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A Calculus of w (Fv
u)

In this appendix we will focus on the calculation of w(Fvu) for any nodes u, v ∈ V . We will prove
Lemma 2.2 (here denoted Lemma A.5). In order to demonstrate it we will use the matrix tree theorem
(MTT) and some previous results.

To deduce some results we will use multigraphs. The Laplacian of a multigraph is slightly different
from the Laplacian of a simple graph. We introduce the following definition.
Definition A.1 (Laplacian of a multigraph). Let G be a multigraph. The Laplacian LG has the
following formula (

LG
)
uv

:=

{∑
ē∈E(u,v) −wG

(
ē
)

if u 6= v∑
k∈V
k 6=u

∑
ē∈E(u,k) wG

(
ē
)

if u = v ,

where E(u,v) ⊂ EG is the subset of edges incident to u and v. If there are no edges incident to u and
v the sum is considered equal to 0.

Since the MTT is crucial in our theory we recall it.
Theorem A.1 (Matrix tree theorem (MTT)). For any weighted multigraph G the sum of the
weights of the spanning trees of G, w(T ) :=

∑
t∈T

∏
e∈Et

w(e), is equal to

w(T ) = det(L[v]) =
1

|V |
λ2 · · ·λ|V | =

1

|V |
det(L+

1

|V |
11
>),

where L[v] is the matrix obtained from the Laplacian, L, after removing the row and column
corresponding to an arbitrary but fixed node v, {λi}i≥1 are the eigenvalues of L with λ1 = 0 and 1
the corresponding eigenvector, the column vector of 1’s.

Proof. We will only prove the third equality. The first equality can be found in [11]. The second
equality can be found in chapter 1 of [2] for non-weighted graphs, but the reasoning of the proof is
equivalent for weighted graphs. The proof of the third equality is Theorem 1.6 in [5], but since it has
some typos we preferred to prove it by means of the second equality.

In order to demonstrate the third equality we will show that

λ2 · · ·λ|V | = det(L+
1

|V |
11
>). (1)

Let λ̃i for i = 1, . . . , |V | be the eigenvalues of L+ 1
|V |11

>. Since the determinant of a matrix is the
product of its eigenvalues we obtain
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det(L+
1

|V |
11
>) = λ̃1 · · · λ̃|V |.

We will show that one of the λ̃i’s, say λ̃1, is one and that {λ̃2, . . . , λ̃|V |} = {λ2, . . . , λ|V |} which
establishes equation (1).

The first eigenvalue of the Laplacian L is λ1 = 0 whose eigenvector is 1, since the elements of every
row of L sum to 1. We prove now that 1 is an eigenvector of L+ 1

|V |11
> with eigenvalue equal to 1.

(L+
1

|V |
11
>)1 = L1︸︷︷︸

=0

+
1

|V |
11
>
1︸︷︷︸

=|V |

= 1

Therefore, we get λ̃1 = 1. Since L + 1
|V |11

> is symmetric, we can find an orthogonal basis of
eigenvectors of L+ 1

|V |11
> containing 1. Let xi be an element of that basis associated with λi for

i ≥ 2. By the orthogonality of 1 and xi, we get

(L+
1

|V |
11
>)xi = Lxi +

1

|V |
11
>xi︸ ︷︷ ︸
=0

= λixi

Therefore λi for i ≥ 2 is also an eigenvalue of L+ 1
|V |11

> and the theorem is proven.

Lemma A.2 (Determinant Lemma). Given an invertible matrix A ∈ Rm×m and u, v ∈ Rm then:

det(A+ uv>) = det(A)(1 + v>A−1u)

Proof. See [7].

Lemma A.3. Let L+ be the pseudo-inverse of the Laplacian, then

L+ =

(
L+

11
>

|V |

)−1

− 11
>

|V |
,

where 1 is the column vector of 1s.

Proof. On page 48 of [4] the same argument as in the proof of TheoremA.1 is applied.
(
L+ 11

>

|V |

)−1

and L+ have the same eigenvectors and eigenvalues except for λ̃1 = 1 whose corresponding

eigenvalue of L+ is λ1 = 0. By subtracting 11
>

|V | from
(
L+ 11

>

|V |

)−1

the eigenvalue λ̃1 is modified
and becomes 0. Hence both matrices are equal since they have the same spectral decomposition . See
chapter 10 in [9] for more details.

Before proving the next result we need to introduce some notation. Let ē = {u, v} ⊂ V be an
edge not necessarily included in E. Let Gē be the graph formed from G after adding the edge ē,
i.e. Gē = (V,E t {ē}), where t denotes the disjoint union1. The use of the disjoint union permits
distinguishing between the added edge and the ones originally present in the graph. Therefore Gē
may be a multigraph. The following lemma explains why we need to consider Gē as a multigraph.
Lemma A.4. Let G = (VG, EG, wG) be a weighted graph and consider Gē = (VG, EG t {ē}, w) for
some ē = {u, v} ⊂ V , where w(e) = wG(e) for all e ∈ EG and w(ē) an arbitrary positive number.
We will omit the subscript of wG without risk of confusion. Then

w (Fvu) =
w(TGē

)− w(TG)

w(ē)
,

where TGē
and TG denote the set of spanning trees of Gē and G respectively.

1Given a family of sets {Ai : i ∈ I} the disjoint union is defined as
⊔

i∈I Ai =
⋃

i∈I {(x, i) : x ∈ Ai}.
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Proof. The key idea of the proof is the fact that TGē can be partitioned in the set of trees that do not
contain the edge ē (which is equal to TG since G did not contain ē) and the ones that do contain the
edge ē. Let us denote the second set T ē := {t ∈ TGē : ē ∈ Et}. Recall that ē is considered as a
special edge even if there was already an edge e = {u, v} contained in the graph G. If e and ē where
considered as the same edge, then the set of trees not containing ē would not be equal to TG, since e
belongs to some trees in TG. Therefore we need to consider Gē as a multigraph.

Note that there is a bijection between T ē and Fvu since any tree t ∈ T ē forms a 2-forest f ∈ Fvu after
removing ē from t, and vice versa, any f ∈ Fvu forms a tree in t ∈ T ē after adding ē (see p.652 in
[1]). Moreover, w(ē) · w(f) = w(t) since the only edge present in t but not in f is ē. Therefore, we
obtain

w(TGē
) =

∑
t∈TGē

w(t) =
∑
t∈T ē

w(t) +
∑
t∈TG

w(t) = w(ē)
∑
t∈T ē

w(t)

w(ē)
+ w(TG)

= w(ē)
∑
f∈Fv

u

w(f) + w(TG) = w(ē)w(Fvu) + w(TG).
(2)

Isolating w(Fvu) we get the desired result.

Lemma A.5 (Lemma 2.2). Let G = (V,E,w) be an undirected edge-weighted connected graph and
u, v ∈ V arbitrary vertices.

(a) Let `+ij denote the entry ij of the pseudo-inverse of the Laplacian of G, L+
G, then

w(Fvu) = w(T )
(
`+uu + `+vv − 2`+uv

)
. (3)

(b) If `−1,[r]
ij denotes the entry ij of the inverse of the matrix L[r] (the Laplacian L after removing the

row and the column corresponding to node r), then

w(Fvu) =


w(T )

(
`
−1,[r]
uu + `

−1,[r]
vv − 2`

−1,[r]
uv

)
if r 6= u, v

w(T )`
−1,[v]
uu if r = v and u 6= v

w(T )`
−1,[u]
vv if r = u and u 6= v.

(4)

Proof. We apply the matrix tree theorem (Theorem A.1) in combination with Lemma A.2,
Lemma A.3 and Lemma A.4. We will use the following notation

L̃G = LG +
11
>

|V |
.

In order to use Lemma A.4 we will use the edge ē = {u, v} with w(ē) = 1. Moreover, let us denote
bē = 1u − 1v where 1v indicates the column v of the identity matrix. Since the difference between G
and Gē is just the edge ē with w(ē) = 1, we can write the following relation between the Laplacians
of G and Gē

LGē
= LG + bēb

>
ē .

Therefore, we may write

w(Fvu) =︸︷︷︸
LemmaA.4

w(TGē)− w(TG) =︸︷︷︸
MTT

TheoremA.1

1

|V |
det
(
L̃G + beb

>
e︸ ︷︷ ︸

L̃Gē

)
− 1

|V |
det(L̃G)

=︸︷︷︸
LemmaA.2

1

|V |
det(L̃G)

(
1 + b>ē L̃

−1
G bē

)
− 1

|V |
det(L̃G) =

1

|V |
det(L̃G)

(
b>ē L̃

−1
G bē

)
=︸︷︷︸

LemmaA.3

1

|V |
det(L̃G)

(
b>ē

(
L+ +

11
>

|V |

)
bē

)
=

1

|V |
det(L̃G)

(
`+uu + `+vv − 2`+uv

)
=︸︷︷︸

MTT
TheoremA.1

w(TG)
(
`+uu + `+vv − 2`+uv

)
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The second statement can be deduced from equation (3) in the main paper. Still we show how it can
be computed by following a similar argument as in the previous case. Let r 6= u, v.

w(Fvu) =︸︷︷︸
LemmaA.4

w(TGē
)− w(TG) =︸︷︷︸

MTT
TheoremA.1

det

(
L

[r]
G + b[r]e

(
b[r]e

)>
︸ ︷︷ ︸

L
[r]
Gē

)
− det(L

[r]
G )

=︸︷︷︸
LemmaA.2

det(L
[r]
G )

(
1 +

(
b
[r]
ē

)> (
L

[r]
G

)−1

b
[r]
ē

)
− det(L

[r]
G )

= det(L
[r]
G )
(
`−1,[r]
uu + `−1,[r]

vv − 2`−1,[r]
uv

)
= w(TG)

(
`−1,[r]
uu + `−1,[r]

vv − 2`−1,[r]
uv

)
.

For r = u the proof is the following:

w(Fvu) =︸︷︷︸
LemmaA.4

w(TGē)− w(TG) =︸︷︷︸
MTT

TheoremA.1

det

(
L

[u]
G + 1[u]

v

(
1[u]
v

)>
︸ ︷︷ ︸

L
[u]
Ge

)
− det(L

[u]
G )

=︸︷︷︸
LemmaA.2

det(L
[u]
G )

(
1 +

(
1[u]
v

)> (
L

[u]
G

)−1

1[u]
v

)
− det(L

[u]
G ) = det(L

[u]
G )`−1,[u]

vv

= w(TG)`−1,[u]
vv .

The case r = v is analogous.

B Proof of Theorem 4.1

Theorem B.1 (Theorem 4.1). The probability xs1q that a random walker as defined in [6] starting at
node q reaches s1 first before reaching s2 is equal to the Probabilistic Watershed probability defined
in Definition 3.1 of the main paper:

xs1q = P (q ∼ s1).

Proof. If we write the probability in terms of the inverse of L[s2] (Lemma 2.2, equation 2 of the main
paper) we find:

P (q ∼ s1) =
(
w(Fqs2) + w(Fs2s1 )− w(Fqs1)

)/(
2w(Fs2s1 )

)
=
(
`−1,[s2]
qq + `−1,[s2]

s1s1 −
(
`−1,[s2]
s1s1 + `−1,[s2]

qq − 2`−1,[s2]
qs1

))/(
2`−1,[s2]
s1s1

)
= `−1,[s2]

qs1

/
`−1,[s2]
s1s1 .

(5)

Therefore, to calculate the probabilities for P (q ∼ s1) for every q we only need to compute the
column s1 of

(
L[s2]

)−1
. Solving the following linear system:

L[s2]y = 1s1
/
`−1,[s2]
s1s1 ⇐⇒ y =

(
L[s2]

)−1

1s1
/
`−1,[s2]
s1s1 =

(
L[s2]

)−1

·,s1

/
`−1,[s2]
s1s1 , (6)

where 1u denotes the column u of the identity matrix, we have that y is the vector formed by
the elements in the right hand side of (5). Let us assume without loss of generality that the row
corresponding to the seed s1 is the first one, then we can express equation (6) block-wise :(

Ls1s1 B>s1
Bs1 LU

)(
ys1
yU

)
=

(
Ls1s1ys1 +B>s1yU
Bs1ys1 + LUyU

)
=

(
1/`
−1,[s2]
s1s1

0

)
, (7)

where Ls1s1 is the entry s1s1 of the Laplacian L[s2], Bs1 is the row s1 of this Laplacian without
considering the element in the diagonal and LU are the rows and columns of the unseeded vertices.
Since ys1 = P (s1 ∼ s1) = 1, we obtain the following linear system of equations

LUyU = −Bs1 ,

which is the same linear system that the Random Walker solves ([6] section III.B, equation (10)).
Therefore P (q ∼ s1) = yq = xs1q for all q.

4



C Power Watershed

In this section we recall some definitions of [3]. Let G = (V,E,w) be an undirected edge-weighted
graph and s1, s2 ∈ V two seeds as it has been considered in the main paper. In [3] the following
objective function is proposed:

x∗ = arg min
x

∑
e=(v,u)∈E

(w(e))
α

(|xv − xu|)β , s.t. xs1 = 1, xs2 = 0. (8)

This objective generalizes a set of segmentation algorithms depending on the choice of parameters α
and β. For instance, α = 1 and β = 2 give the Random Walker’s objective function.

The Power Watershed algorithm solves (8) when α → ∞. The algorithm is similar to Kruskal’s
algorithm [8]: a maximum weight spanning forest rooted in the seeds is computed iteratively, but at
each plateau (maximal connected subgraphs with constant edge-weight) the following optimization
problem is solved

min
x

∑
(u,v)∈E

|xu − xv|β . (9)

In case that β = 2 this is equivalent to apply the Random Walker on the plateau.

D Proof of Theorem 5.1

Theorem D.1 (Theorem 5.1). Given two seeds s1 and s2, let us denote the potential of node q being
assigned to seed s1 by the Power Watershed with β = 2 as xPW

q . Let furtherwmax be maxf∈Fs2
s1
w(f).

Then

xPW
q =

∣∣{f ∈ Fs2s1,q : w(f) = wmax}
∣∣

|{f ∈ Fs2s1 : w(f) = wmax}|
=: P∞(q ∼ s1).

Proof. It has already been proven in Theorem 3 of [3] that the potential computed by the algorithm
of the Power Watershed is equal to the limit of the Random Walker probabilities when the weights
are raised to α→∞. Since the Probabilistic Watershed probabilities are the same as the Random
Walker probabilities (see Section 4), we just need to show that the limit of the Probabilistic Watershed
with the weights raised to α→∞ is counting MSFs.

Pα(q ∼ s1) :=

∑
f∈Fs2

s1,q

∏
e∈f

w(e)α

∑
f∈Fs2

s1

∏
e∈f

w(e)α
=

∑
f∈Fs2

s1,q

w(f)α

∑
f∈Fs2

s1

w(f)α
=

∑
f∈Fs2

s1,q

(
w(f)

wmax

)α
∑
f∈Fs2

s1

(
w(f)

wmax

)α α→∞−−−−→
(?)

P∞(q ∼ s1).

(10)
In (?) we used the fact that w(f)

wmax
< 1 ⇐⇒ w(f) 6= wmax. When α→∞, only for the MSFs the

fraction (w(f)/wmax)
α does not tend to 0, but to 1. Thus, we are counting MSFs.

E Effect of the entropy on the Probabilistic Watershed

Figure 1 illustrates how the forest distribution’s entropy interpolates between (Power) Watershed and
Probabilistic Watershed / Random Walker with decreasing sensitivity to edge-costs.

F Edge and node probabilities in the Power Watershed

In this chapter, we elaborate the minimum spanning forest (mSF) counting interpretation of the Power
Watershed. Figure 2 shows a graph G with a single plateau P , a maximal connected subgraph of
constant edge-cost c. To simplify our exposition, we made sure that there is exactly one path with
maximum cost below c from each seed to P . The nodes at the end of these paths are called p1 and p2,
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8 · 10−4

10−3

10−2

10−1
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0

0

(a) Graph with four seeds

qs1

s2

s3

s4

(b) µ = 0

qs1

s2

s3

s4

(c) µ = 10

qs1

s2

s3

s4

(d) µ = 100

qs1

s2

s3

s4

(e) µ→∞, Watershed

Figure 1: Effect of the inverse temperature µ on Probabilistic Watershed solutions. (1a) shows a
graph with 4 seeds and edge costs, c(e). All paths from the query node q to a seed si have the same
cost (only indicated once per seed). (1b) - (1d) show the Probabilistic Watershed’s segmentation
for edge weights exp(−µ c(e)). As µ grows, q’s assignment changes from a weight-independent
(maximum entropy) one over two Random Walker assignments to the Watershed assignment (lowest
entropy).

respectively. We illustrate the mSF-counting nature of the Power Watershed both on nodes and on
edges.
In Figure 2a, we show the probability of an edge being present in a mSF. Outside the plateau, the
edges are either part of every or of no mSF. All mSFs agree on these edges. They can be found by a
variant of Kruskal’s greedy algorithm which iteratively adds edges of minimal cost, while avoiding
cycles and connections between the two seeds. Therefore, the edges outside the plateau are only black
or white in Figure 2a. On the plateau all spanning forests have the same, minimal cost. Here, Power
Watershed performs the Random Walker, or - in our forest-framework - counts spanning forests.
Therefore, the edges on P typically have a probability of being present in a mSF strictly between
0 and 1. Note that the final segmentation can be read-off from the edge probabilities in Figure 2a
outside the plateau (as in each mSF in our example every node outside the plateau can be reached
from a seed without entering the plateau) but not on the plateau without the node potentials.
In Figures 2b-2d, we show how likely an edge is connected to either of the seeds in a mSF. Again, all
the edges outside the plateau are either always connected to the same seed in all mSFs or never part
of any mSF. In the latter case, the conditional probability in 2b is not defined; we colored them white,
which corresponds to the uninformed probability of 0.5 for ease of presentation. The closer an edge
of P is to the node p1, where the subtree of s1 connects to the plateau, the higher its probability to be
connected to s1 among the mSFs that contain this edge (Figure 2b) and also among all mSFs (Figure
2c). The same holds for s2 in Figures 2b and 2d. Note that in both Figure 2c and Figure 2d the color
intensity of every edge e = {u, v} is at most as high as that of u or v. This is because whenever e is
connected to some seed in a mSF f , both u and v are connected to that seed in f , too.
We computed the probability of an edge being present in a spanning forest on the plateau by the
generalization of the MTT in Lemma 1.9 of [5], see also Theorem 2 of [10] for a version on
unweighted graphs. Then for each edge e = {u, v} on P , we merged u and v into a new node qe,
thus obtaining a minor Pe of P . On Pe in turn, we computed the Probabilistic Watershed probabilities
PPe(p1 ∼ qe), hence finding the share of 2-forests in Pe isolating p1 and p2 that connect qe to p1.
This is nothing but the share of 2-forests in P separating p1 and p2 that contain e and connect it to p1

among the 2-forests separating p1 and p2 that contain e. Multiplying this with the probability that an
edge is part of any mSF gives the share of mSFs in G, which contain e and connected it to s1, among
all mSFs separating s1 and s2.
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(a) P (node ∼ s1) and
P (edge ∈ some mSF)
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0.8

1.0

(b) P (node ∼ s1) and
P (edge ∼ s1|edge ∈ some msF)

s1

s2
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p2

0.0

0.2

0.4

0.6

0.8

1.0

(c) P (node ∼ s1) and
P (edge ∼ s1, edge ∈ some mSF)

s1

s2

p1

p2

0.0

0.2

0.4

0.6

0.8

1.0

(d) P (node ∼ s2) and
P (edge ∼ s2, edge ∈ some mSF)

Figure 2: Power Watershed result on a grid graph with seeds s1, s2 and with random edge-costs
outside a plateau of edges with the same cost (wide edges). By the results in Theorem 5.1, the Power
Watershed counts mSFs. This is illustrated with both the node- and edge-colors. (2a-2d) The nodes
are colored by their probability of belonging to seed s1 (s2), i.e. by the share of mSFs that connect a
given node to s1 (s2). (2a) The edge-color indicates the share of mSFs in which the edge is present.
(2b) The edge-color indicates the share of mSFs in which the edge is connected to seed s1 among the
mSFs that contain the edge. (2c - 2d) The edge-color indicates the share of mSFs in which the edge
is connected to s1 or s2, respectively, among all mSFs.

G Rough lower bound for the number of forests in a grid graph

In this chapter we derive a rough lower bound on the number of spanning forests that separate k
given seeds in a two-dimensional grid graph. We refer to these forests as “k-forests". If there is some
n×m subgrid without any seeds then the number of k-forests is at least as large as the number of
spanning trees in the subgrid. This is because there are k-forests in which all nodes in the subgrid
belong the tree of some of the seeds. We can compute the number of spanning trees NT in a grid
graph with n rows and m columns by the closed-form formula (see [12] Theorem 1):

NT (n,m) =
2nm−1

nm
·

∏
i=0,...,n−1,
j=0,...,m−1,
(i,j)6=(0,0)

(
2− cos

(
iπ

n

)
− cos

(
jπ

m

))
(11)

The image in Figure 2 of the main paper has a seed-free part of size 87× 272, see Figure 3 below.
This yields the following lower bound for the number of 13-forests separating the 13 seeds:

NT (87, 272) ≈ 1011847 (12)
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Figure 3: The shaded region was used to obtain a rough lower bound on the number of forests
separating the seeds. There are about 1011847 spanning trees in the grid graph that corresponds to the
shaded region and hence at least as many forests in the whole graph which separate the seeds.
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