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R1 on paper motivation: Figure 1 in our submission illustrates the limitation of using MSE as a loss for training deep2

forecasting models. Since MSE is similar for the three predictions in (a), (b) and (c), a gradient-based optimization is3

unable to produce training signals preferring predictions (b) and (c) over (a). By no means we wanted to claim that4

certain existing approaches are unable to perform step prediction in this simple example. This work does not focus5

on designing new forecasting models, but introduces the STDL loss function as an alternative to MSE. STDL is thus6

model-agnostic and can be used for training various forecasting models - as shown in experiments and below.7

R1 on state-of-the-art methods: We thank R1 for suggesting to compare our results to online regression with adaptive8

parameters (forgetting recursive least squares, adaptive Kalman filters). Although these are historical approaches for9

Bayesian inference in State Space Models (SSMs), their direct application to multi-step forecasting is not straightforward10

because they require input data for adaptation at each time step. For this reason, several state-of-the art multi-step11

approaches combine SSMs and deep learning based on Seq2Seq architectures [1, 2, 3, 4].12

To fulfill R1 requests, we perform additional experiments (shown in blue) on the Traffic dataset (Table 4 in submission).13

The results of the Deep AR baseline1 (obtained with GitHub code) is still outperformed by a simple Seq2Seq model14

trained with STDL (results shown in submission, column 4 in black), and equivalent in temporal metrics. Training Deep15

AR with STDL would be an interesting future exploration. Finally, we provide results when training the recent TT-RNN16

(refs [48,49] in submission) with STDL, reaching the best shape and temporal performances. These new results further17

highlight the importance of STDL ; we will be glad to add these comparisons in the final paper if accepted.18

Eval loss LSTNet-rec (MSE) TT-RNN (MSE) Deep AR (MSE) Seq2Seq (STDL) TT-RNN (STDL)
Euclidian MSE (x100) 1.74 ± 0.11 0.840 ± 0.106 0.966 ± 0.068 1.00 ± 0.260 0.930 ± 0.09
Shape DTW (x100) 42.0 ± 2.2 25.9 ± 1.99 27.8 ± 1.55 23.0 ± 1.62 21.4 ± 0.79

Ramp (x10) 9.00 ± 0.577 6.71 ± 0.546 7.56 ± 0.42 5.93 ± 0.235 5.27 ± 0.27
Time TDI (x10) 25.7 ± 4.75 17.8 ± 1.73 14.6 ± 0.94 14.4 ± 1.58 15.7 ± 1.02

Hausdorff 2.34 ± 1.41 2.19 ± 0.12 2.04 ± 0.11 2.13 ± 0.514 1.88 ± 0.153

R2 on more complex datasets: As requested, we provide additional experiments on 2 more complex datasets:19

household electricity consumption and solar energy. The former corresponds to a multivariate forecasting problem20

involving 10 exogenous input variables (global intensity, voltage, sub-metering, date, etc), requiring the extraction of21

complex interactions in data for spiky patterns prediction. The latter has very fine time granularity (10min vs 1h for22

Traffic), needing to extract accurate time features. The results shown below again illustrate the superiority of training23

Seq2Seq models with SDTL compared to MSE.24

Household electricity consumption Solar energy
Method MSE (x10) DTW TDI MSE (x1000) DTW (x100) TDI (x10)
Seq2Seq MSE 18.3 ± 2.5 4.54 ±0.40 2.49 ± 0.26 13.7 ± 1.5 24.3 ± 3.4 12.9 ± 1.4
Seq2Seq STDL 19.9 ± 2.4 3.85 ± 0.26 2.30 ± 0.59 14.4 ± 0.57 20.9 ± 1.1 5.71 ± 0.83

R2 on α tuning: α is chosen on a validation set, by selecting the lowest value for which Lshape gets comparable25

performance than a reference DTWγ trained model. This setup will be added in the final version if accepted.26

R3 on reporting STDL as evaluation metric: these results will be added in our tables if accepted.27

R3 on training time: 1 training epoch with our Seq2Seq GRU network takes about 0.5s for MSE vs 1.7s for SDTL on28

Synthetic (1s vs 8s on ECG5000, 3s vs 33s on Traffic). The overhead is due to the sequential computation of the STDL29

(dynamic programming in forward and backward passes). Note that no overhead is involved at test time.30

R3 on choice of δ: We choose δ as the euclidean loss (paper l. 102-103), which is common for computing DTW, but31

any other distance (e.g. mean absolute error) could be employed.32

R3 on code sharing: source code will be made available on GitHub after acceptance.33

R3 on ECG: predicting the shape and time interval between heartbeats could be helpful for cardiologists, to detect34

abnormal heartbeats such as ’premature ventricular contraction’.35

R3 on feature interpretation: understanding the effects of our shape and time loss terms on the learned features is an36

interesting but non trivial perspective. A possible direction to this end is to use feature visualization techniques 5.37

R3 on confidence intervals: we could use MC Dropout (Gal et. al., ICML’16) to compute the predictive distribution38

of trajectories ; or embed the STDL loss in a deep SSM architecture suited for probabilistic forecasting.39
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