
7 Appendix

7.1 Stick-Breaking: Beta to Dirichlet

In this section, we prove theorem 1. Prior to executing the while loop, algorithm 1 samples vo1 ∼
Beta

(
αo1 ,

∑K
j=2 αoj

)
and assigns xo1 ← vo1 . Therefore, xo1 has density

p(xo1) =
Γ
(∑K

j=1 αoj

)
Γ(αo1)Γ

(∑K
j=2 αoj

)xαo1
−1

o1 (1− xo1)

(∑K
j=2 αoj

)
−1
. (10)

In the case K = 2, algorithm 1 does not execute the while loop and concludes after assigning
xo2 ← 1− xo1 . From one perspective, algorithm 1 returns a 2-dimensional variable whose density is
fully determined by the first dimension (the only degree of freedom for the 1-simplex). In the K = 2
case, this univariate density is the only utilized base distribution, the Beta(x;αo1 , αo2). However, if
one wants to incorporate xo2 into this density, one can substitute xo2 for 1− xo1 as follows:

p(xo1 , xo2) =
Γ(αo1 + αo2)

Γ(αo1)Γ(αo2)
x
αo1−1
o1 x

αo2−1
o2 = Dirichlet(x;α).

Thus, we have proved correctness of algorithm 1 for K = 2. For K > 2, algorithm 1 will execute the
while loop. Therefore, we will use induction to prove loop correctness. At the ith iteration of the loop,
algorithm 1 samples voi ∼ Beta

(
αoi ,

∑K
j=i+1 αoj

)
and assigns xoi ← voi

(
1−

∑i−1
j=1 xoj

)
. Using

eq. (2) as the inverse to our change-of-variables transformation, we can claim, at the ith iteration of
the loop, that p(xoi |xoi−1

, . . . , xo1)

= Beta

(
xoi

(
1−

i−1∑
j=1

xoj

)−1
;αoi ,

K∑
j=i+1

αoj

)(
1−

i−1∑
j=1

xoj

)−1

=
Γ
(∑K

j=i αoj

)
Γ(αoi)Γ

(∑K
j=i+1 αoj

) x
αoi
−1

oi(
1−

∑i−1
j=1 xoj

)αoi

(
1−

∑i
j=1 xoj

)(∑K
j=i+1 αoj

)
−1

(
1−

∑i−1
j=1 xoj

)(∑K
j=i+1 αoj

)
−1

=
Γ
(∑K

j=i αoj

)
Γ(αoi)Γ

(∑K
j=i+1 αoj

)xαoi
−1

oi

(
1−

i−1∑
j=1

xoj

)1−(∑K
j=i αoj

)(
1−

i∑
j=1

xoj

)(∑K
j=i+1 αoj

)
−1
.

(11)

For K > 2, consider the base case where i = 2, corresponding to the first of (K − 2) while loop
iterations. Leveraging eq. (11) for for this initial iteration (i = 2), we find that p(xo2 |xo1)

=
Γ
(∑K

j=2 αoj

)
Γ(αo2)Γ

(∑K
j=3 αoj

)xαo2
−1

o2 (1− xo1)
1−
(∑K

j=2 αoj

)
(1− xo1 − xo2)

(∑K
j=3 αoj

)
−1
.

For K > 2 and the i = 2 base case, multiplying this p(xo2 |xo1) by p(xo1) (eq. (10)) to construct a
joint density yields:

p(xo1 , xo2) = p(xo1)p(xo2 |xo1)

=
Γ
(∑K

j=1 αoj

)
Γ(αo1)Γ(αo2)Γ

(∑K
j=3 αoj

)xαo1
−1

o1 x
αo2
−1

o2 (1− xo1 − xo2)

(∑K
j=3 αoj

)
−1
.

Indeed, p(xo1 , xo2) can be viewed as Dirichlet(xo1 , xo2 , xo3 ;αo1 , αo2 ,
∑K
j=3 αoj) after substituting

xo3 for 1− xo1 − xo2 . Recall that we already proved p(xo1) is Dirichlet (eq. (10)). Consequently,
the while loop is guaranteed to begin with a Dirichlet. Just now, we proved the joint density after the

12

first while loop iteration also is Dirichlet. Because algorithm 1 concludes while loop execution after
i = K − 1, if we can prove for subsequent iterations (the inductive step) that the density is also a
Dirichlet, then we have completed the proof via induction. Similar to the i = 2 base case, one can
write the joint density resulting after the ith loop iteration as p(xo1 , . . . , xoi)

=
Γ
(∑K

j=1 αoj

)
(∏i

j=1 Γ(αoi)
)

Γ
(∑K

j=i+1 αoj

)(i∏
j=1

x
αoi
−1

oi

)(
1−

i∑
j=1

xoj

)(∑K
j=i+1 αoj

)
−1
.

The next while loop iteration has conditional density p(xoi+1 |xoi , . . . , xo1), which when multiplied
by p(xo1 , . . . , xoi), yields a joint density p(xo1 , . . . , xoi+1)

=
Γ
(∑K

j=1 αoj

)
(∏i+1

j=1 Γ(αoi)
)

Γ
(∑K

j=i+2 αoj

)(i+1∏
j=1

x
αoi
−1

oi

)(
1−

i+1∑
j=1

xoj

)(∑K
j=i+2 αoj

)
−1
.

Substituting xoi+2
for 1−

∑i+1
j=1 xoj , yields Dirichlet(xo1 , . . . , xoi+2

;αo1 , . . . , αoi+1
,
∑K
j=i+2 αoj).

Hence, we have completed a proof of theorem 1.

7.2 Stick-Breaking: Kumaraswamy

In this section, we derive, in the cases of the 1-simplex and the 2-simplex, the density of the random
variable return by algorithm 1 when pi(v; ai, bi) ≡ Kumaraswamy

(
x;αi,

∑K
j=i+1 αj

)
.

7.2.1 Stick-Breaking: Kumaraswamy to a 1-Simplex Distribution

In the case K = 2, algorithm 1 begins by sampling vo1 ∼ Kumaraswamy(αo1 , αo2) and assigning
xo1 ← vo1 . Therefore, xo1 has density

p(xo1) = αo1αo2x
αo1−1
o1

(
1− xαo1

o1

)αo2−1
.

Because K = 2, algorithm 1 does not execute the while loop and concludes by assigning xo2 ←
1− xo1 . From one perspective, algorithm 1 returns a 2-dimensional variable whose density is fully
determined by the first dimension (the only degree of freedom for the 1-simplex). In the K = 2
case, this univariate density is the only utilized base distribution, the Kumaraswamy(x;αo1 , αo2).
However, if one wants to incorporate xo2 into the density, one can do so by multiplying by 1 as
follows:

p(xo1 , xo2) = p(xo1)

(
xo2

1− xo1

)αo2
−1

= αo1αo2x
αo1
−1

o1 x
αo2
−1

o2

(
1− xαo1

o1

1− xo1

)αo2−1

.

As mentioned in section 2.1, the (1− xa) term in the Kumaraswamy distribution induces algebraic
complexities that do not cancel out (in opposition to the case of the Beta distribution).

7.2.2 Stick-Breaking: Kumaraswamy to a 2-Simplex Distribution

In the case K = 3, algorithm 1 begins by sampling vo1 ∼ Kumaraswamy(αo1 , αo2 + αo3) and
assigning xo1 ← vo1 . Therefore, xo1 has density

p(xo1) = αo1(αo2 + αo3)x
αo1
−1

o1

(
1− xαo1

o1

)αo2
+αo3

−1
.

Thereafter, algorithm 1 enters the while loop at i = 2 and samples vo2 ∼ Kumaraswamy(αo2 , αo3)
and assigns xo2 ← vo2(1− xo1). Using eq. (2) as the inverse to our change-of-variables transforma-

13

tion, we can claim

p(xo2 |xo1) = Kumaraswamy

(
xo2

1− xo1
;αo2 , αo3

)
(1− xo1)−1

= αo2αo3

(
xo2

1− xo1

)αo2
−1(

1−
(xo2

1− xo1

)αo2

)αo3
−1

(1− xo1)−1

= αo2αo3x
αo2
−1

o2 (1− xo1)−αo2

(
1−

(xo2
1− xo1

)αo2

)αo3−1

.

With K = 3, the while loop only performs a single iteration. With all iterations complete, we can
construct the joint distribution as follows:

p(xo1 , xo2) =p(xo1)p(xo2 |xo1)

=
[3∏
i=1

αoi

]
(αo2 + αo3)

[2∏
i=1

x
αoi
−1

oi

] (1− xo1)−αo2

(
1− xαo1

o1

)αo2
+αo3

−1

(
1−

(
xo2

1−xo1

)αo2

)1−αo3
.

Unfortunately, this joint density does not admit an easy substitution for algorithm 1’s final step of
assigning xo3 ← 1 − xo1 − xo2 . We therefore leave p(xo1 , xo2 , xo3) as a function of just xo1 and
xo2 and in the form of p(xo1 , xo2), which is consistent with the fact that xo3 is deterministic given
xo1 and xo2 . In other words, xo1 and xo2 are the 2 degrees of freedom for the 2-simplex.

7.3 Model Derivation

In this section, we derive the evidence lower bound (ELBO) for the generative process outlined in the
beginning of section 4 and the corresponding mean-field posterior approximation q(π, z) = q(π)q(z).
In the case of observable y, we find that

ln p(x, y) = ln p(x|y, z) + ln p(y|π) + ln p(π) + ln p(z)− ln p(π, z|x, y)

= ln p(x|y, z) + ln p(y|π)− ln
q(π)

p(π)
− ln

q(z)

p(z)
+ ln

q(π, z)

p(π, z|x, y)

= E
q(π,z)

[ln p(x|fθ(y, z)) + lnπy]−DKL(q(π) || p(π))

−DKL(q(z) || p(z)) +DKL(q(π, z) || p(π, z|x, y))

≥ E
q(π,z)

[ln p(x|fθ(y, z)) + lnπy]−DKL(q(π) || p(π))−DKL(q(z) || p(z))

≡Ll(x, y, φ, θ).

14

In the case that y is latent, we can derive an alternative ELBO with the same mean-field posterior
approximation as above:

ln p(x) = ln p(x|π, z) + ln p(π) + ln p(z)− ln p(π, z|x)

= ln p(x|π, z)− ln
q(π)

p(π)
− ln

q(z)

p(z)
+ ln

q(π, z)

p(π, z|x)

= E
q(π,z)

[ln p(x|π, z)]−DKL(q(π) || p(π))

−DKL(q(z) || p(z)) +DKL(q(π, z) || p(π, z|x))

≥ E
q(π,z)

[ln p(x|π, z)]−DKL(q(π) || p(π))−DKL(q(z) || p(z))

= E
q(π,z)

[
ln
∑
y

p(x, y|π, z)
]
−DKL(q(π) || p(π))−DKL(q(z) || p(z))

= E
q(π,z)

[
ln
∑
y

p(x|y, z)p(y|π)
]
−DKL(q(π) || p(π))−DKL(q(z) || p(z))

= E
q(π,z)

[
ln
∑
y

p(x|fθ(y, z))πy
]
−DKL(q(π) || p(π))−DKL(q(z) || p(z))

≡Lu(x, φ, θ).

7.4 Kumaraswamy-Beta KL-Divergence

For convenience, we reproduce (from [20]) the KL-Divergence between the Kumarswamy and Beta
distributions. In particular, DKL(Kumaraswamy(a, b) || Beta(α, β)) =

a− α
a

(
− γ −Ψ(b)− 1

b

)
+ log(ab) + logB(α, β)− b− 1

b
+ (β − 1)b

∞∑
m=1

1

m+ ab
B
(m
a
, b
)

where γ is Euler’s constant, Ψ(·) is the Digamma function, and B(·, ·) is the Beta function. An n’th
order Taylor approximation of the above occurs when one replaces the infinite summation with the
summation over the first n terms.

7.5 Network Architecture

Our experiments exclusively utilize image data. For convenience, we define wx and lx as the width
and length of the input images. Our inference network’s hidden layers are:

1. Convolution layer with a 5 × 5 × (5 · number of data channels) kernel followed by an
exponential linear (ELU) [3] activation and a 3× 3 max pool with a stride of 2

2. Convolution layer with a 3× 3× (10 · number of data channels) kernel followed by an ELU
activation and a 3× 3 max pool with a stride of 2

3-4. A fully-connected layer with 200 outputs with an ELU activation

The last hidden layer serves as input to the output layer, which produces values for αφ(x), µφ(x)
and Σφ(x) with an affine operation and application of the activations described in section 4. Our
generative network’s hidden layers are:

1-2. A fully-connected layer with 200 outputs with an ELU activation
3. A fully-connected layer with ELU activations and a reshape to achieve an output of shape

wx

4 ×
lx
4 × (10 · number of data channels).

2×4. Convolution transpose layer with a 3× 3× (5 · number of data channels) kernel followed
by an ELU activation and a 2× bi-linear up-sample–there are 2 of these layers in parallel,
one each for µθ(y, z) and Σθ(y, z).

2×5. Convolution transpose layer with a 5× 5× (number of data channels) kernel followed by
an ELU activation and a 2× bi-linear up-sample–as before there are 2 of these layers in
parallel

These parameter sizes guarantee that µθ(y, z) and Σθ(y, z) have the same dimensions as x. Our
model offers the same attractive computational complexities as the original M2 model [13].

15

