n = m. Plugging n = 0
gives:

I(m, 0) =
m!
(
m+1
2

)
!

(m+ 1)!
(
m
2

)
!
≤ 1.

Plugging n = m and using the fact the
(
2m
m

)
≤ 4m gives:

I(m,m) = 2m+1(m+ 1)
m!
(
m+ 1

2

)
!

(2m+ 1)!
≥ 2m

2m+ 2

2m+ 1

(
2m

m

)−1
≥ 1

2m
.

Proof of Theorem C.5. Let N ⊂ N be all the indices smaller than k for which the coefficient of the
Taylor expansion ai of the activation σ is non-zero. We define:

g(w) =
∑
|J|≤k

cJpJ

(√
dw
)

(23)

where pJ(w) are the multi-variable Legendre polynomials, and the coefficients cJ will be determined
later. Since σ is analytic we can use its Taylor expansion to get:

cd

∫
w∈

[
−1√

d
, 1√

d

]d σ(〈w, x〉)g(w)dw = cd

∫
w∈

[
−1√

d
, 1√

d

]d
∞∑
i=1

ai〈w, x〉ig(w)dw

= cd
∑
i∈N

ai

∫
w∈

[
−1√

d
, 1√

d

]d〈w, x〉ig(w)dw (24)

20

Plugging g(w) and cd into Eq. (24) and using the change of variables
√
dw 7→ w gives:(√

d

2

)d∑
i∈N

ai

∫
w∈

[
−1√

d
, 1√

d

]d〈w, x〉ig(w)dw

=

(√
d

2

)d∑
i∈N

ai

∫
w∈

[
−1√

d
, 1√

d

]d〈w, x〉i
∑
|J′|≤k

cJ′pJ′
(√

dw
)
dw

=

(
1

2

)d∑
i∈N

ai(√
d
)i ∫

w∈[−1,1]d
〈w, x〉i

∑
|J′|≤k

cJ′pJ′(w)dw

=

(
1

2

)d ∑
|J|=i, i∈N

ai(√
d
)ixJ ∫

[−1,1]d
wJ

∑
|J′|≤k

cJ′pJ′(w)dw. (25)

Now we use the Legendre expansion of monomials. Letting J = (j1, . . . , jd) be a multi-index,
expand wJ in the multi-variable Legendre basis:

wJ =
∑
J′≤J

bJ,J ′pJ′(w). (26)

Plugging this into Eq. (25) gives:(√
d

2

)d∑
i∈N

ai

∫
w∈

[
−1√

d
, 1√

d

]d〈w, x〉ig(w)dw

=

(
1

2

)d ∑
|J|=i, i∈N

ai(√
d
)ixJ ∫

[−1,1]d

∑
J′′≤J

bJ,J ′′pJ′′(w)
∑
|J′|≤k

cJ′pJ′(w)dw

=
∑

|J|=i, i∈N

xJ
∑
J′≤J

(
1

2

)d
ai(√
d
)i cJ′bJ,J ′ ∫

w∈[−1,1]d
p2J′(w)dw (27)

where in the last equality we used the orthogonality of the Legendre polynomials.
Denote ‖pJ‖2 =

∫
w∈[−1,1]d p

2
J(w)dw. In order to show that item 1 holds (using Eq. (27)) we need

to show that for every multi index J that appears in P (x) we can choose cJ′ for J ′ ≤ J such that:∑
J′≤J

(
1

2

)d a|J|(√
d
)|J| cJ′bJ,J ′‖pJ′‖2 = αJ .

By induction on J , for J = (0, . . . , 0), take:

cJ = 2dαJ ·
(
a0bJ,J‖pJ‖2

)−1
(28)

Assume we defined cJ′ for every J ′ < J , then we define:

cJ =

αJ − (1

2

)d ∑
J′<J

a|J|(√
d
)|J| bJ,J ′cJ′‖pJ′‖2

 ·
(1

2

)d a|J|(√
d
)|J| bJ,J‖pJ‖2

−1

(29)

This shows that item 1 holds.

For the bounds in item 2 we will first need to bound the norm of the multi-variable Legendre
polynomials, and the coefficients bJ,J ′ . The norm of the single variable Legendre polynomial is given
by: ∫ 1

−1
pn(w)2dw =

2

2n+ 1
.

21

Given a multi index J = (j1, . . . , jd), |J | ≤ k we need to bound ‖pJ‖2. For J = (0, . . . , 0) we get
that:

‖pJ‖2 = 2d.

For J with k indices that equals 1 and the rest 0 (e.g J = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
d-k

)) we get that:

‖pJ‖2 =
2d

3k
.

It can be easily verified that these bound the norm of the multi-variable Legendre polynomials, thus:

2d

3k
≤ ‖pJ‖2 ≤ 2d.

The coefficients bJ,J ′ can be calculated in the following way:

bJ,J ′ =

∫
w∈[−1,1]d

wJpJ′(w)dw =(∫ 1

−1
wj11 pj′1(w1)dw1

)
· · ·
(∫ 1

−1
wjdd pj′d(wd)dwd

)
. (30)

Using Lemma D.1 we can bound each term in Eq. (30), and thus get a bound on bJ,J ′ . For any two
multi-indices J, J ′ we get the upper bound:

bJ,J ′ ≤ 1

and if we assume that |J | ≤ k, meaning that j1 + · · · + jd ≤ k, and also that J ′ = J we get the
lower bound:

bJ,J ≥ 2−(j1+···+jd) ≥ 2−k.

Now we are ready to bound the coefficients cJ . Denote cn = max|J|≤n |cJ |. For a multi index J
with |J | = n, we plug the bounds of bJ,J ′ and ‖pJ‖2 into Eq. (29) to get:

|cJ | ≤

α+ 2−d
∑
J′<J

A(√
d
)n cn−12d

2−d
a(√
d
)n 2−n

2d

3n

−1

≤
α
(√

d
)n

6n

a
+
A

a
6n
∑
J′<J

|cJ′ | ≤
α
(√

d
)n

6n

a
+
A

a
6n

n−1∑
i=0

(
d

i

)
ci

≤
α
(√

d
)n

6n

a
+
A

a
6n(d+ 1)n−1cn−1 ≤ α

A

a
(12d)ncn−1, (31)

where we used the bound
∑n
i=1

(
d
i

)
≤ (d+ 1)n and that ci ≤ cn for i ≤ n. For J = (0, . . . , 0) using

Eq. (28) we get that:

|c(0,...,0)| ≤
α

a
.

Thus using the recursion relation we found in Eq. (31) and plugging in the initial condition for c(0,...,0)
gives:

|cJ | ≤ αn
(
A

a

)n
(12d)n

2

The final stage is to bound g(w). Note that for every Legendre polynomial max|w|≤1 |pn(w)| ≤ 1,
hence:

max
w∈

[
−1√

d
, 1√

d

]d |pJ
(√

dw
)
| ≤ 1.

22

Using the definition Eq. (23) of g(w), and the bound on cJ we get that:

max
w∈

[
−1√

d
, 1√

d

]d |g(w)| ≤
∑
|J′|≤k

|c′J | ≤
k∑
i=0

(
d

i

)
ci

≤
k∑
i=0

(
d

i

)
ck ≤ αk

(
A

a

)k
(12d)k

2

(d+ 1)k

≤ αk
(
A

a

)k
(12d)2k

2

.

E Random Features Concentrate Around their Expectation

Proof of Theorem C.4. Define ui = g(wi)
r , and

f̂(w1, . . . , wr, x) = f̂(x) =
r∑
i=1

uiσ(〈wi, x〉).

Observe that Ew
[
f̂(x)

]
= f(x) and |ui| ≤ C

r . Define:

h(w1, . . . , wr, x) = h(x) = sup
x

∣∣∣f̂(w1, . . . , wr, x)− Ew
[
f̂(w1, . . . , wr, x)

]∣∣∣
We will use McDiarmid’s inequality to bound h. For every 1 ≤ i ≤ r and every w̃i with ‖w̃i‖ ≤ 1
we have that:

|h(w1, . . . , wr, x)− h(w1, . . . , wi−1, w̃i, wi+1, . . . , wr, x| ≤

≤ sup
x

∣∣∣∣g(wi)σ(〈wi, x〉)
r

− g(w̃i)σ(〈w̃i, x〉)
r

∣∣∣∣ ≤ 2LC

r

We will now bound the expectation of h(x). Using [32, Lemma 26.2] which bounds E[h(x)] using
Rademacher complexity, where the roles of x and w are switched:

E[h(x)] = E
[
sup
x

∣∣∣f̂(x)− f(x)
∣∣∣] ≤ 2

r
Ew,ξ

[
sup
x

∣∣∣∣∣
r∑
i=1

ξiuiσ(〈wi, x)〉

∣∣∣∣∣
]

Where ξ1, . . . , ξr are independent Rademacher random variables (where we write them as ξ for short).
Define σ′(x) = σ(x)− α, where σ(0) = α, then we have that σ′(0) = 0. We use the fact that for
i.i.d Rademacher random variables ξ1, . . . , ξr :

Eξ

[∣∣∣∣∣
r∑
i=1

ξi

∣∣∣∣∣
]
≤
√
r,

combined with [6, Theorem 12(4)], Cauchy-Schwartz theorem and our assumptions that ‖x‖, ‖w‖ ≤ 1
to get:

2

r
Ew,ξ

[
sup
x

∣∣∣∣∣
r∑
i=1

ξiuiσ(〈wi, x〉)

∣∣∣∣∣
]
≤ 2

r
Ew,ξ

[
sup
x

∣∣∣∣∣
r∑
i=1

ξiuiσ
′(〈wi, x〉)

∣∣∣∣∣+ α

∣∣∣∣∣
r∑
i=1

ξiui

∣∣∣∣∣
]

≤ 2LC

r
Ew,ξ

[
sup
x

∣∣∣∣∣
r∑
i=1

ξi〈wi, x〉

∣∣∣∣∣
]

+
2C

r
Eξ

[
α

∣∣∣∣∣
r∑
i=1

ξi

∣∣∣∣∣
]

≤ 2LC

r
Eξ

[∣∣∣∣∣
r∑
i=1

ξi

∣∣∣∣∣
]

+
2LC

r
Eξ

[∣∣∣∣∣
r∑
i=1

ξi

∣∣∣∣∣
]

≤ 4LC√
r

23

In total we have:
E[h(x)] ≤ 4LC√

r

We can now use McDiarmid’s inequality on h(x) to get that:

P

(
h(x)− 4LC√

r
≥ ε
)
≤ P (h(x)− Ew(h(x)) ≥ ε) ≤ exp

(
− rε2

4L2C2

)
(32)

Replacing the right hand side with δ we get that w.p > 1− δ:

sup
x

∣∣∣f̂(x)− f(x)
∣∣∣ ≤ LC√

r

(
4 +

√
2 log

(
1

δ

))

F SGD on Over-Parameterized Networks Competes with Random Features

Lemma F.1. Let ‖W0‖, ‖U0‖ ≤ B with B ≥ 2, then for every ε > 0 if we run SGD with learning
rate of η = ε

LB2 we have that for all t ≤ B
2ε :

1. ‖Wt‖, ‖Ut‖ ≤ B + 1

2. ‖σ(Wtx)− σ(W0x)‖ ≤ 2Ltε

Proof. We prove the first part by induction on t. First trivially it is true for t = 0. Assume it is true
for all t ≤ B

2ε . The gradients of LD(U,W) are:

∂l (N(W,U, x), y)

∂W
= 1(1−y·N(U,W,x)≥0)(xŨ)T (33)

∂l(N(W,U, x), y)

∂U
= 1(1−y·N(U,W,x))σ(Wx) (34)

Here Ũi = ui · σ′(〈wi, x〉), and we look at x as a matrix in Rd×1 hence xŨ ∈ Rd×r.
We bound the gradients of LD(U,W) using Eq. (34) and Eq. (33), the assumptions on σ and that
‖x‖ ≤ 1:∥∥∥∥∂l (N(W,U, x), y)

∂W

∥∥∥∥ ≤ L‖U‖∥∥∥∥∂l (N(W,U, x), y)

∂U

∥∥∥∥ ≤ ‖σ(Wx)‖ ≤ ‖σ(Wx)− σ(0)‖+ ‖σ(0)‖ ≤ L+ L‖W‖

Using the bounds on the gradient, at each step of SGD the norm of Wt+1 changed from the norm of
Wt by at most ηL‖Ut‖. Thus, after t iterations we get that

‖Wt+1‖ ≤ ‖W0‖+

t∑
i=1

ηL‖Ui‖ ≤ B + tηL(B + 1) ≤ B +
ε

B2

B

2ε
(B + 1) ≤ B + 1.

In the same manner for Ut+1:

‖Ut+1‖ ≤ ‖U0‖+

t∑
i=1

η(L+ L‖Wi‖) ≤ B + tηL(B + 1) + tηL

≤ B +
ε

B2

B

2ε
(B + 1) +

1

2B
≤ B + 1.

For the second part, using the previous part we get that:

‖Wt+1 −W0‖ ≤
t∑
i=1

η‖Ui‖ ≤ tη(B + 1) = tε
B + 1

B
.

Now we use the fact that σ is L-Lipschitz, ‖x‖ ≤ 1 and |B| ≥ 1 to get that:
‖σ(Wtx)− σ(W0x)‖ ≤ 2Ltε.

24

We will also use the following theorem about convex online learning (see [32, Theorem 21.15]):

Theorem F.2. Let f1, . . . , fT : Rd → R be L-Lipschitz convex functions. Assume that xt+1 =
xt − η∇ft(xt), then for any x∗ ∈ Rd we have that:

T∑
t=1

ft(xt) ≤
T∑
t=1

ft(x
∗) +

‖x∗ − x0‖2

2η
+
ηTL2

2

Now we are ready to prove the generalization bound:

Proof of Theorem C.3. For every 1 ≤ t ≤ T we have by Lemma F.1 that:

|LD(Wt, U
∗)− LD(W0, U

∗)| ≤ ‖U∗‖ · Ex [‖σ(Wtx)− σ(W0x)‖] ≤ C√
r

2Ltε ≤ ε (35)

Where the last inequality is by the choice of r. We define the function gt(U) := l(N(Wt, U, xt), yt)
where (xt, yt) is the example sampled at round t of SGD. Observe that:

|gt(U)− gt(U ′)| ≤ ‖σ(Wtx)‖ · ‖U − U ′‖

where we used the fact that the loss is 1-Lipschitz. Also note that gt(U) are convex for every t. Using
Lemma F.1 again:

|σ(Wtx)| ≤ |σ(Wtx)− σ(0)|+ |σ(0)| ≤ L(
√
r + 1) + L ≤ 2L

√
r

thus gt(U) is also 2L
√
r-Lipschitz for all t. We use Theorem F.2 on the functions gt to get:

T∑
t=1

gt(Ut) ≤
T∑
t=1

gt(U
∗) +

‖U∗ − U0‖2

2η
+ 8ηrTL2 (36)

Dividing by T we get that:

1

T

T∑
t=1

gt(Ut) ≤
1

T

T∑
t=1

gt(U
∗) +

‖U∗ − U0‖2

2ηT
+ 8ηr (37)

Using the lower bound of T we get that:

‖U∗ − U0‖2

2ηT
≤ ‖U

∗‖2

2ηT
+
‖U0‖2

2ηT
≤ 2ε (38)

Combining Eq. (37) with Eq. (38) and plugging in η gives us:

1

T

T∑
t=1

gt(Ut) ≤
1

T

T∑
t=1

gt(U
∗) + 3ε (39)

Observe that taking expectation of gt with respect to the sampled examples in round t of SGD yields:
E [gt(U)] = LD(Wt, U). Thus, taking expectation on Eq. (39) and using Eq. (35):

1

T

T∑
t=1

E [LD(Wt, Ut)] ≤ LD(W0, U
∗) + 4ε (40)

Thus there is 1 ≤ t ≤ T that satisfies:

E[LD(Wt, Ut)] ≤ LD(W0, U
∗) + 4ε

Rescaling ε appropriately finishes the proof.

25

G Approximating polynomials with ReLU networks

Theorem C.1 can be modified to also include the ReLU activation which is not analytic. This
modification requires to add a bias term and also use a non-standard architecture for the network. For
terseness we explain here how it can be done without writing the full proof:
We begin with the following network architecture:

N(W,U, b) =

r∑
i=1

ui[〈wi, x〉 − bi]+ − ui[〈−wi, x〉 − bi]+ + cui · 〈wi, x〉+ cui,

where c = 1
e−1 is a normalization term which is added for simplicity. This architecture is similar to a

standard feed-forward neural network, but includes duplicated ReLU neurons with a negative sign,
and linear and constant factors. The initialization of wi and ui is the same as in Theorem C.1, and the
bias terms bi are initialized from a uniform distribution on [0, 1].
Steps 1 and 2 are similar to those used in the original theorem, with adjustments for the added terms,
and also in step 2 the function g(w) should depend additionally on the bias term g(w, b). Thus, we
can approximate an integral of the form:∫
w∈

[
−1√

d
, 1√

d

]d
∫ 1

0

g(w, b)[〈w, x〉− b]+−g(w, b)[〈−w, x〉− b]+ + cg(w, b)〈w, x〉+ cg(w, b) db dw.

(41)
For any z ∈ R with |z| ≤ 1 we have that:∫ 1

0

[z − b]+eb − [−z − b]+e−b + czeb + ceb db = ez (42)

Plugging in g(w, b) into Eq. (41), and using the integral from Eq. (42) with z = 〈wi, x〉 (note that
|〈wi, x〉|2 ≤ ‖w‖2‖x‖2 ≤ 1) we can approximate an integral of the form:∫

w∈
[
−1√

d
, 1√

d

]d g(w) exp(〈w, x〉) dw.

Now we can use step 3 to finish the proof.
The requirement for the extra linear and constant terms are also needed in [21]. There it is shown
that functions that admits certain Fourier transform representations can be approximated using a
combination of ReLUs, with an extra linear and constant factors.

26

	Comparison to Previous Works
	Optimization with Coupling
	Optimization on all the Layers

	Proofs from section 4
	Neural Networks Learn Polynomials
	 Representing Polynomials as Expectation of Random Features
	Random Features Concentrate Around their Expectation
	 SGD on Over-Parameterized Networks Competes with Random Features
	Approximating polynomials with ReLU networks

