Supplement - Bayesian Learning of Sum-Product
Networks

Martin Trapp' 2, Robert Peharz?, Hong Ge?,
Franz Pernkopf', Zoubin Ghahramani*-3
!Graz University of Technology, ?Austrian Research Institute for Al,
3University of Cambridge, Uber Al
martin.trapp@tugraz.at, rp587Q@cam.ac.uk, hg344Q@cam.ac.uk
pernkopf@tugraz.at, zoubin@eng.cam.ac.uk

A Experiments

A.1 Setup

As described in the paper, we: 1) We combined the training and validation set to a single training set.
2) We used 5 * 103 burn-in steps and estimated the training and testing performance from samples of
a chain of 10* samples. 3) We used a grid search over the number of nodes per region I € [5, 10],
number of nodes per atomic region I < J € [5, 10], number of partitions under a region M € [2,4, 8],
and the depth, i.e. consecutive region-partition layers, L € [1, 2] and selected the best configuration
according to the model evidence. In the experiments we used the following hyper-parameters for
the symmetric Dirichlet priors: o = 1.0 as concentration parameter for all sum nodes, 5 = 10.0 as
concentration parameter for all product nodes to enforce partitions into equally size parts.

We ran all experiments on a high performance cluster using multi-threaded computations.
The SLURM script and the necessary code and datasets to run the experiments with
the respective number of threads can be found on https://github.com/trappmartin/
BayesianSumProductNetworks.

A.2 Heterogeneous Experiments

To conduct the heterogeneous data experiments, we introduce mixtures over likelihood model for each
leaf node. In particular, we used the following likelihood and prior constructions in the experiment.

Datatype | Likelihood Prior

Continuous | Gaussiani.e., zqg ~ N(p,02) 0% ~ T'71(2.0,3.0)
p~ N(j,o?)
Continuous | Exponential i.e., zg ~ Exp(A\) A ~T'(1.0,1.0)
Discrete Poisson i.e., x4 ~ Poisson(A\) A ~T(1.0,1.0)
Discrete Categorical i.e., 24 ~ Cat(w) w ~ Dir(0.1)
Discrete Bernoulli i.e., x4 ~ Bern(p) p ~ Beta(0.5,0.5)

Table 1: Likelihood functions and priors used for heterogeneous data experiments.

The distribution of each leaf factorises as:
L= JI > wep(Xi|60ix) (1)
Xiep(l) k

and we used a symmetric Dirichlet prior with concentration parameter o = 0.1 for the weights of the
mixture to ensure only few components are selected. This approach is similar to the model in [4]].

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/trappmartin/BayesianSumProductNetworks
https://github.com/trappmartin/BayesianSumProductNetworks

A.3 Missing Data Experiments

We evaluated the robustness of learnSPN, ID-SPN and Bayesian SPN against missing values in the
training data. For this purpose, we artificially introduced missing values completely at random in
the training and validation set of EachMovie, WebKB and BBC. We evaluate their performance in the
cases of 20%, 40%, 60% or 80% of all observations having 50% missing values. All methods have
been trained using the full training set, i.e. training and validation set combined, and where evaluated
using the following default parameters: (1) LearnSPN: cluster penalty = 0.6, significance threshold
=10 as described in [[1]]; (2) ID-SPN: using the default settings described in [3]]; and (3) Bayesian
SPN: I = 5 nodes per region, J = 10 nodes per atomic region, R = 8 partitions under a region, and
adepthof L = 1.

A.4 Statistical Significance Tests

To assess the statistical significance of the reported results we computed the p-value of the Mann-
Whitney-U-Test [2]. The Mann-Whitney-U-Test is a nonparametric equivalent of the two sample
t-test which does not require the assumption of normal distributions. The respective p-values obtained
from the Mann-Whitney-U-Test for Bayesian SPNs and infinite mixtures of Bayesian SPNs are listed
in Table 21

Table 2: Mann-Whitney-U-Test p-values of Bayesian SPNs (a) and infinite mixtures of Bayesian
SPNs (b) compared with LearnSPN, RAT-SPN and ID-SPN. Values below the 0.01 threshold are
underlined.

(a) Bayesian SPNs. (b) Infinite mixtures of Bayesian SPNs.
Dataset LearnSPN RAT-SPN ID-SPN LearnSPN RAT-SPN ID-SPN
NLTCS 0.726 0.573 0.291 0.887 0.950 0.123
MSNBC 0.634 0.420 0.474 0.911 0.173 0.842
KDD 0.792 0.044 0.505 0.755 0.050 0.472
Plants < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Audio < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Jester < 0.001 < 0.001 0.908 0.004 0.885 0.001
Netflix 0.100 0.924 0.455 0.107 0.944 0.442
Accidents < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <0.001
Retail < 0.001 0.002 0.023 < 0.001 0.008 0.020
Pumsb-star < 0.001 < 0.001 < 0.001 < 0.001 0.025 < 0.001
DNA < 0.001 0.001 0.084 < 0.001 < 0.001 0.023
Kosarak < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
MSWeb 0.721 0.005 0.030 0.354 0.047 0.002
Book < 0.001 0.035 0.124 0.034 0.845 0.442
EachMovie 0.270 0.228 0.390 0.275 0.242 0.411
WebKB < 0.001 0.001 < 0.001 < 0.001 < 0.001 0.645
Reuters-52 0.089 0.703 0.998 0.079 0.638 0.904
20 Newsgrp 0.846 0.508 0.969 0.326 0.636 0.214
BBC 0.002 0.288 0.866 0.002 0.335 0.795
AD 0.004 0.635 0.774 0.004 0.097 0.769

A.5 Reported Configurations and Respective Runtimes

In addition, we computed the average runtime for a single MCMC iteration measures for an i7-6900k
CPU @ 3.2 GHz. The respective runtimes for each dataset, measures for the computational graph
used to report the results in the paper, are listed in Table 3] Note that these timings vary depending on
the dataset size, the number of dimensions and the complexity of the computational graph.

Table 3: Number of sum nodes per region (), number of leaves per atomic region (J), number of
partitions (M), number of layers (L) and runtime (in seconds) for and iteration of MCMC sampling.

Dataset runtime I J M L
NLTCS 4.03 5 10 8 2
MSNBC 33.87 5 5 4 4
KDD 43.05 5 10 8 2
Plants 24.39 5 10 8 4
Audio 3.50 5 5 4 4
Jester 5.12 5 10 4 4
Netflix 7.53 5 10 4 4
Accidents 27.55 10 10 8 4
Retail 3.46 10 10 4 2
Pumsb-star 4.15 10 10 8 2
DNA 7.92 5 10 8 4
Kosarak 10.43 10 10 8 2
MSWeb 4.91 5 5 8 2
Book 523 10 10 8 2
EachMovie 30.23 5 10 8 4
WebKB 3.61 10 10 8 2
Reuters-52 6.37 10 10 8 2
20 Newsgrp 11.02 5 10 8 2
BBC 3.56 5 10 8 2
AD 1.05 5 5 2 2

A.6 Extended Results Table

In addition to the results table listed in the paper, we compare in the following table against the
best-to-date results for PSDDs (btd-PDSS), the best-to-date results for CNets (btd-CNet) and the
best-to-date results for SPNs (btd-SPN). Note that the best results are often obtained by very large
ensembles of structure learners. Table 4] lists all results.

Table 4: Average test log-likelihoods on discrete datasets using SOTA, Bayesian SPNs (ours) and

infinite mixtures of SPNs (ours®). Overall best result is in bold.

08°€9— 08°€9— SO06T— 00FI— 6V06— GO6GT— 00Le— LP'8h— €L6T— av
697GC— L06¥C— 0G'STE— TT°62C— 61€SC— €6'SFe— 09'SFe— F12GC— 69°090— ogd
G6'TST— 66'TGT— LPTIGT— O'TST— 60°T9T— LV TGT— TE'€ST— 902GT— €6'6GT— diSsmoN 0g
PrYS— T€P8— GEe8— L8'I8— 1968— GEES— €9F8— LEUS— L0GS— S-s1omay
€eLCT— T09ST— PRTCT— 0T'6VI— 60°T9T— PRTGT— 6FLGT— €GLGT— 07'SGT— a39M
7609~ 99'T¢— 6FIG— FE0S— €F9G— IGTIG— 99TG— €9°€S— 6VTG— SIAOINYORH
peve— €TvE— FIVE— OFFE— L6FE— PIFE— 10GE— 89FE— 68°GE— yoog
686— S86— €L6— T9'6— L66— €L6— L66— TI0I— STOI— 9OMSIN
LLOT— FLO0T— 09°0T— 09°0T— I80T— 09°0T— S80T— 680I— 66'0T— Yeresoy]
PRC6— G6C6— T¢I8— L0°I8— TI'68— 1¢I8— ¢6F8— €0L6— 2GT8— VNd
96'1¢— FEIE— TH'TT— VVEe— L9€e— TVee— €CVe— €97E— 8LVe— TeIS-qsung
€8°0T— €8°0T— 980T— I8°0T— TI8°0T— G80I— ¢60T— T160T— FOTI— [re1oy
68°€6— OTFE— 0LLC— LT6C— ¥9€e— 86°92— 0LLT— 6FSE— F00E— SIUAPIOOY
08°9¢— TE€9G— 9€'96— €6°6G— TP'8G— 9€'9G— 8L9G— G8'9G— €E€LG— XN
98°7G— TFTG— 08'TG— T2'TE— LPES— 9%'TG— 890G— L6TG— SPEG— 19189f
6L66— LL'6E— GL6E— LL'6E— 86 TF— 6L6E— CO0F— 96°6€— 0S0V— orpny
¥6CT— 89CI— F9el— PSTI— 6LEI— PSTI— L8TI— FVEI— 86TI— syue[q
€re— gre— TTe— €T ZrT— €re— €re— €Te— 8T'C— aa
€0°9— 909— F09— €0'9— F09— 79— G09— $09— 19— DANSIN
209— 009— T09— L6°S— €0°9— 209— €09— T09— IT9— SOIIN
oSO Smo NdS-PYd ND-PI dASd-Pd NdS-AI dODD NdS.LV¥ NdSumeo] 1e581R(

B Computational Graph Construction

This section describes the algorithm to construct a computational graph, represented by a tree-shaped
region-graph, as used in the paper. Note that we only consider partitions into two disjoint sub-regions.
Our algorithm can, however, easily be extended for more general situations.

Algorithm 1 Construction of a Computational Graph

Input: Dimensionality of dataset D, Number of nodes per region I, Number of nodes per atomic
region J, Number of partitions under a region M and depth L.

function BUILDATOMICREGION(D, J)
R < empty atomic region.

fork=1,...,Jdo > Equip R with J distribution nodes, each factorising D.
Equip R with ngl p(x| OLy.a)-

end for

return R

end function

function BUILDREGION(D, I, J, M, L,)
R < empty region.
forj=1,...,M do
P < BUILDPARTITION(D, I, J, M, L,1+ 1)
Make P a child of R.
end for
Let N be all product nodes of all P € ch(R).
fork=1,...,1do
Equip R with S =} o\ ws ppp(X).
end for
return R
end function

function BUILDPARTITION(D, I, J, M, L, 1)
P + empty partition.
if | = L then
R <+BUILDATOMICREGION(D, J)
Ry <BUILDATOMICREGION(D, J)
else
Ry < BUILDREGION(D, I, J, M, L, 1)
Ry +—BUILDREGION(D, I, J, M, L, 1)
end if
Make R; and Rs children of P.
Let Ny be all nodes of R.
for N, € NRl, Ny € NR2 do
Equip P with P = Ny x Ns.
end for
return P
end function

return BUILDREGION(D, I, J, M, L, 0)

Once constructed, the scope function of a computational graph defined as a region graph can be
inferred using posterior inference. Given a proper scope function, we can obtain the effective SPN
structure by simply removing each sub-tree with empty scope. If necessary, one can further extracting
the network located at the root (sum) node by traversing down the nodes in the region graph, c.f.
Algorithm 1. Note that it is not necessary to extract the network structure from the region graph as
one can directly work with the effective SPN represented by the region graph.

References

[1] R. Gens and P. Domingos. Learning the structure of sum-product networks. Proceedings of ICML, pages
873-880, 2013.

[2] H.B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically larger
than the other. The annals of mathematical statistics, pages 50-60, 1947.

[3] A.Rooshenas and D. Lowd. Learning sum-product networks with direct and indirect variable interactions.
In Proceedings of ICML, pages 710718, 2014.

[4] A. Vergari, A. Molina, R. Peharz, Z. Ghahramani, K. Kersting, and I. Valera. Automatic Bayesian density
analysis. In Proceedings of AAAL 2019.

	Experiments
	Setup
	Heterogeneous Experiments
	Missing Data Experiments
	Statistical Significance Tests
	Reported Configurations and Respective Runtimes
	Extended Results Table

	Computational Graph Construction

