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1 Proof for Theorem 3

Theorem 3: Letyy ~ N (x,02 1),z ~ N(0,02I), and y2 £ (y1 +2z) ~ N(x, (02, +02)I). Then,

the random variable y(hg(y2),y1) is an unbiased estimator of MSE:
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In order to derive the last term in (2)), let us first consider divergence for a pixel i.
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Here, ¢;(z) is a pdf of z;, while (y1); has a ¢;(y1) pdf. Summation over each pixel gives us:
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Thus, by substituting the last correlation term in (2)) with (), we prove that:
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2 Link between eSURE and Noise2Noise

Given a pair of uncorrelated noisy images (y ~ N (x,0}) and z ~ N (x,07)), the risk will be:
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Since, both noisy images are uncorrelated, the term 2 Ey , {(z — x)The(y)} in @ vanishes.

3 Tuning ¢ for accurate eSURE estimation

Proposed method as well as MC-SURE depend on ¢ value and Soltanayev et al. found that € is
proportional to o. Thus, we trained DnCNN-eSURE for a fixed noise (04; = 0, 0poisy = 25 and
50) with different e values ranging from 10~3 to 10~2 and discovered that the ratio = is constant
(1.6 x 1073) for the best performances of networks. Consequently, for all experiments in our work,
wesete = 1.6 x 107% x o.

Table 1: Results of DnCNN-eSURE on BSD68 dataset for different € values (Performance in dB).

ex 1073 | 1.0 2.5 4.0 5.0 6.0

c=25 | 2888 29.00 29.11 29.07 29.04
ex 1073 | 1.0 5.0 7.5 9.0 13.0
o=50 | 2587 2602 2607 2603 2572

4 Additional Simulation results

We also experimented with blind denoisers trained on grayscale BSD-400 and found that Noise2Noise
is more susceptible to correlated noise in case if imperfect ground truth images were given (see
Table[2). In order to see the performance degradation of Noise2Noise, we took DnCNN-N2N trained
using different noise level of the imperfect ground-truth dataset and tested them on “Barbara” test
image with noise o = 25 (see Figure[2). In addition, we provided results for different cases for visual
assessment.



Table 2: Results of denoising methods on BSD68 and Set 12 datasets (Performance in dB).

BSD-68
Onoisy | 25 | 50
Tt |1 5 10 | 1 5 10
BM3D 28.56 25.62
DnCNN-SURE | 28.92 28.92 28.88 | 2595 2597 25095
DnCNN-N2N 29.10 29.02 28.22 | 26.16 26.14 2599
DnCNN-eSURE | 29.11 29.11 29.12 | 26.17 26.16 26.18
DnCNN-MSE | 29.23 | 26.28

Set 12
BM3D 29.97 26.67
DnCNN-SURE | 30.03 30.02 30.00 | 26.75 26.79 26.78
DnCNN-N2N 30.33  30.21 29.24 | 27.14 27.11 2691
DnCNN-eSURE | 30.34 30.33 30.33 | 27.15 27.13 27.15
DnCNN-MSE | 30.42 | 27.16

(d) SURE /29.87 dB

(e) Noise2Noise /29.12 dB (f) Ours /30.13 dB

Figure 1: BM3D and DnCNN results on “Boat" test image from BSD-68 with noise 0 = 25. DnCNN
trained with imperfect ground truth with o4, = 10 for blind noise denoising task using various
approaches..
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Figure 2: Degradation of Noise2Noise performance as the noise level of an imperfect ground-truth in
training set increases and hence noise correlation increases. DnCNN-N2N was tested on *Barbara’
test image with o = 25 noise standard deviation.

(a) Ground Truth (b) Noisy / 14.78 dB (c) BM3D/29.77 dB

(d) SURE/29.73 dB (e) Noise2Noise /29.97 dB (f) Ours / 30.35 dB

Figure 3: BM3D and DnCNN results on test image from BSD-68 with noise ¢ = 50. DnCNN trained
with imperfect ground truth with o4 = 10 for specific noise denoising task using various approaches.



(e) Noise2Noise /26.07 dB (f) Ours /28.22 dB

Figure 4: CBM3D and CDnCNN results on test image from BSD-68 with noise o = 50. CDnCNN
trained with imperfect ground truth with o4, = 10 for blind noise denoising task using various
approaches.
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