
Supplementary Material

We now provide detailed proofs of all the theorems stated in the main text.

For improved readability, instead of proving Theorem 1 immediately, we start with two simpler
settings, namely, (a) first order fully connected,3 and (b) nth order fully connected. Together with
Theorem 1, these results will help segregate the effect of n from that of ∆ on the competitive ratio.

A First order chain models with ∆ = 1

Lemma 1. The competitive ratio of Peek Search on first order Markov chain models with ∆ = 1 for
L ≥ 1 is

ρ ≤
(

1 +
1

L

)
L√
L+ 1 .

Proof. Recall that at each time step i, our online algorithm solves the following optimization problem
over variables y , (yi, yi+1, . . . , yi+L) ∈ S(i, L), i.e. the set of valid paths of length L + 1 that
emanate from the state at time i:

Mi = arg max
y∈S(i,L)

R (yi|ŷi−1) +

L∑
j=1

γjR(yi+j |yi+j−1).

Note that the set Mi may have more than one path that maximizes the discounted sum. Breaking ties
arbitrarily, let the online algorithm choose ỹi , (ŷi, ỹ

1
i , . . . , ỹ

L
i) ∈Mi (and reach the state ŷi). Let

{y∗t | t ∈ [T]} be the optimal path over the entire horizon. Since ∆ = 1, one of the candidate paths
considered by the online algorithm is the optimal segment (y∗i , y

∗
i+1, . . . , y

∗
i+L). Since ỹi ∈Mi, we

must have

R(ŷi|ŷi−1) + γR(ỹ1
i |ŷi) +

L∑
j=2

γjR(ỹji |ỹ
j−1
i)

≥ R(y∗i |ŷi−1) +

L∑
j=1

γjR(y∗i+j |y∗i+j−1)

≥
L∑

j=1

γjR(y∗i+j |y∗i+j−1) , (3)

where the last inequality follows since all rewards are non-negative, and thus in particular,
R(y∗i |ŷi−1) ≥ 0.

An alternate path considered by the online algorithm is (ỹ1
i−1, . . . , ỹ

L
i−1, ȳ

L+1
i−1), where

(ỹ1
i−1, . . . , ỹ

L
i−1) are the last L steps of the path ỹi−1 ∈Mi−1 (i.e. the path chosen at time i− 1) and

ȳL+1
i−1 is an arbitrary valid transition from state ỹLi−1. Again since this transition fetches a non-negative

reward, we must have

R(ŷi|ŷi−1) + γR(ỹ1
i |ŷi) +

L∑
j=2

γjR(ỹji |ỹ
j−1
i)

≥ R(ỹ1
i−1|ŷi−1) +

L−1∑
j=1

γjR(ỹj+1
i−1 |ỹ

j
i−1) . (4)

3Note that for first order fully connected models, Peek Search recovers an algorithm introduced by [34] in the
context of their single server online allocation setting. Similarly, Peek Reset generalizes the Intermittent Reset
algorithm due to [34], while Randomized Peek Search generalizes a randomized algorithm from [34] to higher
order settings for ∆ ≥ 1. Our algorithms hinge on a novel adaptive optimization perspective. We therefore
emphasize the role of optimization in our analysis.

12

Multiplying (3) by 1− γ and (4) by γ, and adding the resulting inequalities, we get

R(ŷi|ŷi−1) + γR(ỹ1
i |ŷi) +

L∑
j=2

γjR(ỹji |ỹ
j−1
i)

≥
L∑

j=1

(1− γ)γjR(y∗i+j |y∗i+j−1) + R(ỹ1
i−1|ŷi−1) +

L−1∑
j=1

γj+1R(ỹj+1
i−1 |ỹ

j
i−1)

=

L∑
j=1

(1− γ)γjR(y∗i+j |y∗i+j−1) + γR(ỹ1
i−1|ŷi−1) +

L∑
k=2

γkR(ỹki−1|ỹk−1
i−1),

where the last inequality follows from a change of variable, namely, k = j + 1. Summing across all
time steps i,

∑
i

R(ŷi|ŷi−1) +
∑
i

γR(ỹ1
i |ŷi) +

L∑
j=2

γjR(ỹji |ỹ
j−1
i)

︸ ︷︷ ︸

DR1

≥
∑
i

L∑
j=1

(1− γ)γjR(y∗i+j |y∗i+j−1) +
∑
i

γR(ỹ1
i−1|ŷi−1) +

L∑
j=2

γjR(ỹji−1|ỹ
j−1
i−1)

︸ ︷︷ ︸

DR2

.

Without loss of generality, we can assume that all transitions between states in the first L+ 1 time
steps and the last L+ 1 steps fetch zero reward.4 Now note that both DR1 and DR2 consist of terms
that pertain to leftover discounted rewards on optimal (L+ 1)-paths computed by Peek Search (recall
we take only the first step on each such path). In fact, the terms are common to both sides except for
those that fall in (L + 1)-length windows at the beginning or the end. Since first and last (L + 1)
steps fetch zero reward, we can safely disregard these windows. Thus, by telescoping over i, we have

∑
i

R(ŷi|ŷi−1) ≥
∑
i

L∑
j=1

(1− γ)γjR(y∗i+j |y∗i+j−1) .

Defining a variable s = i+ j, and interchanging the two sums, we note that the right side becomes

(1− γ)

L∑
j=1

γj
∑
s

R(y∗s |y∗s−1).

That is, every reward subsequent to L+ 1 steps appears with discounts γ, γ2, . . . , γL. Summing the
geometric series, we note that the ratio of the total reward obtained by the optimal offline algorithm
to that by the online algorithm, i.e. the competitive ratio ρ is at most γ−1(1 − γL)−1. The result
follows by setting γ = L

√
1/(L+ 1).

B nth order chain models with ∆ = 1

Lemma 2. The competitive ratio of Peek Search on Markov chain models of order n with ∆ = 1 for
L ≥ n is

ρ ≤ L+ 1

L− n+ 1

(
L+ 1

n

)n/(L−n+1)

= 1 + Θ

(
logL

L− n+ 1

)
.

4One way to accomplish this is by adding a sequence of L+ 1 dummy tokens, that fetch only zero rewards,
at the beginning and another sequence at the end of the input to be decoded. Alternatively, we can introduce a
dummy start state that transitions to itself L times with zero reward and produces a fake output in each transition,
and then makes a zero reward transition into the true start state, whence actual decoding happens for T steps
followed by repeated transitions into a dummy end state that fetches a zero reward).

13

Proof. For n = 1, the result follows from Lemma 1. Therefore, we will assume n > 1. The online
algorithm finds, at time i, some ỹi , (ŷi, ỹ

1
i , . . . , ỹ

L
i) that maximizes the following objective over

valid paths y = (yi, . . . , yi+L):

f(y) , R(yi|ŷ[i−n,i−1]) +

n−1∑
j=1

γjR(yi+j |ŷ[i−n+j,i−1], y[i,i+j−1])

+

L∑
j=n

γjR(yi+j |y[i+j−n,i+j−1]) .

One candidate path for the online algorithm (a) makes a transition to y∗i worth R(y∗i |ŷ[i−n,i−1]) ≥ 0,
(b) then follows the sequence of n− 1 states y∗[i+1,i+n−1] where transition i+ j, j ∈ [n− 1] is worth

γjR(y∗i+j |ŷ[i−n+j,i−1], y
∗
[i,i+j−1]) ≥ 0 ,

and (c) finally follows a sequence of L − n + 1 states y∗[i+n,i+L] where transition i + j, j ∈
{n, n + 1, . . . , L} is worth γjR(y∗i+j |y∗[i+j−n,i+j−1]) . Since ỹi ∈ argmaxy f(y) and the rewards
in (a) and (b) are all non-negative, we must have

f(ỹi) ≥
L∑

j=n

γjR(y∗i+j |y∗[i+j−n,i+j−1]) . (5)

Another option available with the online algorithm is to continue following the path selected at
time i− 1 for L steps, and then make an additional arbitrary transition with a non-negative reward.
Therefore, we must also have

f(ỹi) ≥ R(ỹ1
i−1|ŷ[i−n,i−1]) +

n−1∑
j=1

γjR(ỹj+1
i−1 |ŷ[i−n+j,i−1], ỹ

[j]
i−1)

+

L−1∑
j=n

γjR(ỹj+1
i−1 |ỹ

[j−n+1,j]
i−1) . (6)

Multiplying (5) by 1− γ and (6) by γ, and adding the resulting inequalities, we get

f(ỹi) ≥ (1− γ)

L∑
j=n

γjR(y∗i+j |y∗[i+j−n,i+j−1]) + γR(ỹ1
i−1|ŷ[i−n,i−1])

+

n∑
j=2

γjR(ỹji−1|ŷ[i−n+j−1,i−1], ỹ
[j−1]
i−1) +

L∑
j=n+1

γjR(ỹji−1|ỹ
[j−n,j−1]
i−1) . (7)

Expanding the terms of f(ỹi), we note

f(ỹi) = R(ŷi|ŷ[i−n,i−1]) + γR(ỹ1
i |ŷ[i−n+1,i])

+

n∑
j=2

γjR(ỹji |ŷ[i+j−n,i], ỹ
[j−1]
i) +

L∑
j=n+1

γjR(ỹji |ỹ
[j−n,j−1]
i) . (8)

Substituting f(ỹi) from (8) in (7), assuming zero padding as in the proof of Lemma 1, and summing
over all time steps i, we get the inequality∑

i

R(ŷi|ŷ[i−n,i−1]) ≥
∑
i

L∑
j=n

(1− γ)γjR(y∗i+j |y∗[i+j−n,i+j−1]) .

Defining s = i+ j and interchanging the two sums, we note that the right side simplifies to

(1− γ)

L∑
j=n

γj
∑
s

R(y∗s |y∗[s−n,s−1]) .

14

The sum of this geometric series is given by γn − γL+1, and thus setting

γ =

(
n

L+ 1

)1/(L−n+1)

,

we immediately conclude that the total reward obtained by the optimal offline algorithm exceeds that

of the online algorithm by at most Θ

(
logL

L− n+ 1

)
times the reward of the online algorithm, and

hence we have the following bound on the competitive ratio

ρ ≤ 1 + Θ

(
logL

L− n+ 1

)
.

We are now ready to prove Theorem 1.

C nth order chain models with diameter ∆

Theorem 1. The competitive ratio of Peek Search on Markov chain models of order n with diameter

∆ for L ≥ ∆ + n− 1 is ρ ≤ (γ∆+n−1 − γL+1)−1. Setting γ =
(L−∆−n+2)

√
∆ + n− 1

L+ 1
, we get

ρ ≤ L+ 1

L−∆− n+ 2

(
L+ 1

∆ + n− 1

)(n+∆−1)/(L−∆−n+2)

= 1 + Θ

(
logL

L− ∆̃ + 1

)
.

Proof. For ∆ = 1, the result follows from Lemma 2. Therefore, we will assume ∆ > 1. As in the
proof of Theorem 2, the online algorithm finds at time i some ỹi , (ŷi, ỹ

1
i , . . . , ỹ

L
i) that maximizes

the following objective over valid paths y = (yi, . . . , yi+L):

f(y) , R(yi|ŷ[i−n,i−1]) +

n−1∑
j=1

γjR(yi+j |ŷ[i−n+j,i−1], y[i,i+j−1])

+

L∑
j=n

γjR(yi+j |y[i+j−n,i+j−1]) .

Since ∆ > 1, the online algorithm may not be able to jump to the desired state on the optimal
offline path in one step unlike in the setting of Lemma 2, and may require ∆ steps in the worst case.5
Therefore, let (ȳi, . . . , ȳi+∆−2) be an intermediate sequence of states before the online algorithm
could transition to the optimal offline path and then follow the optimal algorithm for the remaining
steps. Therefore, we have

f(ỹi) ≥ R(ȳi|ŷ[i−n,i−1]) +

∆−2∑
j=1

γjR(ȳi+j |ŷ[i−n+j,i−1], ȳ[i,i+j−1])

+ γ∆−1R(y∗i+∆−1|ȳ[i+∆−n−1,i+∆−2])

+

∆+n−2∑
j=∆

γjR(y∗i+j |ȳ[i+j−n−1,i+∆−2], y
∗
[i+∆−1,i+j−1])

+

L∑
j=∆+n−1

γjR(y∗i+j |y∗[i+j−n,i+j−1])

≥
L∑

j=∆+n−1

γjR(y∗i+j |y∗[i+j−n,i+j−1]) , (9)

5The online algorithm may require less than ∆ steps depending on its current state, however, we perform a
worst case analysis and therefore, our result holds even if fewer than ∆ steps may suffice to reach the optimal
path at some point during the execution of the online algorithm.

15

where we have leveraged the non-negativity of rewards to obtain the last inequality.

Another option available with the online algorithm is to continue following the path selected at
time i− 1 for L steps, and then make an additional arbitrary transition with a non-negative reward.
Therefore, we must also have

f(ỹi) ≥ R(ỹ1
i−1|ŷ[i−n,i−1]) +

n−1∑
j=1

γjR(ỹj+1
i−1 |ŷ[i−n+j,i−1], ỹ

[j]
i−1)

+

L−1∑
j=n

γjR(ỹj+1
i−1 |ỹ

[j−n+1,j]
i−1) . (10)

Multiplying (9) by 1− γ and (10) by γ, and adding the resulting inequalities, we get

f(ỹi) ≥ (1− γ)

L∑
j=∆+n−1

γjR(y∗i+j |y∗[i+j−n,i+j−1]) + γR(ỹ1
i−1|ŷ[i−n,i−1])

+

n−1∑
j=1

γj+1R(ỹj+1
i−1 |ŷ[i−n+j,i−1]), ỹ

[j]
i−1) +

L−1∑
j=n

γj+1R(ỹj+1
i−1 |ỹ

[j−n+1,j]
i−1) .

Expanding f(ỹi), telescoping over i, and defining s = i + j as in Lemma 2, we get that the total
reward accumulated by the online algorithm is at least (γn+∆−1 − γL+1) times the total reward
collected by the optimal offline algorithm since

(1− γ)

L∑
j=∆+n−1

γj =

L∑
j=∆+n−1

(γj − γj+1)

= (γ∆+n−1 − γ∆+n) + (γ∆+n − γ∆+n+1) + . . .+ (γL−1 − γL) + (γL − γL+1)

= γ∆+n−1 − γL+1

We immediately obtain the optimal γ by setting the derivative with respect to γ to 0. The optimal
value turns out to be

γ =
(L−∆−n+2)

√
∆ + n− 1

L+ 1
,

which immediately yields

ρ ≤ L+ 1

L−∆− n+ 2

(
L+ 1

∆ + n− 1

)(n+∆−1)/(L−∆−n+2)

= 1 + Θ

(
logL

L−∆− n+ 2

)
.

Note that Theorem 1 suggests that essentially n + ∆ − 1 steps are wasted every L + 1 steps by
the online algorithm in the sense that it may not receive any reward in these steps. However, the
remaining steps fetch nearly the same reward as the optimal offline algorithm. In particular, the
competitive ration ρ gets arbitrarily close to 1, as L is set sufficiently large compared to ∆ + n. That
is, the performance of the online algorithm is asymptotically optimal in the peek L.

We now show that the result extends to the non-homogeneous setting.

D Non-homogeneous Markov chain models

We note that there might be multiple transitions between a pair of states during any peek window.
Such transitions are considered distinct and may indeed have different rewards during the same

16

window. We only require that the non-discounted reward committed for every transition is “honored"
at all times during the window. We have the following result.

The competitive ratio of Peek Search on non-homogeneous (i.e. time-varying) Markov chain models
of order n with diameter ∆ for L ≥ ∆ + n− 1 is

ρ ≤ L+ 1

L−∆− n+ 2

(
L+ 1

∆ + n− 1

)(n+∆−1)/(L−∆−n+2)

= 1 + Θ

(
logL

L−∆− n+ 2

)
,

provided the reward associated with any transition does not change for (at least) L+ 1 steps from
the time it is revealed as peek information to the online algorithm.

Proof. The online algorithm maximizes the following non-stationary objective at time i:

fi(y) , Ri(yi|ŷ[i−n,i−1]) +

n−1∑
j=1

γjRi(yi+j |ŷ[i−n+j,i−1], y[i,i+j−1])

+

L∑
j=n

γjRi(yi+j |y[i+j−n,i+j−1]) ,

where the subscript i shown with f and R indicates that the rewards associated with a transition may
change with time i. Proceeding as in the proof of Theorem 1, we get

fi(ỹi) ≥ (1− γ)

L∑
j=∆+n−1

γjRi(y
∗
i+j |y∗[i+j−n,i+j−1])

+ γRi(ỹ
1
i−1|ŷ[i−n,i−1])

+

n−1∑
j=1

γj+1Ri(ỹ
j+1
i−1 |ŷ[i−n+j,i−1]), ỹ

[j]
i−1)

+

L−1∑
j=n

γj+1Ri(ỹ
j+1
i−1 |ỹ

[j−n+1,j]
i−1) .

However, by our assumption, we can equivalently write

fi(ỹi) ≥ (1− γ)

L∑
j=∆+n−1

γjRi(y
∗
i+j |y∗[i+j−n,i+j−1])

+ γRi−1(ỹ1
i−1|ŷ[i−n,i−1])

+

n−1∑
j=1

γj+1Ri−1(ỹj+1
i−1 |ŷ[i−n+j,i−1]), ỹ

[j]
i−1)

+

L−1∑
j=n

γj+1Ri−1(ỹj+1
i−1 |ỹ

[j−n+1,j]
i−1) .

Expanding f(ỹi), summing over all i, and defining s = i+ j as in Theorem 2, we get∑
i

Ri(ŷi|ŷ[i−n,i−1]) ≥
∑
i

L∑
j=∆+n−1

(1− γ)γjRi(y
∗
i+j |y∗[i+j−n,i+j−1])

= (1− γ)

L∑
j=∆+n−1

γj
∑
s

Rs−j(y
∗
s |y∗[s−n,s−1])

= (1− γ)

L∑
j=∆+n−1

γj
∑
s

Rs(y
∗
s |y∗[s−n,s−1]) ,

17

where we have again made use of the fact that reward due to any transition does not change for
L+ 1 steps once revealed. The rest of the proof is identical to the analysis near the end of proof for
Theorem 1.

E Efficient Dynamic Programs

Theorem 2. Peek Search can compute a best γ-discounted path for the next L+ 1 steps, in nth order
Markov chain models, in time O(L|K|n), where K is the set of states.

Proof. Let Si(`, v[a,b]) denote the set of all valid paths of length ` + 1 emanating from the state
ŷi−1 at time i, where ` ∈ {0, 1, . . . , L}, that end in the state sequence (va, . . . , vb). Thus, e.g., if the
directed edge e = (ŷi−1, vn) exists, then

Si(0, v[2, n]) =

{
{e} if vn−j = ŷi−j , ∀j ∈ [n− 2]

∅ otherwise ,

where ∅ is the empty set. We also denote the reward resulting from valid paths of length `+ 1 that
end in sequence v[a,b] by Πi(`, v[a, b]). That is,

Πi(`, v[a,b]) = max
(yi,...,yi+`)∈Si(`,v[a,b])

f`(y[i,i+`]),

where we define f`(y[i,i+`]) recursively as

f`(y[i,i+`]) =

R(yi|ŷ[i−n,i−1]) ` = 0

f`−1(y[i,i+`−1]) + γ`R(yi+`|ŷ[i−n+`,i−1], y[i,i+`−1]) ` ∈ [n− 1]

f`−1(y[i,i+`−1]) + γ`R(yi+`|y[i−n+`,i+`−1]) ` ∈ [n,L]

.

Note that fL(yi,i+L) is precisely the objective optimized by Peek Search at time i. Now, suppose
` ∈ [n,L]. Then, for any end sequence v[2,n],

Πi(`, v[2,n]) = max
y[i,i+`]∈Si(`,v[2,n])

f`(y[i,i+`])

= max
v1

max
y[i,i+`]∈Si(`,v[1,n])

f`(y[i,i+`]) ,

which may be expanded as6

max
v1∈K

max
y[i,i+`]∈Si(`,v[1,n])

f`−1(y[i,i+`−1]) + γ`R(yi+`|y[i−n+`,i+`−1])

= max
v1

max
Si(`,v[n])

f`−1(y[i,i+`−1]) + γ`R(vn|v[n−1])

= max
v1

max
Si(`−1,v[n−1])

f`−1(y[i,i+`−1]) + γ`R(vn|v[n−1])

= max
v1

(
Πi(`− 1, v[n−1]) + γ`R(vn|v[n−1])

)
.

A similar analysis can be done for ` ∈ [n− 1]. Then, the maximizing path of length `+ 1 is in the set

arg max
v[2,n]∈K

max
v1∈K

(
Πi(`− 1, v[n−1]) + γ`R(vn|v[n−1])

)
,

which requires7 checking O(|K|n) values for v[n]. We conclude by noting that Πi is updated for each
` ∈ {0, . . . , L}, and thus the total complexity is O(L|K|n).

We sketch our efficient traceback procedure in Algorithm 1. In the procedure, we let S(`)
i , ` ∈

{0, . . . , L} be all state sequences of length `+ 1 that start from state at time i. Thus, for instance,
S

(0)
i contains all states yi that can be reached in one step.

6We simply write Si(`, v) instead of y[i,i+`] ∈ Si(`, v) in order to improve readability at the expense of
abuse of notation.

7In addition to backpointer information that is required to determine a maximizing path as in the Viterbi
algorithm once the construction of table for bookkeeping Πi is completed. Construction of table requires
O(L|K|n) time which dominates the O(L) time required for computing the path from the backpointers.

18

Algorithm 1 Peek Search (γ, L,Ri, ŷi−n, . . . , ŷi−1)

Input: previous states ŷ[i−n,i−2] and current state ŷi−1, latency L, discount factor γ and reward
function Ri(·|·)
Output: a sequence of states that maximizes the γ-discounted reward over paths of length (L+ 1)
Initialize rewards available in the immediate step
Set yi−j = ŷi−j , ∀j ∈ [n]

Πi(0, y[i−n,i−1], yi) =

{
Ri(yi|y[i−n,i−1]), yi ∈ S(0)

i

0 otherwise

Update rewards & backpointers incrementally
Define the shorthand ym,n

(a,b) , y[a+m,b+n]

for ` = 1 to L for yi+` ∈ S(`)
i do

Πi(`, y
`−n,`
(i,i−1), yi+`)= max

z

(
Πi(`− 1, z, y`−n,`(i,i−1)) + γ`Ri(yi+`|z, y`−n,`(i,i−1))

)
Store the backpointer z∗` (yi+`) that maximizes the score Πi(`, y

`−n,`
(i,i−1), yi+`) above

end for
Trace back a path with maximum discounted reward
ỹi+L ∈ argmax

yi+L

max
y[i+L−n,i−1+L]

Πi(L, y
L−n,L
(i,i−1) , yi+L+1)

for ` = L− 1 to 0 do
ỹi+` = z∗`+1(ỹi+`+1)

end for
Set ŷi = ỹi

Note that both Randomized Peek Search and Peek Reset, can compute rewards on their paths
efficiently by using our procedure for Peek Search as a subroutine. For instance, Randomized Peek
Search could invoke Algorithm 1 at each reset point with γ set to 1, and follow this path until the
next reset point.

F Randomized Peek Search

Theorem 3. Randomized Peek Search achieves, in expectation, on Markov chain models of order n
with diameter ∆ a competitive ratio

ρ ≤ 1 +
∆ + n− 1

L+ 1− (∆ + n− 1)

= 1 + Θ

(
1

L− ∆̃ + 1

)
.

Proof. Recall that the randomized algorithm recomputes and follows a path that optimizes the non-
discounted reward once every L+ 1 steps (which we call an epoch). Since the starting or reset point
is chosen uniformly at random from {1, 2, . . . , L+ 1}, we define a random variable X that denotes
the outcome of an unbiased (L + 1)-sided dice. Let (X = x) be any particular realization. Then,
during epoch i, one option available with the online algorithm is to give up rewards in steps

[i ∗ (L+ 1) + x, i ∗ (L+ 1) + x+ ∆ + n− 2]

to reach a state on the optimal offline path and follow it for the remainder of the epoch. Let ONx

denote the total reward of the online randomized algorithm conditioned on realization x, and let
OPT be the optimal reward. Then, letting r∗t be the reward obtained by the optimal offline algorithm
at time t we must have

ONx ≥ OPT −
∑
i

i∗(L+1)+x+∆+n−2∑
t=i∗(L+1)+x

r∗t . (11)

19

Since x is chosen uniformly at random from [L+ 1], we also note the expected value of the second
term on the right

= Ex

∑
i

i∗(L+1)+x+∆+n−2∑
t=i∗(L+1)+x

r∗t

∣∣∣∣X = x

=

1

L+ 1

L+1∑
x=1

∑
i

i∗(L+1)+x+∆+n−2∑
t=i∗(L+1)+x

r∗t

=
1

L+ 1

L+1∑
x=1

∑
i

∆+n−2∑
z=0

r∗z+i∗(L+1)+x

=
1

L+ 1

∆+n−2∑
z=0

(∑
i

L+1∑
x=1

r∗z+i∗(L+1)+x

)

=
1

L+ 1

∆+n−2∑
z=0

OPT

=
∆ + n− 1

L+ 1
OPT .

Therefore, taking expectations on both sides of (11),

Ex(ONx) ≥ OPT
(

1− ∆ + n− 1

L+ 1

)
,

whence the result follows immediately.

G Peek Reset

Theorem 4. The competitive ratio of Peek Reset on Markov chain models of order n with diameter
∆ for latency L is

ρ ≤ 1 +
2(∆ + n)(∆ + n− 1)

L− 8(∆ + n− 1) + 1
= 1 + Θ

(
1

L− 8∆̃ + 1

)
.

Proof. We will assume for now that L is a multiple of 4(∆ + n − 1). Recall that the Peek Reset
algorithm works in phases with varying lengths, and takes multiple steps in each phase. Let (i)
denote the time at which phase i begins. Then, the algorithm follows, in phase i, a sequence
of states ŷ(i) , (ŷ(i), ŷ(i)+1, . . . , ŷTi−1) that maximizes the following objective over valid paths
y = (y(i), . . . , yTi−1) :

f(y) , R(y(i)|ŷ[(i)−n,(i)−1])

+

n−1∑
j=1

R(y(i)+j |ŷ[(i)−n+j,(i)−1], y[(i),(i)+j−1])

+

Ti−(i)−1∑
j=n

R(y(i)+j |y[(i)+j−n,(i)+j−1]) ,

where Ti is chosen arbitrarily from the set

arg min
t∈[(i)+L/2+1,(i)+L]

max
(yt−n,...,yt)

R(yt|y[t−n,t−1]) .

We define the corresponding reward

xTi = min
t∈[(i)+L/2+1,(i)+L]

max
(yt−n,...,yt)

R(yt|y[t−n,t−1]) .

20

Consider the portion of the path traced by the online algorithm from ŷ(i)+L/2 to ŷTi−1. Total number
of edges on this path is zi = Ti − ((i) + L/2 + 1). We claim that the reward resulting from this
sequence is at least

ai =
zi − (∆ + n− 1)

∆ + n
xTi

.

This is true since, by definition of xTi
, at each time t ∈ [(i) + L/2 + 1, (i) + L], there is a state yt−1

such that moving to some state yt will fetch a reward at least xTi
. Note that a maximum of ∆ +n− 1

steps might have to be wasted to reach another state that fetches at least xTi . Thus, a reward of xTi is
guaranteed every ∆ +n steps. While there are zi steps in this sequence, at most ∆ +n− 1 steps may
be left over as residual edges that do not fetch any reward if zi is not a multiple of ∆ + n. Since the
online algorithm optimized for total non-discounted reward, it must have considered this alternative
subsequence of steps for the interval pertaining to zi.

Next consider the portion traversed by the online algorithm from ŷTi
to ŷ(i)+L in the next phase

(i + 1). This phase starts at time Ti. By an argument analogous to previous paragraph, the online
algorithm collects from this sequence an aggregate no less than

bi =
(i) + L− Ti − (∆ + n− 1)

∆ + n
xTi .

Thus, the reward accumulated by the online algorithm in these two portions is at least

ai + bi =
L− 4(∆ + n− 1)

2(∆ + n)
xTi .

Summing over all phases, we note that the total reward gathered by the online algorithm is∑
i

f(ŷ(i)) ≥ L− 4(∆ + n− 1)

2(∆ + n)

∑
i

xTi
. (12)

Let f(y∗(i)) be the reward collected by the optimal offline algorithm in phase i. Since the online
algorithm optimizes for the total reward, one possibility it considers is to forgo reward in the first
(∆ + n− 1) steps in each phase in order to traverse the same sequence as the optimal algorithm in
the remaining steps. Thus, we must have∑

i

f(ŷ(i)) ≥
∑
i

f(y∗(i))− (∆ + n− 1)
∑
i

xTi
. (13)

Combining (12) and (13), we note for even L∑
i f(y∗(i))∑
i f(ŷ(i))

≤ 1 +
2(∆ + n)(∆ + n− 1)

L− 4(∆ + n− 1)
.

Accounting for L that are not multiples of 4(∆ + n− 1), we conclude the competitive ratio of Peek
Reset is

ρ ≤ 1 +
2(∆ + n)(∆ + n− 1)

L− 8(∆ + n− 1) + 1
.

H Lower Bounds

Theorem 5. The competitive ratio of any deterministic online algorithm on nth order (time-varying)
Markov chain models with diameter ∆ for latency L is greater than

1 +
∆̃

L

(
1 +

∆̃ + L− 1

(∆̃ + L− 1)2 + ∆̃

)
.

In particular, when n = 1, ∆ = 1, the ratio is larger than

1 +
1

L
+

1

L2 + 1
.

21

Proof. We motivate the main ideas of the proof for the specific setting of n = 2 and unit diameter.
The extension to general n and unit diameter is then straightforward. Finally, we conjure an example
to prove the lower bound for arbitrary n and ∆ via a prismatic polytope construction.

First consider the case n = 2 and ∆ = 1. We design a 3× (L+ 3) matrix initialized as shown below:
each row corresponds to a different state, each column corresponds to a time, “?” indicates that the
corresponding entry is not known since it lies outside the current peek window of length L+ 1, and
a > 0 is a variable that will be optimized later.�0 1 a a . . . a ? ?

0 1 a a . . . a ? ?
0 1 a a︸ ︷︷ ︸

(L−1) terms

. . . a ? ?

 (14)

The box in front of the first entry indicates that the online algorithm made a transition to state 1 from
a dummy start state “ ∗ ” and is ready to make a decision in the current step t = 0 about whether to
continue staying in state 1, or transition to either state 2 or 3. At time t = 0, the rewards for the next
L+ 1 steps are identical, so without loss of generality, let the online algorithm choose the first state,
get 0 as reward, and move to the next time t = 1. An additional column is revealed and we get the
following snapshot.

[
�0 �1 a a . . . a 0 ?

0 1 a a . . . a 2a ?
0 1 a a . . . a 2a ?

]
(15)

Since n = 2, we may enforce the following second order Markov dependencies for t ≥ 1: any
state s ∈ {1, 2, 3} yields zero reward unless the previous two states s′, s′′ ∈ {1, 2, 3, ∗} were such
that s′ ∈ {∗, s} and s′′ = s. If this condition is true, then the algorithm receives the current entry
pertaining to s as the reward. In other words, other than the special case of dummy start state being
one of the states, the algorithm receives the reward only if s is same as the previous two states.

Suppose the online algorithm selects state 1 again at t = 1. Then it collects reward 1, and another
column is revealed as shown below.

[
�0 �1 �a a . . . a 0 0

0 1 a a . . . a 2a 0
0 1 a a . . . a 2a 0

]
(16)

In this scenario, the maximum reward the online algorithm can fetch, during its entire execution, is at
most 1 + (L− 1)a. To see this note that this is exactly the reward the algorithm gets if it sticks to
state 1 at all subsequent times t. If, however, it were to jump to any other state and continue with it
for at least one step, then it would lose rewards in successive steps due to second order dependency,
for a total loss of reward 2a. All other possibilities incur a loss greater than 2a. This loss offsets
the additional 2a reward available with states other than 1. On the other hand, the offline algorithm
would select a state s ∈ {2, 3} from the very beginning, and thus receive 1 + (L+ 1)a in total. The
competitive ratio in this scenario, therefore, turns out to be

r1 =
1 + (L+ 1)a

1 + (L− 1)a
= 1 +

2a

1 + (L− 1)a
.

Suppose instead the online algorithm transitions to some state s ∈ {2, 3} at t = 1. We assume
without loss of generality that the algorithm transitions to state 2. The last column is then revealed as
follows.8

8Note that since our objective here is to prove a lower bound, we would like the competitive ratio to be as
high as possible. It might be tempting to set a reward larger than a for state 3 in the last column. That would
imply both the online and the offline algorithms could receive an additional reward worth a. This, however,

would not improve the competitive ratio for the simple reason that for positive x, y, and c,
x+ c

y + c
>
x

y
only if

x < y (we instead have x > y since r2 > 1).

22

[
�0 �1 a a . . . a 0 0

0 1 �a a . . . a 2a 0
0 1 a a . . . a 2a a

]
(17)

Note that the online algorithm loses on rewards 1 and a in successive steps due to transition. The
maximum total reward possible in this case is La regardless of whether the online algorithm makes a
transition to other states, or sticks with state 2 subsequently. The offline algorithm, in contrast, would
receive all rewards available in state 3. Thus, the ratio in this scenario is

r2 =
1 + (L+ 2)a

La
= 1 +

1 + 2a

La
.

Combining the two cases, the competitive ratio of the online algorithm is at least min{r1, r2}, and
thus we could set r1 = r2 and solve for a.

We can extend this analysis to the general n ≥ 1 setting with unit diameter easily. We design a
3× (L+ 3) matrix with the same row initialization as in (14). Also, we assume that prior to time
t = 0, only zero reward transitions were available between some dummy states9 for both the online
and the offline algorithms. We denote the set of these dummy states by ∗∗. We enforce the following
nth order Markov dependencies for t ≥ 1: any state s ∈ [m] yields zero reward unless the previous
n states were same as s or had a prefix consisting only of states in ∗∗ followed by s in the remaining
time steps. If this condition is satisfied, the algorithm receives the current entry pertaining to s as
reward.

The evolution of the reward matrix is as follows. Assuming state 1 was selected at t = 0, we let
column L + 2 have all entries in rows 2 and 3 to na (instead of 2a that we set in (15)) at t = 1.
Finally, if the online algorithm selects state 1 at t = 1, we set the last column to all zeros at time
t = 2 as in (16); otherwise, we set first two entries in the last column to 0, and a in the last row as in
(17).

Reasoning along the same lines as before, the competitive ratio of the online algorithm is at least

min

{
1 +

na

1 + (L− 1)a
, 1 +

1 + na

La

}
. (18)

We set

1 +
na

1 + (L− 1)a
= 1 +

1 + na

La
,

whereby

a =
n+ L− 1 +

√
(n+ L− 1)2 + 4n

2n
.

Substituting this value for a in (18), and leveraging that

a <
n+ L− 1

n
+

1

n+ L− 1
,

we note the competitive ratio is at least

1 +
n

L

(
1 +

n+ L− 1

(n+ L− 1)2 + n

)
. (19)

The foregoing analysis may be visualized geometrically in terms of a triangle, with each vertex
corresponding to a state. The rewards for initial L + 1 steps are all same, and thus the online
algorithm does not have preference for any state initially. Without loss of generality, as soon as it
selects state 1 (with all rewards at time t = 0 being 0), the rewards for time step L+ 2 are chosen
at t = 1 such that states 2 and 3 would fetch reward na while state 1 will fetch none. The online
algorithm could either stay with state 1 and get a suboptimal total reward or jump to an adjacent
vertex or state, which would not yield reward for n steps.

9Another way to enforce the same effect, without the dummy states, is to add additional n columns, with all
zero rewards for all the actual states, prior to time t = 0.

23

We now extend this analysis to accommodate any finite ∆ ≥ 1. Toward that goal, we consider a
∆-dimensional prismatic polytope10 with a triangular base (i.e. having 3 vertices). Each vertex of
the polytope corresponds to a state, and the maximum distance between two vertices is exactly ∆.
Moreover, for every vertex there is some vertex at distance d for each d ∈ [∆]. The polytope is
completely symmetric with respect to all the vertices, and we again set rewards for the first L+ 1
steps at all vertices to be the same as before.

Without loss of generality, we again assume that the online algorithm starts at some state 1 (arbitrary
labeled). At the next time step, the reward at all vertices that are at a distance d from this vertex is
set to (n+ d− 1)a. Thus, the vertices adjacent to state 1 have reward na in column (L+ 2) since
they lie at distance d = 1, while the reward for state 1 in this column is 0. Thus, the maximum
reward is available at distance d = ∆ from state 1, however, the online algorithm will need to make
∆ steps to reach such a state, and then wait another n− 1 steps before availing this reward. Thus,
effectively, ∆̃ = n + ∆ − 1 steps are wasted that the offline algorithm could fully exploit due to
prescience. Proceeding along same lines as before, and replacing n with ∆̃ in (19), we conclude that
the competitive ratio of any deterministic online algorithm on our construction is at least

1 +
∆̃

L

(
1 +

∆̃ + L− 1

(∆̃ + L− 1)2 + ∆̃

)
.

Theorem 6. For any ε > 0, the competitive ratio of any randomized online algorithm, that is allowed
latency L, on nth order (time-varying) Markov chain models with ∆ = 1 is at least

1 +
(1− ε)n
L+ εn

.

For a general diameter ∆, the competitive ratio is at least

1 +

(
2∆−1d1/εe − 1

)
n

2∆−1d1/εeL+ n
.

Proof. First consider the unit diameter setting (i.e. ∆ = 1). We design a matrix with d1/εe rows and
L+ 2 columns. The first column consists of all zeros, the next L columns contain all ones, and the
last column contains all zeros except one randomly chosen row that contains n. We again enforce the
Markov dependency structure described in the proof of Theorem 5 for all states (or rows) in [d1/εe].
The optimal offline algorithm knows beforehand which row q contains n in the last column, and thus
collects a total reward L+ n. On the other hand, any randomized online algorithm chooses this row
at t = 0 with only probability ε. Selecting any other row at t = 0 may fetch a maximum reward of L
accounting for all the possibilities including sticking to this row subsequently, or moving to q in one
or more transitions. Since the randomized algorithm is assigned at time t = 0 with the remaining
probability (1− ε) to some row other than q, its expected reward cannot exceed

ε ∗ (L+ n) + (1− ε) ∗ L = L+ εn.

Thus, when ∆ = 1, the competitive ratio for any randomized online algorithm is at least
L+ n

L+ εn
as

claimed. For the general setting, we consider a ∆-dimensional prismatic polytope with the base
containing d1/εe vertices. In addition to the usual prismatic polytope topology (assuming bidirectional
edges between any pair of adjacent vertices), we add edges so that vertices on each face are strongly
connected, i.e., directed edges in both directions connect all pairs of vertices that lie on a face. The
polytope contains u = 2∆−1d1/εe states in total. We design a matrix having these many rows and
L+ 2 columns as before. Any randomized online algorithm has only a 1/u probability of getting the
maximum possible L+ n reward (due to selecting q and sticking with it), and must forfeit a reward
no less than n with the remaining probability. Thus, the expected reward cannot exceed

(L+ n)/u+ (1− 1/u) ∗ L = L+ n/u,

10Note that a d-dimensional prismatic polytope is constructed from two (d - 1)-dimensional polytopes,
translated into the next dimension.

24

while the maximum possible reward is L+ n. Thus the competitive ratio is at least
L+ n

L+ n/u
which

simplifies to the result stated in the problem statement.

25

	First order chain models with = 1
	nth order chain models with = 1
	nth order chain models with diameter
	Non-homogeneous Markov chain models
	Efficient Dynamic Programs
	Randomized Peek Search
	Peek Reset
	Lower Bounds

