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A Synthetic experiments

A.1 Heteroscedastic data with outliers

Figure 1: Full range scatter plot of the test data used in the synthetic simulation of Section 4.

In Section 4, we presented an experiment on simulated data to illustrate the importance of adaptivity
in conformal prediction. Here we describe the details of that experiment.

To generate the training data, we draw n = 2000 independent, univariate predictor samples Xi from
the uniform distribution on the interval [1, 5]. The response variable is then sampled as

Yi ∼ Pois(sin2(Xi) + 0.1) + 0.03 Xi ε1,i + 25 1{Ui < 0.01} ε2,i, (1)

where Pois(λ) is the Poisson distribution with mean λ, both ε1,i and ε2,i are i.i.d. standard Gaussian
noise, and the Ui are uniform on the interval [0, 1]. We generate a test set of 5000 samples in the
same way. The last term in equation (1) creates few but large outliers. This is illustrated in Figure 1,
which plots the synthetic data across its full range.

In the synthetic experiment of Section 4, we construct a 90% prediction interval for the test data using
split conformal prediction. Specifically, we split the training data into two subsets, train a random
forest regressor on the first set, and calibrate the intervals on the second set. We do the same for locally
adaptive split conformal prediction. The scale estimator is another random forest. The experiment is
insensitive to the value of the hyper-parameter γ; we set it to zero. Finally, we instantiate our method,
conformal quantile regression, with quantile random forests [1] as the underlying quantile regression
algorithm.
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Figure 2: Prediction intervals on simulated data constructed by locally adaptive conformal prediction,
with conditional median estimation via quantile regression forests. The target coverage is 90%. On
test data, the average coverage is 90.14% and the average length is 2.86.

To improve robustness to outliers, one might try to estimate the conditional median instead of the
conditional mean in locally adaptive conformal prediction. We implement this strategy in Figure 2,
using quantile regression forests [1] to estimate the conditional median. The residuals are scaled in the
usual way, by classical regression via random forests. At least on this simulated dataset, estimating
conditional medians instead of means has little effect on the average lengths of the prediction intervals
(compare Figure 2 in this appendix with the subfigure for locally adaptive split conformal prediction
in Section 4).

A.2 Heavy-tailed Cauchy distribution

A second synthetic example highlights the advantage of CQR in handling data with outliers. We
independently sampled n = 2000 univariate feature variables Xi from the uniform distribution on
the interval [0, 10]. We then sampled the response variable as:

Yi ∼ Cauchy(0, 6 sin2(Xi)),

where Cauchy(0, γ) is the Cauchy distribution with location parameter 0 and scale parameter γ. We
also generated 5000 independent test samples from the same distribution, shown in Figure 3.

Figure 3: Cauchy distribution with varying scale parameter. Full range display of the test data.

As in the first synthetic experiment, we construct prediction intervals on test samples with target
coverage of 90%. Figure 4 shows the prediction intervals obtained by the methods of (a) split
conformal prediction, (b) locally weighted conformal with mean regression, (c) locally weighted
conformal with median regression, and (d) CQR. In all cases, we divide the training data into two
disjoint subsets, a proper training set and a calibration set. We fit a random forests regressor on
the former and calibrate the intervals using the latter. To scale the residuals in the locally weighted
version of split conformal inference, we fit another random forests regressor (conditional mean). In
CQR, we use quantile random forests [1] to estimate the lower and upper conditional quantiles. The
same regressor is used to estimate the conditional median in Figure 4c.
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(a) Split: Avg. coverage 90.9%; Avg. length 98.94. (b) Local: Avg. coverage 90.7%; Avg. length 77.64.

(c) Local: Avg. coverage 90.4%; Avg. length 59.78. (d) CQR: Avg. coverage 90.2%; Avg. length 36.71.

Figure 4: Prediction intervals (target coverage rate is 90%) on simulated data, sampled from the
Cauchy distribution: (a) standard split conformal method, (b) locally weighted split conformal
(conditional mean), (c) locally weighted split conformal (conditional median), and (d) CQR. The
broken black curves in (a) and (b) are the pointwise predictions from the random forests. In (c), the
broken black curve is the conditional median estimate from the quantile random forests [1]. The two
black curves in (d) are the lower and upper quantile regression estimates based on random forests.

In this experiment, the intervals constructed by the local conformal method (Figures 4b, 4c) are
more efficient than those of split conformal (Figure 4a). Moreover, replacing the conditional mean
regression (Figure 4b) with the conditional median (Figure 4c) improves the statistical efficiency of
the local approach. However, CQR (Figure 4d) performs best on average, constructing the shortest
intervals. All four methods yield intervals that attain the desired coverage rate of 90%, as expected.

B Lemmas about quantiles

Recall that the quantile function Q of a random variable Z, with cumulative distribution function
F (z) := P{Z ≤ z}, is defined by the equivalence

Q(α) ≤ z if and only if α ≤ F (z)

for all α ∈ (0, 1) and z ∈ R. Dually, but less standardly, the right quantile function R of the random
variable Z is defined by the equivalence

F−(z) ≤ α if and only if z ≤ R(α),

where F−(z) := F (z−) = P{Z < z}. The quantile functions have the explicit formulas

Q(α) = inf{z ∈ R : α ≤ F (z)}, R(α) = sup{z ∈ R : F−(z) ≤ α}.

As a special case, the empirical quantile function Q̂n of random variables Z1, . . . , Zn is the
quantile function with respect to the empirical CDF F̂n(z) := 1

n

∑n
i=1 1Zi≤z . Likewise, the

right empirical quantile function R̂n of Z1, . . . , Zn is the right quantile function with respect to
F̂−n (z) = 1

n

∑n
i=1 1Zi<z . They have the explicit formulas

Q̂n(α) = Z(dαne), R̂n(α) = Z(bαnc+1),

3



where Z(k) denotes the kth smallest value in Z1, . . . , Zn.

Variants of the following lemmas appear in the literature [2–4]. In the interest of clarity and a
self-contained exposition, we state and prove them here.
Lemma 1 (Quantiles and exchangeability). Suppose Z1, . . . , Zn are exchangeable random variables.
For any α ∈ (0, 1),

P{Zn ≤ Q̂n(α)} ≥ α.
Moreover, if the random variables Z1, . . . , Zn are almost surely distinct, then also

P{Zn ≤ Q̂n(α)} ≤ α+
1

n
.

In this statement, the probabilities are taken over all the variables Z1, . . . , Zn.

Proof. By exchangeability and the symmetry of Q̂n(α) as a function of Z1, . . . , Zn, the probability
P{Zi ≤ Q̂n(α)} is equal to P{Zn ≤ Q̂n(α)} for every i. Therefore,

E F̂n(Q̂n(α)) =
1

n

n∑
i=1

P{Zi ≤ Q̂n(α)} = P{Zn ≤ Q̂n(α)}.

By the defining property of the quantile functions, F̂n(Q̂n(α)) ≥ α and F̂−n (R̂n(α)) ≤ α. Moreover,
if the samples Z1, . . . , Zn are distinct, then ‖F̂n − F̂−n ‖∞ ≤ 1

n , and since Q̂n ≤ R̂n, we have
F̂n(Q̂n(α)) ≤ F̂n(R̂n(α)) ≤ F̂−n (R̂n(α)) +

1
n ≤ α+ 1

n . To complete the proof, take expectations
of the inequalities F̂n(Q̂n(α)) ≥ α and F̂n(Q̂n(α)) ≤ α+ 1

n .

Lemma 2 (Inflation of quantiles). Suppose Z1, . . . , Zn+1 are exchangeable random variables. For
any α ∈ (0, 1),

P{Zn+1 ≤ Q̂n((1 + 1
n )α)} ≥ α.

Moreover, if the random variables Z1, . . . , Zn+1 are almost surely distinct, then also

P{Zn+1 ≤ Q̂n((1 + 1
n )α)} ≤ α+

1

n+ 1
.

Proof. Let Z(k,m) denote the kth smallest value in Z1, . . . , Zm. Then for any 0 ≤ k ≤ n, we have

Zn+1 ≤ Z(k,n) if and only if Zn+1 ≤ Z(k,n+1).

Indeed, if Zn+1 ≤ Z(k,n), then Z(k,n+1) is the larger of Z(k−1,n) and Zn+1; in particular, Z(k,n+1) ≥
Zn+1. Conversely, if Zn+1 ≤ Z(k,n+1) then also Zn+1 ≤ Z(k,n) because Z(k,n+1) ≤ Z(k,n).

Thus, since Q̂n((1 + 1
n )α) = Z(dα(n+1)e,n) and Q̂n+1(α) = Z(dα(n+1)e,n+1), we have

Zn+1 ≤ Q̂n((1 + 1
n )α) if and only if Zn+1 ≤ Q̂n+1(α)

and, hence,
P{Zn+1 ≤ Q̂n((1 + 1

n )α)} = P{Zn+1 ≤ Q̂n+1(α)}.
To conclude the proof, apply Lemma 1 with n replaced by n+ 1.

C Proofs of the main theorems

In this appendix, we prove the validity of the CQR prediction intervals described in Section 4.
Theorem 1. If (Xi, Yi), i = 1, . . . , n+ 1 are exchangeable, then the prediction interval C(Xn+1)
constructed by the split CQR algorithm satisfies

P{Yn+1 ∈ C(Xn+1)} ≥ 1− α.

Moreover, if the conformity scores Ei are almost surely distinct, then the prediction interval is nearly
perfectly calibrated:

P{Yn+1 ∈ C(Xn+1)} ≤ 1− α+ 1/(|I2|+ 1).
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Proof. The result even holds, and we will prove it, conditionally on the proper training set.

Let En+1 be the conformity score

Ei := max{q̂αlo(Xi)− Yi, Yi − q̂αhi(Xi)}
at the test point (Xn+1, Yn+1). By the construction of the prediction interval, we have

Yn+1 ∈ C(Xn+1) if and only if En+1 ≤ Q1−α(E, I2),
and, in particular,

P{Yn+1 ∈ C(Xn+1) | (Xi, Yi) : i ∈ I1} = P{En+1 ≤ Q1−α(E, I2) | (Xi, Yi) : i ∈ I1}. (2)

Since the original pairs (Xi, Yi) are exchangeable, so are the calibration variables Ei for i ∈ I2 and
i = n+ 1. Therefore, by Lemma 2 on inflated empirical quantiles (stated in Appendix B),

P{En+1 ≤ Q1−α(E, I2) | (Xi, Yi) : i ∈ I1} ≥ 1− α, (3)

and, under the additional assumption that the Ei’s are almost surely distinct,

P{En+1 ≤ Q1−α(E, I2) | (Xi, Yi) : i ∈ I1} ≤ 1− α+
1

|I2|+ 1
. (4)

The result follows by taking expectations over the proper training set in (2), (3), and (4).

Next, we prove the validity of the CQR prediction intervals that control the left and right tails
independently.
Theorem 2. Define the prediction interval

C(Xn+1) := [q̂αlo(Xn+1)−Q1−αlo(Elo, I2), q̂αhi(Xn+1) +Q1−αhi(Ehi, I2)],
where Q1−αlo(Elo, I2) is the (1 − αlo)-th empirical quantile of {q̂αlo(Xi) − Yi : i ∈ I2} and
Q1−αhi(Ehi, I2) is the (1 − αhi)-th empirical quantile of {Yi − q̂αhi(Xi) : i ∈ I2}. If the samples
(Xi, Yi), i = 1, . . . , n+ 1 are exchangeable, then

P{Yn+1 ≥ q̂αlo(Xn+1)−Q1−αlo(Elo, I2)} ≥ 1− αlo (5)

and
P{Yn+1 ≤ q̂αhi(Xn+1) +Q1−αhi(Ehi, I2)} ≥ 1− αhi. (6)

Consequently, assuming α = αlo + αhi, we also have P{Yn+1 ∈ C(Xn+1)} ≥ 1− α.

Proof. The two events inside the probabilities (5) and (6) are equivalent to q̂αlo(Xn+1) − Yn+1 ≤
Q1−αlo(Elo, I2) and Yn+1 − q̂αhi(Xn+1) ≤ Q1−αhi(Ehi, I2), respectively. We can thus apply
Lemma 2 twice, in the same manner as in the proof of Theorem 1.

D Experiments

In this appendix, we describe in greater detail the methods and datasets employed in the experiments
of Section 6. The source code implementing the experiments is available for download externally.1
We used ClusterJob [5] to manage and run the experiments on our local cluster.

D.1 Methods

In our experiments, we compare the following methods related to conformal prediction. First, we
evaluate the original version of split conformal prediction (Section 3) using the following three
regression algorithms.

• Ridge: We include ridge regression as a baseline. The regularization parameter is tuned by
cross validation.

• Random Forests: We use the implementation of (conditional mean) random forest regres-
sion in the Python package sklearn. The hyper-parameters are the package defaults, except
for the total number of trees in the forest, which we set to 1000.

1https://github.com/yromano/cqr
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• Neural Net: Our neural network architecture consists of three fully connected layers, with
ReLU nonlinearities between layers. The first layer takes as input the p-dimensional feature
vector X and outputs 64 hidden variables. The second layer follows the same template,
outputting another 64 hidden variables. Finally, a linear output layer returns a pointwise
estimate of the response variable Y . The parameters of the network are fit by minimizing the
mean squared error loss function. We use the stochastic optimization algorithm Adam [6],
with fixed learning rate of 5× 10−4, minibatches of size 64, and weight decay parameter
equal to 10−6. We employ dropout regularization [7], with the probability of retaining a
hidden unit equal to 0.1. To avoid overfitting, we found that early stopping performs well;
we tune the number of epochs by cross validation, with an upper limit of 1000 epochs.

We evaluate locally adaptive conformal prediction (Section 5) using the same three underlying
regression algorithms. Practitioners employ various tweaks to improve the method’s numerical
stability and statistical performance. Following [8], we add a hyper-parameter γ > 0 as a constant
offset to the scale estimator σ̂(x). The scaled residuals then become R̃i = Ri/(σ̂(Xi) + γ). We set
the hyper-parameter γ to 1, which improves performance considerably compared to γ = 0.

• Ridge Local: The conditional mean estimator µ̂ is fit by ridge regression, as described
above, and the mean absolute deviation (MAD) estimator σ̂ is k-nearest neighbors with
k = 11.

• Random Forests Local: Both µ̂ and σ̂ are random forests with the hyper-parameters
described above.

• Neural Net Local: Both µ̂ and σ̂ are neural networks, with the network architecture,
hyper-parameters, and training algorithm described above.

For our own proposal, conformalized quantile regression (Section 4, Algorithm 1), we evaluate two
variants:

• CQR Random Forests: We use CQR with quantile regression forests [1]. To ensure a fair
comparison, the hyper-parameters of the quantile regression forests are made identical to
those of the random forests in the previous methods. Quantile regression forests have two
additional parameters that control the coverage rate on the training data. We tune them using
cross validation, as explained in Section 4.

• CQR Neural Net: We apply CQR using neural networks for quantile regression [9]. The
network architecture is the same as above, except that the output of the quantile regression
network is a two-dimensional vector, representing the lower and upper conditional quantiles.
The training algorithm is also the same, except that the cost function is now the pinball loss
instead of the quadratic loss.

Finally, for the sake of comparison, we also include the previous two quantile regression algorithms,
but without any conformalization:

• Quantile Random Forests: We use quantile regression forests with hyperparameters as in
the CQR procedure, except that the upper and lower levels are fixed at 0.05 and 0.95.

• Quantile Neural Net: We use quantile regression neural networks with exactly the same
architecture and training algorithm as in the CQR procedure.

Unlike the preceding methods, the last two methods do not need a calibration set and do not have a
finite-sample coverage guarantee. We fit them on the entire training set.

D.2 Performance on individual datasets

In a series of figures, we break down the performance of the different methods on each of the
benchmark datasets. Figure 5 summarizes our experiments on the datasets: medical expenditure
panel survey number 19 (MEPS_19) [10], number 20 (MEPS_20) [11], and number 21 (MEPS_21) [12].
Figure 6 shows the results for: blog feedback (blog_data) [13]; physicochemical properties of
protein tertiary structure (bio) [14]; and bike sharing (bike) [15]. Figure 7 shows the results for:
community and crimes (community) [16]; Tennessee’s student teacher achievement ratio (STAR) [17];
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MEPS_19 [10] MEPS_20 [11] MEPS_21 [12] community [16] STAR [17]

# features 139 139 139 100 39
# samples 15785 17541 15656 1994 2161

facebook_1 [19] facebook_2 [19] concrete [18] blog_data [13] bio [14] bike [15]

# features 53 53 8 280 9 18
# samples 40948 81311 1030 52397 45730 10886

Table 1: Dimensions of the benchmark datasets

and concrete compressive strength (concrete) [18]. Lastly, Figure 8 shows the results for: Facebook
comment volume, variants one (facebook_1) and two (facebook_2) [19, 20].

The CQR random forests are overly conservative on the two Facebook datasets. This is consistent
with the theory, because in this case there are ties among the conformity scores and so the upper
bound in Theorem 1 does not apply.

D.3 Further information about the datasets

The Medical Expenditure Panel Survey (MPES) data is subject to copyright and usage rules. The three
datasets MEPS_19, MEPS_20, MEPS_21 were downloaded from [10–12]. The feature and response
variables were extracted using IBM’s AIF 360 software package, available online [21].

We applied routine data cleaning and preprocessing to the other datasets. This is recorded in complete
detail in the code that we have provided. For convenience, the dimensions of the benchmark datasets
are listed in Table 1.

References
[1] Nicolai Meinshausen. Quantile regression forests. Journal of Machine Learning Research,

7:983–999, 2006.
[2] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in a random world.

Springer, 2005.
[3] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman.

Distribution-free predictive inference for regression. Journal of the American Statistical Associ-
ation, 113(523):1094–1111, 2018.

[4] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
prediction under covariate shift. arXiv preprint arXiv:1904.06019, 2019.

[5] H. Monajemi, R. Murri, E. Yonas, P. Liang, V. Stodden, and D.L. Donoho. Ambitious data
science can be painless. 2019. arXiv:1901.08705.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[8] Ulf Johansson, Henrik Boström, Tuve Löfström, and Henrik Linusson. Regression conformal
prediction with random forests. Machine Learning, 97(1-2):155–176, 2014.

[9] James W. Taylor. A quantile regression neural network approach to estimating the conditional
density of multiperiod returns. Journal of Forecasting, 19(4):299–311, 2000.

[10] Medical expenditure panel survey, panel 19. https://meps.ahrq.gov/mepsweb/data_
stats/download_data_files_detail.jsp?cboPufNumber=HC-181. Accessed: January,
2019.

[11] Medical expenditure panel survey, panel 20. https://meps.ahrq.gov/mepsweb/data_
stats/download_data_files_detail.jsp?cboPufNumber=HC-181. Accessed: January,
2019.

7

https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181


[12] Medical expenditure panel survey, panel 21. https://meps.ahrq.gov/mepsweb/data_
stats/download_data_files_detail.jsp?cboPufNumber=HC-192. Accessed: January,
2019.

[13] BlogFeedback data set. https://archive.ics.uci.edu/ml/datasets/BlogFeedback.
Accessed: January, 2019.

[14] Physicochemical properties of protein tertiary structure data set. https://archive.
ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+
Structure. Accessed: January, 2019.

[15] Bike sharing dataset data set. https://archive.ics.uci.edu/ml/datasets/bike+
sharing+dataset. Accessed: January, 2019.

[16] Communities and crime data set. http://archive.ics.uci.edu/ml/datasets/
communities+and+crime. Accessed: January, 2019.

[17] C.M. Achilles, Helen Pate Bain, Fred Bellott, Jayne Boyd-Zaharias, Jeremy Finn, John Folger,
John Johnston, and Elizabeth Word. Tennessee’s Student Teacher Achievement Ratio (STAR)
project, 2008.

[18] Concrete compressive strength data set. http://archive.ics.uci.edu/ml/datasets/
concrete+compressive+strength. Accessed: January, 2019.

[19] Facebook comment volume data set. https://archive.ics.uci.edu/ml/datasets/
Facebook+Comment+Volume+Dataset. Accessed: January, 2019.

[20] Kamaljot Singh, Ranjeet Kaur Sandhu, and Dinesh Kumar. Comment volume prediction using
neural networks and decision trees. In IEEE International Conference on Computer Modelling
and Simulation. IEEE, 2015.

[21] Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde,
Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic,
Seema Nagar, Karthikeyan Natesan Ramamurthy, John Richards, Diptikalyan Saha, Prasanna
Sattigeri, Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. AI Fairness 360: An
extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias,
October 2018.

8

https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-192
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-192
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
http://archive.ics.uci.edu/ml/datasets/communities+and+crime
http://archive.ics.uci.edu/ml/datasets/communities+and+crime
http://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
http://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
https://archive.ics.uci.edu/ml/datasets/Facebook+Comment+Volume+Dataset
https://archive.ics.uci.edu/ml/datasets/Facebook+Comment+Volume+Dataset


2.39

2.46

3.86

3.06

4.65

3.38

4.67

4.21

Avg. Length Avg. Coverage

1 2 3 4 5 6 80% 85% 90% 95% 100%

CQR Neural Net

CQR Random Forests

Neural Net Local

Neural Net

Random Forests Local

Random Forests

Ridge Local

Ridge

meps_19

2.46

2.50

4.05

3.08

4.24

3.29

4.64

4.19

Avg. Length Avg. Coverage

1 2 3 4 5 6 80% 85% 90% 95% 100%

CQR Neural Net

CQR Random Forests

Neural Net Local

Neural Net

Random Forests Local

Random Forests

Ridge Local

Ridge

meps_20

2.39

2.52

3.97

3.15

4.45

3.37

4.75

4.19

Avg. Length Avg. Coverage

1 2 3 4 5 6 80% 85% 90% 95% 100%

CQR Neural Net

CQR Random Forests

Neural Net Local

Neural Net

Random Forests Local

Random Forests

Ridge Local

Ridge

meps_21

Figure 5: Average length (left) and coverage (right) of prediction intervals (α = 0.1), averaged over
20 random (80%/20%) training/test splits. The numbers in the colored boxes are the average lengths,
shown in red for split conformal, in gray for locally adapative split conformal, and in light blue for
our method. The name of the dataset is located at the top of each plot.
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Figure 6: Refer to the caption of Figure 5 for details.
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Figure 8: Refer to the caption of Figure 5 for details.
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