
We thank all reviewers (denoted as R1, R2 and R3) for constructive feedback and questions. We provide answers below.1

(R1, R2, R3) Training weakly-supervised models. Assume we want to train model A with “weak-sup” attention2

on a dataset w/o ground truth attention. We first need to train model B that has the same architecture as A, but does not3

have any attention/pooling between graph conv. layers. So, model B has only global pooling. After training B with the4

LMSE/CE loss, we need to evaluate training graphs on B as follows. For each training graph G with N nodes, we first5

make a prediction y for the entire G. Then, for each i ∈ [1, N ], we remove node i from G, and feed this reduced graph6

with N − 1 nodes to model B and record the model’s prediction yi. We then use Eq. 6 to compute αWS based on y and7

yi. Now, we can train A and use αWS instead of ground truth αGT in Eq. 5 to optimize both MSE/CE and KL losses.8

(R1) Focus and a title of the paper. Instead of "Understanding Attention..." we propose the new title "On Initialization9

and Supervision of Attention...". The main purpose of incorporating other topics was to support our conclusions about10

attention, which is our central focus. It can often be relatively easy to identify a phenomenon in (graph) neural networks,11

but it is hard to resolve it. Thus, our weak-sup method complements our more analysis rather than methods-driven focus.12

Table 1: (R1, R3) About Table 2. In
addition to the results of ChebyNet in the
submitted paper, we report results of GCN.
For more reliable comparison, we repeat
experiments for 100 random seeds instead
of 10. “init tune” denotes tuning σ and
choosing between N or U (see Figure 1
at the bottom); tuning is done in the same
way as for other hyperparameters.

Model Proteins25

GCN + Global max 74.4±1.0

GCN + Unsup 75.6±1.4

GCN + Weaksup 76.2±0.7

GCN + Unsup+init tune 75.5±1.7

GCN + Weaksup+init tune 76.4±0.7

(R1) Limited number of models. We evaluate and draw conclusions13

based on three models of different strength: GIN, ChebyNet, ChebyGIN.14

We will also add results of GCN supporting our conclusions (Table 115

and Figure 1). Many other GNNs proposed in the literature are slight16

modifications of these. Generally, stronger models are required to achieve17

higher attention accuracy, which would lead to the exponential gains18

in classification accuracy that we observe. With weaker models, this19

phenomenon can be observed on rather simple datasets (COLORS). Note20

that in Table 1 of the submitted paper, for COLORS and MNIST-75sp,21

ChebyGINs are equivalent to ChebyNets as described in Table 1 of22

the Supplementary material and elaborated on following that table (see23

footnote 3). We will update Table 1 in the paper to make it clear.24

(R2) Hard or soft attention scores? In our model, the features are25

weighted by attention scores according to Eq. 3, so it is soft. In this26

case, the features indeed reduce their scale. But we haven’t found this27

problematic in our tasks. For really large graphs, we found that using28

a constant multiplier c > 1 can help considerably to keep the scale of29

features in a reasonable range, while still permitting weighting of node30

features: c(αiXi). This is more an implementation trick and we are releasing code to support such cases. (R2) Why31

GIN is better than ChebyGIN in some cases? ChebyGIN has larger capacity and, thus, can overfit easily to such32

a simple training distribution as in COLORS. Moreover, the difference between GIN and ChebyGIN in COLORS is33

not significant (see the standard deviations). (R2) Computing AUC vs Rank correlation. AUC is computed between34

binarized ground truth attention scores (i.e. αGT > 0) and predicted α. We indeed have considered other metrics.35

While they can be good for evaluation, the choice of AUC is more natural, since we can directly choose a pooling36

threshold α̃ by looking at the ROC curve and finding a good balance between false-positives (pooling unimportant37

nodes) and false-negatives (dropping important nodes). So, AUC provides a comprehensive picture for different α̃.38

Also, the problem with rank correlation metrics is that it is unclear whether to include α of dropped nodes during39

calculation of the metric, and that can lead to very different results, which complicates comparison.40

(R3) Tuning threshold α̃ and other hyperparams. The best α̃ is typically around 1/4N to 2/N , where N is the max41

number of nodes in the training graphs. We chose α̃ from the range [0.0001, 0.1]. We tune α̃ and a few other hyper-42

parameters (r in top-k and β in Eq. 5) on the val. sets generated in the same way as TEST-ORIG for synthetic datasets;43

part of the training set for MNIST-75sp; using 10-fold cross-val. on the training set for COLLAB, PROTEINS and D&D.44
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(a) GIN: COLORS (n=3), unsup attention
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(b) GIN: COLORS (n=3), sup attention
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(c) GIN: COLORS (n=3), wsup attention
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(d) GIN: COLORS (n=3), unsup attention
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(e) GCN: COLORS (n=3), unsup attention
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Figure 1: (R1) Initialization methods. In these experiments, we evaluate GIN (a-d) and GCN (e) on a wide range
of random distributions N (0, σ) and U(−σ, σ) by varying σ. In the submitted version of the paper, we used N (0, 1)
by default. We show points corresponding to the commonly used initialization strategies of (Xavier Glorot & Bengio,
2010) and (Kaiming He et al., 2015). We see that for unsupervised training (a), larger initial values and the Normal
distribution should be used to make it possible to converge to an optimal solution, which is still unlikely and greatly
depends on cosine similarity with GT attention (d,e). For supervised and “weak-sup” attention, we should use smaller
initial weights and either the Normal or Uniform distribution (b,c). We have similar plots for COLORS with n = 16
dimensional features to be added to the camera-ready version. (a-c) Shaded areas show range, bars show ±1 std.


