
A Additional details about language components

1h_filters = D([32, 64, 128])
2h_stride = D([1])
3conv_fn = lambda h_kernel_size: conv2d(
4h_filters , h_stride , h_kernel_size)
5(c1_inputs , c1_outputs) = conv_fn(D([1, 3, 5]))
6(c2_inputs , c2_outputs) = conv_fn(D([1, 3, 5]))
7c1_outputs["out"]. connect(c2_inputs["in"])

Figure 10: Search space with two convolutions in
series. The number of filters is the same for both,
while the kernel sizes are chosen separately.

Independent hyperparameters An hyperpa-
rameter can be shared by instantiating it and
using it in multiple modules. For example, in
Figure 10, conv_fn has access to h_filters
and h_stride through a closure and uses them
in boths calls. There are 27 architectures in
this search space (corresponding to the possible
choices for the number of filters, stride, and ker-
nel size). The output of the first convolution is
connected to the input of the second through the
call to connect (line 7).

1h_filters_lst = [D([32, 64, 128])]
2h_factor = D([1, 2, 4])
3h_stride = D([1])
4io_lst = []
5for i in range (3):
6h = h_filters_lst[i]
7(inputs , outputs) = conv2d(h, h_stride ,
8D([1, 3, 5]))
9io_lst.append ((inputs , outputs))
10if i > 0:
11io_lst[i - 1][1]["out"]. connect(
12io_lst[i][0]["in"])
13if i < 2:
14h_next = DependentHyperparameter(
15lambda x, y: x * y,
16{"x": h, "y": h_factor })
17h_filters_lst.append(h_next)

Figure 11: Search space with three convolutions
in series. The number of filters of an inner con-
volution is a multiple of the number of filters of
the previous convolution. The multiple is chosen
through an hyperparameter (h_factor).

Dependent hyperparameters Chains (or
general directed acyclic graphs) involving de-
pendent and independent hyperparameters are
valid. The search space in Figure 11 has three
convolutional modules in series. Each convolu-
tional module shares the hyperparameter for the
stride, does not share the hyperparameter for the
kernel size, and relates the hyperparameters for
the number of filters via a chain of dependent
hyperparameters. Each dependent hyperparame-
ter depends on the previous hyperparameter and
on the multiplier hyperparameter. This search
space has 243 distinct architectures

Encoding this search space in our language
might not seem advantageous when compared
to encoding it in an hyperparameter optimiza-
tion tool. Similarly to ours, the latter requires
defining hyperparameters for the multiplier, the
initial number of filters, and the three kernel
sizes (chosen separately). Unfortunately, the en-
coding by itself tells us nothing about the mapping from hyperparameter values to implementations—
the expert must write separate code for this mapping and change it when the search space changes.
By contrast, in our language the expert only needs to write the encoding for the search space—the
mapping to implementations is induced automatically from the encoding.

1def dense(h_units):
2def compile_fn(di , dh):
3m = tf.layers.Dense(dh[’units’])
4def forward_fn(di):
5return {"out": m(di["in"])}
6return forward_fn
7name_to_hyperp = {’units ’: h_units}
8return siso_tensorflow_module(
9’Affine ’, compile_fn , name_to_hyperp , scope)

1def conv2d(h_num_filters , h_filter_width , h_stride):
2def compile_fn(di , dh):
3conv_op = tf.layers.Conv2D(
4dh[’num_filters ’],
5(dh[’filter_width ’],) * 2,
6(dh[’stride ’],) * 2,
7padding=’SAME’)
8def forward_fn(di):
9return {’out’: conv_op(di[’in’])}
10return forward_fn
11return siso_tensorflow_module(
12’Conv2D ’, compile_fn , {
13’num_filters ’: h_num_filters ,
14’filter_width ’: h_filter_width ,
15’stride ’: h_stride
16})

Figure 12: Examples of basic modules in our implementation resulting from wrapping Tensorflow
operations. Left: Affine basic module with an hyperparameter for the number of units. Right:
Convolutional basic module with hyperparameters for the number of filters, filter size, and stride.

Basic Modules Deep learning layers can be easily wrapped as basic modules. For example,
a dense layer can be wrapped as a single-input single-output module with one hyperparameter
for the number of units (see left of Figure 12). A convolutional layer is another example of a

12

single-input single-output module (see right of Figure 12). The implementation of conv2d re-
lies on siso_tensorflow_module for wrapping Tensorflow-specific aspects (see Appendix E.1
for a discussion on how to support different domains). conv2d depends on hyperparameters for
num_filters, filter_width, and stride. The key observation is that a basic module generates
its implementation (calls to compile_fn and then forward_fn) only after its hyperparameter values
have been assigned and it has values for its inputs. The values of the inputs and the hyperparameters
are available in the dictionaries di and dh, respectively. conv2d returns a module as (inputs,
outputs) (these are analogous to σi and σh on line of 12 of Algorithm 1). Instantiating the compu-
tational graph relies on compile_fn and forward_fn. compile_fn is called a single time, e.g., to
instantiate the parameters of the basic module. forward_fn can be called multiple times to create
the computational graph (in static frameworks such as Tensorflow) or to evaluate the computational
graph for specific data (e.g., in dynamic frameworks such as PyTorch). Parameters instantiated in
compile_fn are available to forward_fn through a closure.

1def mimo_or(fn_lst , h_or , input_names ,
2output_names , scope=None , name=None):
3def substitution_fn(dh):
4return fn_lst[dh["idx"]]()
5
6return substitution_module(
7_get_name(name , "Or"),
8substitution_fn ,
9{’idx’: h_or},
10input_names , output_names , scope)

1def siso_repeat(fn, h_num_repeats ,
2scope=None , name=None):
3def substitution_fn(dh):
4assert dh["num_reps"] > 0
5return siso_sequential ([fn()
6for _ in range(dh["num_reps"])])
7
8return substitution_module(
9_get_name(name , "SISORepeat"),
10substitution_fn ,
11{’num_reps ’: h_num_repeats},
12[’in’], [’out’], scope)

1def siso_split_combine(fn , combine_fn ,
2h_num_splits , scope=None , name=None):
3def substitution_fn(dh):
4inputs_lst , outputs_lst = zip (*[fn()
5for _ in range(dh["num_splits"])])
6c_inputs , c_outputs = combine_fn(
7dh["num_splits"])
8
9i_inputs , i_outputs = identity ()
10for i in range(dh["num_splits"]):
11i_outputs[’out’]. connect(
12inputs_lst[i][’in’])
13c_inputs[’in’ + str(i)]. connect(
14outputs_lst[i][’out’])
15return i_inputs , c_outputs
16
17return substitution_module(
18_get_name(name , "SISOSplitCombine"),
19substitution_fn ,
20{’num_splits ’: h_num_splits},
21[’in’], [’out’], scope)

Figure 13: Example substitution modules implemented in our framework. Top left: mimo_or chooses
between a list of functions returning search spaces. Bottom left: Creates a series connection of the
search space returned by fn some number of times (determined by h_num_repeats). Right: Creates
a search space with a number (determined by h_num_splits) of single-input single-output parallel
search spaces created by fn that are then combined into the search space created by combine_fn.

Substitution modules Substitution modules encode local structural transformations of the search
space that are resolved once all their hyperparameters have been assigned values (see line 12 in
Algorithm 1). Consider the implementation of mimo_or (i.e., mimo stands for multi-input, multi-
output) in Figure 13 (top left). We make substantial use of higher-order functions and closures in
our language implementation. For example, to implement a specific or substitution module, we
only need to provide a list of functions that return search spaces. Arguments that the functions
would need to carry are accessed through the closure or through argument binding5. mimo_or has an
hyperparameter for which subsearch space function to pick (h_idx). Once h_idx is assigned a value,
substitution_fn is called, returning a search space as (inputs, outputs) where inputs and
outputs are σi and σo mentioned on line 12 of Algorithm 1. Using mappings of inputs and outputs
is convenient because it allow us to treat modules and search spaces the same (e.g., when connecting
search spaces). The other substitution modules in Figure 13 use substitution_fn similarly.

1def substitution_module(name , name_to_hyperp ,
2substitution_fn , input_names , output_names):

Figure 14: Signature of the helper used to create
substitution modules.

Figure 14 shows the signature of the wrapper
function to easily create substitution modules.
All information about what subsearch space
should be generated upon substitution is del-
egated to substitution_fn. Compare this
to signature of keras_module for Keras basic
modules in Figure 21.

5This is often called a thunk in programming languages.

13

Auxiliary functions Figure 15 shows how we often design search spaces. We have a high-level
inductive bias (e.g., what operations are likely to be useful) for a good architecture for a task, but we
might be unsure about low-level details (e.g., the exact sequence of operations of the architecture).
Auxiliary functions allows us to encapsulate aspects of search space creation and can be reused for
creating different search spaces, e.g., through different calls to these functions.

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf)

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ftct−1 + itgt
ht = ot tanh(ct)

it = qi(xt, ht−1)

ft = qf (xt, ht−1)

gt = qg(xt, ht−1)

ot = qo(xt, ht−1)

ct = qc(ft, ct−1, it, gt)

ht = qh(ot, ct)

1def lstm_cell(input_fn , forget_fn , gate_fn ,
2output_fn , cell_fn , hidden_fn):
3
4x_inputs , x_outputs = identity ()
5hprev_inputs , hprev_outputs = identity ()
6cprev_inputs , cprev_outputs = identity ()
7
8i_inputs , i_outputs = input_fn ()
9f_inputs , f_outputs = forget_fn ()
10g_inputs , g_outputs = gate_fn ()
11o_inputs , o_outputs = output_fn ()
12c_inputs , c_outputs = cell_fn ()
13h_inputs , h_outputs = hidden_fn ()
14
15i_inputs["in0"]. connect(x_outputs["out"])
16i_inputs["in1"]. connect(hprev_outputs["out"])
17f_inputs["in0"]. connect(x_outputs["out"])
18f_inputs["in1"]. connect(hprev_outputs["out"])
19g_inputs["in0"]. connect(x_outputs["out"])
20g_inputs["in1"]. connect(hprev_outputs["out"])
21c_inputs["in0"]. connect(f_outputs["out"])
22c_inputs["in1"]. connect(cprev_outputs["out"])
23c_inputs["in2"]. connect(i_outputs["out"])
24c_inputs["in3"]. connect(g_outputs["out"])
25o_inputs["in0"]. connect(x_inputs["in"])
26o_inputs["in1"]. connect(hprev_inputs["in"])
27h_inputs["in0"]. connect(o_outputs["out"])
28h_inputs["in1"]. connect(c_outputs["out"])
29
30return ({"x": x_inputs["in"],
31"hprev": hprev_inputs["in"],
32"cprev": cprev_inputs["in"]},
33{"c": c_outputs["out"],
34"h": h_outputs["out"]})

Figure 15: Left: LSTM equations showing how the expert might abstract the LSTM structure into a
general functional dependency. Right: Auxiliary function for a LSTM cell that takes functions that
return the search spaces for input, output, and forget gates, and the cell update, hidden state output,
and context mechanisms and arranges them together to create the larger LSTM-like search space.

B Search space example

Figure 16 shows the recurrent cell search space introduced in [23] encoded in our language imple-
mentation. This search space is composed of a sequence of nodes. For each node, we choose its
type and from which node output will it get its input. The cell output is the average of the outputs
of all nodes after the first one. The encoding of this search space exemplifies the expressiveness of
substitution modules. The cell connection structure is created through a substitution module that has
hyperparameters representing where each node will get its input from. The substitution function that
creates this cell takes functions that return inputs and outputs of the subsearch spaces for the input and
intermediate nodes. Each subsearch space determines the operation performed by the node. While
more complex than the other examples that we have presented, the same language constructs allow us
to approach the encoding of this search space. Functions cell, input_node, intermediate_node,
and search_space define search spaces that are fully encapsulated and that therefore, can be reused
for creating new search spaces.

C Additional details about language mechanics

Ordered module traversal Algorithm 5 generates a unique ordering over modules M(G) by
starting at the modules that have outputs inOu(G) (which are named by σo) and traversing backwards,
moving from a module to its neighboring modules (i.e., the modules that connect an output to an
input of this module). A unique ordering is generated by relying on the lexicographic ordering of the
local names (see lines 3 and 10 in Algorithm 5).

14

1def cell(num_nodes ,
2h_units ,
3input_node_fn ,
4intermediate_node_fn ,
5combine_fn):
6
7def substitution_fn(dh):
8input_node = input_node_fn(h_units)
9inter_nodes = [
10intermediate_node_fn(h_units)
11for _ in range(1, num_nodes)
12]
13nodes = [input_node] + inter_nodes
14
15for i in range(1, num_nodes):
16nodes[i][0]["in"]. connect(
17nodes[dh[str(i)]][1]["out"])
18
19used_ids = set(dh.values ())
20unused_ids = set(range(num_nodes)
21). difference(used_ids)
22c_inputs , c_outputs = combine_fn(
23len(unused_ids))
24for j, i in enumerate(sorted(unused_ids)):
25c_inputs ["in%d"%j]. connect(
26nodes[i][1]["out"])
27
28return (input_node [0],
29{"ht+1": c_outputs["out"]})
30
31name_to_hyperp = {str(i): D(range(i))
32for i in range(1, num_nodes)}
33
34return substitution_module("Cell",
35substitution_fn , name_to_hyperp ,
36["x", "ht"], ["ht+1"])

1def input_node_fn(h_units):
2h_inputs , h_outputs = affine(h_units)
3x_inputs , x_outputs = affine(h_units)
4a_inputs , a_outputs = add(2)
5n_inputs , n_outputs = nonlinearity(D(["relu",
6"tanh","sigmoid", "identity"]))
7
8a_inputs["in0"]. connect(x_outputs["out"])
9a_inputs["in1"]. connect(h_outputs["out"])
10n_inputs["in"]. connect(a_outputs["out"])
11
12return {
13"x": x_inputs["in"],
14"ht": h_inputs["in"]}, n_outputs
15
16
17def intermediate_node_fn(h_units):
18a_inputs , a_outputs = affine(h_units)
19n_inputs , n_outputs = nonlinearity(D(["relu",
20"tanh", "sigmoid", "identity"]))
21a_outputs["out"]. connect(n_inputs["in"])
22return a_inputs , n_outputs

1def search_space ():
2h_units = D([32, 64, 128, 256])
3return cell(8, h_units ,
4input_node_fn , intermediate_node_fn , avg)

Figure 16: Recurrent search space from ENAS [23] encoded using our language implementation. A
substitution module is used to delay the creation of the cell topology. The code uses higher order
functions to create the cell search space from the subsearch spaces of its nodes (i.e., input_node_fn
and intermediate_node_fn).

Architecture instantiation Mapping an architecture G ∈ T relies on traversing M(G) in topo-
logical order. Intuitively, to do the local computation of a module m ∈ M(G) for G ∈ T , the
modules that m depends on (i.e., which feed an output into an input of m) must have done their
local computations to produce their outputs (which will now be available as inputs to m). Graph
propagation (Algorithm 4) starts with values for the unconnected inputs Iu(G) and applies local
module computation according to the topological ordering of the modules until the values for the
unconnected outputs Ou(G) are generated. g(m) maps input and hyperparameter values to the local
computation of m. The arguments of g(m) and its results are sorted according to their local names
(see lines 2 to 8).

D Discussion about language expressivity

D.1 Infinite search spaces

1def maybe_one_more(fn):
2return siso_or ([
3fn , lambda: siso_sequential(
4[fn(), maybe_one_more(fn)])],
5D([0, 1]))

Figure 18: Self-similar search space either returns
a search space or a search space and an optional ad-
ditional search space. fn returns the search space
to use in this construction.

We can rely on the laziness of substitution mod-
ules to encode infinite search spaces. Figure 18
shows an example of such a search space. If the
hyperparameter associated to the substitution
module is assigned the value one, a new substi-
tution module and hyperparameter are created.
If the hyperparameter associated to the substitu-
tion module is assigned the value zero, recursion
stops. The search space is infinite because the
recursion can continue indefinitely. This search
space can be used to create other search spaces
compositionally. The same principles are valid for more complex search spaces involving recursion.

15

Algorithm 4: Forward
Input: G ∈ T , x(i) for i ∈ Iu(G) and

x(i) ∈ X(i)

1 for m ∈ OrderedTopologically(M(G)) do
2 S(m),h = {sh,1, . . . , sh,nh} for

sh,1 < . . . < sh,nh

3 S(m),i = {si,1, . . . , si,ni} for
si,1 < . . . < si,ni

4 S(m),o = {so,1, . . . , so,no} for
so,1 < . . . < so,no

5 xj ← x(σ(m),i(si,j))
, for j ∈ [ni]

6 vj ← v(σ(m),h(sh,j)), for j ∈ [nh]

7 (y1, . . . , yno)←
g(m)(x1, . . . , xni , v1, . . . , vnh)

8 yσ(m),o(so,j)
← yj for j ∈ [no]

9 for (o, i) ∈ Eo(m) do
10 x(i) ← y(o)

11 return y(o) for o ∈ Ou(G)

Algorithm 5: OrderedModules
Input: G, σo : So → Ou(G)

1 Mq ← []
2 n← |So|
3 Let So = {s1, . . . , sn} with s1 < . . . < sn.
4 for k ∈ [n] do
5 m← m(σo(sk))
6 if m /∈Mq then
7 Mq ←Mq + [m]

8 for m ∈Mq do
9 n← |S(m),i|

10 Let S(m),i = {s1, . . . , sn} with
s1 < . . . < sn.

11 while j ∈ [n] do
12 i← σ(m),i(sj)
13 if i /∈ Iu(G) then
14 Take (o, i) ∈ E(G)
15 m′ ← m(o)
16 if m′ /∈Mq then
17 Mq ←Mq + [m′]

18 return Mq

Figure 17: Left: Forward maps a terminal search space to its domain implementation. The mapping
relies on each basic module doing its local computation (encapsulated by g(m) on line 7). Forward
starts with values for the unconnected inputs and traverses the modules in topological order to
generate values for the unconnected outputs. Right: Iteration of M(G) according to a unique order.
The first while (line 4) loop adds the modules of the outputs in Ou(G). The second while (line 8)
loop traverses backwards the connections of the modules in Mq, adding new modules reached this
way to Mq . m(o) denotes the module that o belongs to. See also Figure 6

D.2 Search space transformation and combination

We assume the existence of functions a_fn, b_fn, and c_fn that each take one binary hyperparameter
and return a search space. In Figure 19, search_space_1 repeats a choice between a_fn, b_fn, and
c_fn one, two, or four times. The hyperparameters for the choice (i.e., those associated to siso_or)
modules are assigned values separately for each repetition. The hyperparameters associated to each
a_fn, b_fn, or c_fn are also assigned values separately.

Simple rearrangements lead to dramatically different search spaces. For example, we get
search_space_2 by swapping the nesting order of siso_repeat and siso_or. This search
space chooses between a repetition of one, two, or four a_fn, b_fn, or c_fn. Each binary hyperpa-
rameter of the repetitions is chosen separately. search_space_3 shows that it is simple to share an
hyperparameter across the repetitions by instantiating it outside the function (line 2), and access it
on the function (lines 5, 7, and 9). search_space_1, search_space_2, and search_space_3 are
encapsulated and can be used as any other search space. search_space_4 shows that we can easily
use search_space_1, search_space_2, and search_space_3 in a new search space (compare
to search_space_2).

Highly-conditional search spaces can be created through local composition of modules, reducing
cognitive load. In our language, substitution modules, basic modules, dependent hyperparameters,
and independent hyperparameters are well-defined constructs to encode complex search spaces. For
example, a_fn might be complex, creating many modules and hyperparameters, but its definition
encapsulates all this. This is one of the greatest advantages of our language, allowing us to easily
create new search spaces from existing search spaces. Furthermore, the mapping from instances in
the search space to implementations is automatically generated from the search space encoding.

16

1def search_space_1 ():
2return siso_repeat(
3lambda: siso_or ([
4lambda: a_fn(D([0, 1])),
5lambda: b_fn(D([0, 1])),
6lambda: c_fn(D([0, 1]))] ,
7D([0, 1, 2])), D([1, 2, 4]))

1def search_space_2 ():
2return siso_or ([
3lambda: siso_repeat(
4lambda: a_fn(D([0, 1])),
5D([1, 2, 4])),
6lambda: siso_repeat(
7lambda: b_fn(D([0, 1])),
8D([1, 2, 4])),
9lambda: siso_repeat(
10lambda: c_fn(D([0, 1])),
11D([1, 2, 4]))],
12D([0, 1, 2]))

1def search_space_3 ():
2h = D([0, 1])
3return siso_or ([
4lambda: siso_repeat(
5lambda: a_fn(h), D([1, 2, 4])),
6lambda: siso_repeat(
7lambda: b_fn(h), D([1, 2, 4])),
8lambda: siso_repeat(
9lambda: c_fn(h), D([1, 2, 4]))],
10D([0, 1, 2]))

1def search_space_4 ():
2return siso_or ([
3lambda: siso_repeat(
4search_space_1 , D([1, 2, 4])),
5lambda: siso_repeat(
6search_space_2 , D([1, 2, 4])),
7lambda: siso_repeat(
8search_space_3 , D([1, 2, 4]))],
9D([0, 1, 2]))

Figure 19: Top left: Repeats the choice between a_fn, b_fn, and c_fn one, two, or four times. This
search space shows that expressive search spaces can be created through simple arrangements of
substitution modules. Bottom left: Simple transformation of search_space_1. Top right: Similar to
search_space_2, but with the binary hyperparameter shared across all repetitions. Bottom right:
Simple search space that is created by composing the previously defined search spaces to create a
new substitution module.

E Implementation details

This section gives concrete details about our Python language implementation. We refer the reader to
https://github.com/negrinho/deep_architect for additional code and documentation.

E.1 Supporting new domains

We only need to extend Module class to support basic modules in the new domain. We start with the
common implementation of Module (see Figure 20) for both basic and substitution modules and then
cover its extension to support Keras basic modules (see Figure 21).

General module class The complete implementation of Module is shown in Figure 20. Module
supports the implementations of both basic modules and substitution modules. There are three
types of functions in Module in Figure 20: those that are used by both basic and substitution
modules (_register_input, _register_output, _register_hyperparameter, _register,
_get_hyperp_values, get_io and get_hyperps); those that are used just by basic modules
(_get_input_values, _set_output_values, _compile, _forward, and forward); those are
used just by substitution modules (_update). We will mainly discuss its extension for basic modules
as substitution modules are domain-independent (e.g., there are no domain-specific components in
the substitution modules in Figure 13 and in cell in Figure 16).

Supporting basic modules in a domain relies on two functions: _compile and _forward. These
functions help us map an architecture to its implementation in deep learning (slightly different
functions might be necessary for other domains). forward shows how _compile and _forward are
used during graph instantiation in a terminal search space. See Figure 22 for the iteration over the
graph in topological ordering (determined by determine_module_eval_seq), and evaluates the
forward calls in turn for the modules in the graph leading to its unconnected outputs.

_register_input, _register_output, _register_hyperparameter, and _register are
used to describe the inputs and outputs of the module (i.e., _register_input and _register_output), and
to associate hyperparameters to its properties (i.e., _register_hyperparameter). _register
aggregates the first three functions into one. _get_hyperp_values, _get_input_values,
and _set_output_values are used in _forward (see left of Figure 21. These are used
in each basic module, once in a terminal search space, to retrieve its hyperparameter values
(_get_hyperp_values) and its input values (_get_input_values) and to write the results of
its local computation to its outputs (_set_output_values). Finally, get_io retrieves the dictio-

17

https://github.com/negrinho/deep_architect

1class Module(Addressable):
2
3def __init__(self , scope=None , name=None):
4scope = scope if scope is not None else Scope.default_scope
5name = scope.get_unused_name(’.’.join(
6[’M’, (name if name is not None else self._get_base_name ()) + ’-’]))
7Addressable.__init__(self , scope , name)
8
9self.inputs = OrderedDict ()
10self.outputs = OrderedDict ()
11self.hyperps = OrderedDict ()
12self._is_compiled = False
13
14def _register_input(self , name):
15assert name not in self.inputs
16self.inputs[name] = Input(self , self.scope , name)
17
18def _register_output(self , name):
19assert name not in self.outputs
20self.outputs[name] = Output(self , self.scope , name)
21
22def _register_hyperparameter(self , name , h):
23assert isinstance(h, Hyperparameter) and name not in self.hyperps
24self.hyperps[name] = h
25h._register_module(self)
26
27def _register(self , input_names , output_names , name_to_hyperp):
28for name in input_names:
29self._register_input(name)
30for name in output_names:
31self._register_output(name)
32for name in sorted(name_to_hyperp):
33self._register_hyperparameter(name , name_to_hyperp[name])
34
35def _get_input_values(self):
36return {name: ix.val for name , ix in iteritems(self.inputs)}
37
38def _get_hyperp_values(self):
39return {name: h.get_value () for name , h in iteritems(self.hyperps)}
40
41def _set_output_values(self , output_name_to_val):
42for name , val in iteritems(output_name_to_val):
43self.outputs[name].val = val
44
45def get_io(self):
46return self.inputs , self.outputs
47
48def get_hyperps(self):
49return self.hyperps
50
51def _update(self):
52""" Called when an hyperparameter that the module depends on is set."""
53raise NotImplementedError
54
55def _compile(self):
56raise NotImplementedError
57
58def _forward(self):
59raise NotImplementedError
60
61def forward(self):
62if not self._is_compiled:
63self._compile ()
64self._is_compiled = True
65self._forward ()

Figure 20: Module class used to implement both basic and substitution modules. _register_input,
_register_output, _register_hyperparameter, _register, _get_hyperp_values,
get_io and get_hyperps are used by both basic and substitution modules. _get_input_values,
_set_output_values, _compile, _forward, and forward are used only by basic modules.
_update is used only by substitution modules.

18

naries mapping names to inputs and outputs (these correspond to σ(m),i : S(m),i → I(m) and
σ(m),o : S(m),o → O(m), respectively, described in Section 6). Most inputs are named in if there is
a single input and in0, in1, and so on if there is more than one. Similarly, for outputs, we have out
for a single output, and out0, out1, and so if there are multiple outputs. This is often seen when
connecting search spaces, e.g., lines 15 to 28 in right of Figure 15. In Figure 15, we redefine σi and
σo (in line 30 to line 34) to have appropriate names for the LSTM cell, but often, if possible, we
just use σ(m),i and σ(m′),o for σi and σo respectively, e.g., in siso_repeat and siso_combine in
Figure 13.

_update is used in substitution modules (not shown in Figure 20): for a substitution module, it
checks if all its hyperparameters have been assigned values and does the substitution (i.e., calls its
substitution function to create a search space that takes the place of the substitution module; e.g., see
frames a, b, and c of Figure 5 for a pictorial representation, and Figure 13 for implementations of
substitution modules). In the examples of Figure 13, substitution_fn returns the search space to
replace the substitution module with in the form of a dictionary of inputs and a dictionary of outputs
(corresponding to σi and σo on line 12 of Algorithm 1). The substitution modules that we considered
can be implemented with the helper in Figure 14 (e.g., see the examples in Figure 13).

In the signature of __init__ for Module, scope is a namespace used to register a module with a
unique name and name is the prefix used to generate the unique name. Hyperparameters also have a
unique name generated in the same way. Figure 5 shows this in how the modules and hyperparameters
are named, e.g., in frame a, Conv2D-1 results from generating a unique identifier for name Conv2D
(this is also captured in the use of _get_name in the examples in Figure 12 and Figure 13). When
scope is not mentioned explicitly, a default global scope is used (e.g., scope is optional in Figure 20).

Extending the module class for a domain (e.g., Keras) Figure 21 (left) shows the extension
of Module to deal with basic modules in Keras. KerasModule is the extension of Module.
keras_module is a convenience function that instantiates a KerasModule and returns its dictio-
nary of local names to inputs and outputs. siso_keras_module is the same as keras_module
but uses default names in and out for a single-input single-output module, which saves the
expert the trouble of explicitly naming inputs and outputs for this common case. Finally,
siso_keras_module_from_keras_layer_fn reduces the effort of creating basic modules from
Keras functions (i.e., the function can be passed directly creating compile_fn beforehand). These
functions are analogous for different deep learning frameworks, e.g., see the example usage of
siso_tensorflow_module in Figure 12.

The most general helper, keras_module works by providing the local names for the inputs
(input_names) and outputs (output_names), the dictionary mapping local names to hyperpa-
rameters (name_to_hyperp), and the compilation function (compile_fn), which corresponds to
the _compile_fn function of the module. Calling _compile_fn returns a function (corresponding
to _forward for a module, e.g., see Figure 12).

E.2 Implementing a search algorithm

Figure 23 shows random search in our implementation. random_specify_hyperparameter as-
signs a value uniformly at random to an independent hyperparameter. random_specify assigns
all unassigned independent hyperparameters in the search space until reaching a terminal search
space (each assignment leads to a search space transition; see Figure 5). RandomSearcher encap-
sulates the behavior of the searcher through two main functions: sample and update. sample
samples an architecture from the search space, which returns inputs and outputs for the sam-
pled terminal search space, the sequence of value assignments that led to the sampled terminal
search space, and a searcher_eval_token that allows the searcher to identify the sampled terminal
search space when the evaluation results are passed back to the searcher through a call to update.
update incorporates the evaluation results (e.g., validation accuracy) of a sampled architecture
into the state of the searcher, allowing it to use this information in the next call to sample. For
random search, update is a no-op. __init__ takes the function returning a search space (e.g.,
search_space in Figure 16) from which architectures are to be drawn from and any other argu-
ments that the searcher may need (e.g., exploration term in MCTS). To implement a new searcher,
Searcher needs to be extended by implementing sample and update for the desired search algo-
rithm. unassigned_independent_hyperparameter_iterator provides ordered iteration over

19

1import deep_architect.core as co
2
3class KerasModule(co.Module):
4
5def __init__(self ,
6name ,
7compile_fn ,
8name_to_hyperp ,
9input_names ,
10output_names ,
11scope=None):
12co.Module.__init__(self , scope , name)
13self._register(input_names , output_names ,
14name_to_hyperp)
15self._compile_fn = compile_fn
16
17def _compile(self):
18input_name_to_val = self._get_input_values ()
19hyperp_name_to_val = self._get_hyperp_values ()
20self._fn = self._compile_fn(
21input_name_to_val , hyperp_name_to_val)
22
23def _forward(self):
24input_name_to_val = self._get_input_values ()
25output_name_to_val = self._fn(input_name_to_val)
26self._set_output_values(output_name_to_val)
27
28def _update(self):
29pass

1def keras_module(name ,
2compile_fn ,
3name_to_hyperp ,
4input_names ,
5output_names ,
6scope=None):
7return KerasModule(name , compile_fn ,
8name_to_hyperp , input_names ,
9output_names , scope). get_io ()
10
11
12def siso_keras_module(name , compile_fn ,
13name_to_hyperp , scope=None):
14return KerasModule(name , compile_fn ,
15name_to_hyperp , [’in’], [’out’],
16scope). get_io ()
17
18
19def siso_keras_module_from_keras_layer_fn(
20layer_fn , name_to_hyperp ,
21scope=None , name=None):
22
23def compile_fn(di , dh):
24m = layer_fn (**dh)
25
26def forward_fn(di):
27return {"out": m(di["in"])}
28
29return forward_fn
30
31if name is None:
32name = layer_fn.__name__
33
34return siso_keras_module(name ,
35compile_fn , name_to_hyperp , scope)

Figure 21: Left: Complete extension of the Module class (see Figure 20 for supporting Keras basic
modules. Right: Convenience functions to reduce the effort of wrapping Keras operations into basic
modules for common cases. See Figure 12 for examples of how they are used.

1def forward(input_to_val , _module_seq=None):
2if _module_seq is None:
3_module_seq = determine_module_eval_seq(input_to_val.keys ())
4
5for ix, val in iteritems(input_to_val):
6ix.val = val
7
8for m in _module_seq:
9m.forward ()
10for ox in itervalues(m.outputs):
11for ix in ox.get_connected_inputs ():
12ix.val = ox.val

Figure 22: Generating the implementation of the architecture in a terminal search space G (e.g., the
one in frame d of Figure 5). Compare to Algorithm 4: input_to_val corresponds to the x(i) for
i ∈ Iu(G); determine_module_eval_seq corresponds to OrderedTopologically in line 1 of
Algorithm 4; Remaining code corresponds to the traversal of the modules according to this ordering,
evaluation of their local computations, and propagation of results from outputs to inputs.

20

1def random_specify_hyperparameter(hyperp):
2assert not hyperp.has_value_assigned ()
3
4if isinstance(hyperp , hp.Discrete):
5v = hyperp.vs[np.random.randint(len(hyperp.vs))]
6hyperp.assign_value(v)
7else:
8raise ValueError
9return v
10
11def random_specify(outputs):
12hyperp_value_lst = []
13for h in co.unassigned_independent_hyperparameter_iterator(outputs):
14v = random_specify_hyperparameter(h)
15hyperp_value_lst.append(v)
16return hyperp_value_lst
17
18class RandomSearcher(Searcher):
19def __init__(self , search_space_fn):
20Searcher.__init__(self , search_space_fn)
21
22def sample(self):
23inputs , outputs = self.search_space_fn ()
24vs = random_specify(outputs)
25return inputs , outputs , vs , {}
26
27def update(self , val , searcher_eval_token):
28pass

Figure 23: Implementation of random search in our language implementation. sample assigns values
to all the independent hyperparameters in the search space, leading to an architecture that can be
evaluated. update incorporates the results of evaluating an architecture into the state of the searcher,
allowing it to use this information in the next call to sample.

the independent hyperparameters of the search space. The role of the search algorithm is to pick
values for each of these hyperparameters, leading to a terminal space. Compare to Algorithm 3.
search_space_fn returns the dictionaries of inputs and outputs for the initial state of the search
space (analogous to the search space in frame a in Figure 5).

F Additional experimental results

We present the full validation and test results for both the search space experiments (Table 3) and the
search algorithm experiments (Table 4). For each search space, we performed a grid search over the
learning rate with values in {0.1, 0.05, 0.025, 0.01, 0.005, 0.001} and an L2 penalty with values in
{0.0001, 0.0003, 0.0005} for the architecture with the highest validation accuracy Each evaluation in
the grid search was trained for 600 epochs with SGD with momentum of 0.9 and a cosine learning
rate schedule We did a similar grid search for each search algorithm.

Table 3: Results for the search space experiments A grid search was performed on the best architecture
from the search phase Each evaluation in the grid search was trained for 600 epochs

Search Space Validation Accuracy
@ 25 epochs

Validation Accuracy
@ 600 epochs

Test Accuracy
@ 600 epochs

Number of
Parameters

Genetic [26] 79.03 91.13 90.07 9.4M
Flat [15] 80.69 93.70 93.58 11.3M
Nasbench [27] 87.66 95.08 94.59 2.6M
Nasnet [28] 82.35 94.56 93.77 4.5M

21

Table 4: Results for the search algorithm experiments A grid search was performed on the best
architecture from the search phase, each trained to 600 epochs

Search algorithm Run
Validation
Accuracy
@ 25 epochs

Validation
Accuracy
@ 600 epochs

Test
Accuracy
@ 600 epochs

Random

1 77.58 92.61 92.38
2 79.09 91.93 91.30
3 81.26 92.35 91.16

Mean 79.31± 1.85 92.29± 0.34 91.61± 0.67

MCTS [29]

1 78.68 91.97 91.33
2 78.65 91.59 91.47
3 78.65 92.69 91.55

Mean 78.66± 0.02 92.08± 0.56 91.45± 0.11

SMBO [16]

1 77.93 93.62 92.92
2 81.80 93.05 92.03
3 82.73 91.89 90.86

Mean 80.82± 2.54 92.85± 0.88 91.93± 1.03

Regularized evolution [14]

1 80.99 92.06 90.80
2 81.51 92.49 91.79
3 81.65 92.10 91.39

Mean 81.38± 0.35 92.21± 0.24 91.32± 0.50

22

