7 Supplementary Material

7.1 Additional Numerical Results

In this section, we provide additional numerical results comparing the performance of the proposed
QuanTimed-DSGD method with other benchmarks, DSGD and Q-DSGD. In particular, we train a
fully connected neural network with four hidden layers consisting of (30, 20, 20, 25) neurons on
two classes of CIFAR-10 dataset. For QuanTimed-DSGD and Q-DSGD, step sizes are fine-tuned
to (a,e) = (0.8/T%/¢,9/T*/?) and (a,) = (0.8/T"/%,10/T"/?), respectively and for DSGD
algorithm o = 0.08. Figure 5 (left) demonstrates the training time for the three methods where the
proposed QuanTimed-DSGD method enjoys a 2.31x speedup over the best of the two benchmarks
DSGD and Q-DSGD.

Moreover, we use a one hidden layer neural network with 90 neurons for binary classification on
ImageNet dataset and demonstrate the speedup of our proposed method over other benchmarks.
For QuanTimed-DSGD and Q-DSGD, step sizes are fine-tuned to (a, &) = (0.1/7%/6 14/T*/?) and
(a,e) = (0.1/T"/6,15/T"/?), respectively and for DSGD algorithm o = 0.02. Figure 5 (right)
shows the training time of the three methods where QuanTimed-DSGD demonstrates 1.7 speedup
compared to the best of DSGD and Q-DSGD.
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Figure 5: Comparison of QuanTimed-DSGD with Q-DSGD and DSGD for training a four layer neural network
on CIFAR-10 dataset (left) and for training a one layer neural network on ImageNet dataset (right).

7.2 Bounding the Stochastic Gradient Noises

In our analysis for both convex and non-convex scenarios, we need to have the noise of various
stochastic gradient functions evaluated. Hence, let us start this section by the following lemma which
bounds the variance of stochastic gradient functions under our customary Assumption 4.

Lemma 1. Assumption 4 results in the followings for any x € R? and i € [n]:
() E[Vfi(x)] = E[Vf(x)] = VL(x)

i) E [|9:60 - V(o] < 2
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Proof. The first five expressions (i)-(v) in the lemma are immediate results of Assumption 4 together
with the fact that the noise of the stochastic gradient scales down with the sample size. To prove (vi),
let S; denote the sample set for which node ¢ has computed the gradients. We have
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E [H%fi(x) - VL(X)HQ} =3 Pr[|S;| = b E % 3 Ve(x;0) - VL(x)
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and therefore

e [¥00 - e | =2 900 - v2e0 | + 2 160 - V260

S72<If§[1T{lW+;)

< 272max{E[lT/V],;}.
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7.3 Proof of Theorem 1

To prove Theorem 1, we first establish two Lemmas 2 and 3 and then easily conclude the theorem
from the two results.

The main problem is to minimize the global objective defined in (4). We introduce the following
optimization problem which is equivalent the main problem:

min F(x) = %Z fi(xi)

X1,000%n ERP (12)

st X = X, forall i, j € N,
where the vecor x = [x1;- - ;X,] € R™ denotes the concatenation of all the local models. Clearly,
X* = [x*;--- ;x*] is the solution to (12). Using Assumption 1, the constraint in the alternative

problem (12) can be stated as (I — W)'/2x = 0. Inspired by this fact, we define the following
penalty function for every a:

1
ho(x) = 5xT(I — W)x + anF(x), (13)
and denote by x, the (unique) minimizer of h,,(x). That is,
1
x* = argmin h,(x) = argmin —=x ' (I-W)x+ anF(x). (14)
xER"P xERNP 2

Next lemma characterizes the deviation of the models generated by the QuanTimed-DSGD method at
iteration 7', that is X =[xy, 7; - - ; Xy, 7| from the optimizer of the penalty function, i.e. xJ,.
Lemma 2. Suppose Assumptions 1-5 hold. Then, the expected deviation of the output of
QuanTimed-DSGD from the solution to Problem (13) is upper bounded by

no? 1 ny? (E[1)V 1 1
E [Jxr - x: /"] <0 <M||W—WD2> 75+ 0 (Z (%] + m)) 7350 (19)

fore = T73%/2 o =T7%2 any§ € (0,1/2) and T > T¢

2+ K)2 5 = 1
Trin ‘= max <(+M)> , [ee 6-‘ , {uﬁ—‘ . (16)
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Proof of Lemma 2. First note that the gradient of the penalty function h,, defined in (13) is as follows:
Vha(xt) = (I —W)x; +anVF(xy), (17

where x; = [X1,4;- - ;Xpn,] denotes the concatenation of models at iteration . Now consider the
following stochastic gradient function for h,,:

Vha(x:) = (Wp — W)z + (I— Wp)x; + anVF(xy), (18)
where

TP = | ST AL )|

We let F* denote a sigma algebra that measures the history of the system up until time ¢. According
to Assumptions 2 and 4, the stochastic gradient defined above is unbiased, that is,

E [Vha(x0)|F'] = (Wp = W)E [2,/F] + (1= Wp) x; + anE [VF(x)|F'|

=(I-W)x +anVF(x¢)
= Vha(Xt).

We can also write the update rule of QuanTimed-DSGD method as follows:
Xt+1 = X¢ — € ((WD — W) Z: + (I — WD) X + om%F(xf))
= x; — eVha(xy), (19)
which also represents an iteration of the Stochastic Gradient Descent (SGD) algorithm with step-size

¢ in order to minimize the penalty function h,,(x) over x € R™”. We can bound the deviation of the
iteration generated by QuanTimed-DSGD from the optimizer xJ, as follows:

2

7]

I~ xal” = 22 (3 = . [T )] )
2

7|

= I = x31* = 2e (x¢ = x5, Vha(xt))

2

7|

~ 2
< (1= 2 =il + 2 [Fhac 1] o)

E |:||Xt+1 - x;H2 |.7:t} =F H‘xt - fs%ha(xt) - x5

+e%E ﬂ]%ha(xt)

+&’E { Vhe(x:)

where we used the fact that the penalty function h,, is strongly convex with parameter (., = ap.
Moreover, we can bound the second term in RHS of (20) as follows:

E U%a(xt)\f |]-"t]

_E H(WD W)z + (I—Wp)x, + an%F(xt)Hz |ff}

~ 2
=K H(I —W)x; +anVF(x:) + (Wp — W) (z; — x¢) + anVF(x;) — anV F(x;) |.7-'t}
) _ 2
= [ Vha(xo)|* + E [| (W = W) (2 = x)|* | 7] + 0*n?E U‘VF(xt) ~ VF(x,) |]-'t]
< KZ2||x¢ — x5 |1* + no®([W — Wp|* + a’nj. (21)
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To derive (21), we used the facts that h,, is smooth with parameter K, := 1 — A\,(W) + aK; the
quantizer is unbiased with variance < ¢ (Assumption 2); stochastic gradients of the loss function
are unbiased and variance-bounded (Assumption 4 and Lemma 1). Plugging (21) in (20) yields
E [||xt+1 —x5|? |.7-"t] < (1 — 2uqE + 52K§> % — x5 ||° + 2na?|[W — Wp||* + a?e?nr3.
(22)
To ease the notation, let ¢; := E[||x; — x7,||*] denote the expected deviation of the models at iteration
t i.e. x; from the optimizer x, with respect to all the randomnesses from iteration ¢ = 0. Therefore,

e < (1 — 2l + 52K§> er 4+ E2na?|W — Wpl|* + a?e?+32

= (1 — (20 — EKi)) et + £2na?|[W — Wp||* + o2e?nv3. (23)
For any T > T, | and the proposed pick ¢ = T~3%/2, we have
2+ K)?
70> () > EHE0
1
and therefore
1
€= T35/2
c_r 1
=2+ K)2 T2
Mo
< Pe
= 21 ak)?
Lo
< ng

Hence, we can further bound (23) as follows:
err1 < (1 - (2ua - 5K§)> er 4 £2no?||[W — Wp||* + o2e?ny3

< (1= pag) e + 2 |W — Wp|)* + a?e*nr2

2 2 2
[ no’|W —Wpl|” | ny;
= (1—T25)€t+T35+T45~

Now, we let (a, b, ¢) = (1, no||W — Wp||* ,n+2) and employ Lemma 4 which yields

er = E |lxr - x|

b/a c/a
<o(%)+o (%)
2 2
o (™MW wpr & ny” (ELVE 1Y 1
O(u W —Wp|| T5>+O<u < T, + ) s |
and the proof of Lemma 2 is concluded. O

Now we also bound the deviation of the optimizers of the penalty function and the main loss function,
that is x}, and x*.

Lemma 3. Suppose Assumptions 1, 3-5 hold. Then the difference between the optimal solutions to
(12) and its penalized version (14) is bounded above by

2neo D (3 + 2K
x| <o Y2neD B2y 1Y
« ]._ﬁ T5/2

fora =T79/2 any § € (0,1/2) and T > T¢, , where

Tin2 = max <1+;{n(W)) ; [(quK)ﬂ

1%

o
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Proof of Lemma 3. First, recall the penalty function minimization in (14). Following sequence is the
update rule associated with this problem when the gradient descent method is applied to the objective
function h,, with the unit step-size n = 1,

U1 = w — NVha(uy) = Wuy — anVF(uy). (24)

From analysis of GD for strongly convex objectives, the sequence {u; : ¢t = 0,1, -} defined
above exponentially converges to the minimizer of h,, X}, provided that 1 = n < 2/K,. The latter
condition is satisfied if we make o < (1 + A, (W))/K. Therefore,

e = X307 < (1= pa) o = X511
= (1= ap)'Juo - x4
If we take uy = 0, then (24) implies
* (12 * 112
lur =3 < (1= ap)7ix3
~x * 12 (|12
<201 - ap)” (IR = x5 +1% )
= 21— ap)” (|%" = x5 >+ nllx") (25)

On the other hand, it can be shown (Yuan et al. (2016)) that if o < min{(1+\,,(W))/K,1/(p+K)},
then the sequence {u; : t = 0,1, - - - } defined in (24) converges to the O(ﬁ)—neighborhood of the

optima x*, i.e.,

~ o
—-X*|<0O . 26
-5 < 0 (25) 20
If we take o = T~%/2, the condition 7' > Tpin-c2 implies that « < min{(1+\,(W))/K,1/(u+K)}.
Therefore, (26) yields

- «
_XH < . 27
ur - <0 (125 @n
More precisely, we have the following (See Corollary 9 in Yuan et al. (2016)):
~ Cq aD
ur — X < o | x| + + , 28)
[ur [ f<5|| | = 1—6) (
where ) K
2_q_-._H
“ 2 u+ K
¢ aKD 4<M+K>2_2 ptK
1-c¢2 1-p ukK uK
2aD
<—(1+ K .
-5 (1+ K/u)

D*=2KY (f:(0)~ ff), fi= min fi(x).
=1

xERP

From (28) and (27), we have for T > T

I, — %12 =|x; — up + up - %
< 2lx; - ur | + 2uy - %

% * (12 * (12
<401 = o) (I8 = x5 + nllx" )

2
1wk \™* . aD
+2n<<1—2~u+Ko¢> |x ||+1_B(3—|—2K/,u) : (29)
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Note that for our pick o = T—9/2 we can write

(1= ap)" < exp (=T'70/2) = ey(T),

1 uK T/ 1 puK 5
1—Z=. < —o B 102 ey (T).
( 5 H+Ka> sexp|—3 K ez(T)

Therefore, from (29) we have

* ~x 112
”Xa —X H
< b e (@l |2 + 23T x| + dnea (D) | 22 (3 + 26/ )
= (1—4e1(D)) 2 1-3

2
+2nD2(3+2K/M)2<lfﬂ> }
_dn (2e1(T) +e5(T)) fo — /= | 4\/5”62(T))\/W aDﬁ (3+ 2K /1)

(1 — e, (7)) u (1—4e,(T) po1-
D2 (3+2K/p)° [ a \?
i) (155) o

where we used the fact that ||x*||> < 2(fo — f*)/u for fo = £(0) and f* = mingeps f(x) = f(x*).
Given the fact that the terms e1(T) and eo(T) decay exponentially, i.e. e(T) = o(a?) and
e2(T) = o (a?), we have

It — % <O <\/%D (3+2K/p) 1i“ﬁ)
0 (@D (3+2K/u) 1 )

1-8 I

which concludes the claim in Lemma 3. O

Having proved Lemmas 2 and 3, we can now plug them in Theorem 1 and write for T" > 1. =
max{T i1, Thin2}
2} .

1 n
— ZE [Hxi,T_X*
" i=1

2 * 112 2 * ~x |2
< ZE |lxr — x5 | + Slx; - %

D*(K/u)?* o2\ 1 2 E[1/V] 1 1

In the end, we state and proof Lemma 4 which we used its result earlier in the proof of Lemma 2.
Lemma 4. Let the non-negative sequence e, satisfy the inequality

a b c
= (1 B T25> et 7o T e Gl

fort =0,1,2,---, positive constants a, b,c and § € (0,1/2). Then, after

1
T > max{ {eel%-‘ , [afﬂ }
iterations, the iterate e satisfies

b
o () o). -
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Proof of Lemma 4. Use the expression in (31) for steps ¢ — 1 and ¢ to obtain

2
a a a
e = <1T2‘5> oot 1+<1T25> 1+<1T25)

where T' > a'/(2%) . By recursively applying these inequalities for all steps t = 0, 1, - - - we obtain

that
a t
€t S <]. — 712&) €0

c

7% T4

b a a \'!
t—1
c a a
N (-1 a s . [¢—1 a 5|
= <1_T25> €0+ 735 Z(l T25> T TE Z(l_Tms)
s=0 s=0
o\ [ oo a s | c [~ a s |
< <1_26> 60+T36 Z(l_T%> +T45 Z(l_T%)
s=0 s=0
t
a 1 c 1
:<1—25> €+ 735 | T .
1= (1- ) 1= (1- 1)

t
a b/a c/a
<1> €t 75 T 7

Therefore, for the iterate corresponding to step ¢ = T" we can write
T
a b/a c/a
er < (1T25) €0+W+ﬁ
b/a c/a

1-26
< exp (—aT0™) e+ 5 + (33)

-o(])o(15)

and the claim in (32) follows. Note that for the last inequality we assumed that the exponential
term in is negligible comparing to the sublinear term. It can be verified for instance if 1 — 20 is of
O (1/log(log(T))) or greater than that, it satisfies this condition. Moreover, setting § = 1/2 results
in a constant (and hence non-vanishing) term in (33). ]

7.4 Proof of Theorem 2

To ease the notation, we agree in this section on the following shorthand notations fort = 0,1,2,---:
Xi=[X1,t -+ Xpy) € RPT,

Zy =214 -+ Zpy] € RPXT

Of(Xy) = {%fl(xl,t) %fn(xnt)} € RP*™
DF(X) = [Vhi(xag) - Vfu(ns)] € RPXT.
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As stated before, we can write the update rule of the proposed QuanTimed-DSGD in the following
matrix form:

X1 = Xe (1= &) + W) +e(Zs — X )(W — Wp) — acdf (Xy). (34)

Let us denote W, = (1 — €)1 + W and write (34) as

Xip1 = XiWe +e(Zy — X)) (W — Wp) — agd f(Xy). (35)

Clearly for any e € (0, 1], WL is also doubly stochastic with eigenvalues \;(W,) =1 — ¢ + e (W)
and spectral gap 1 — 8. = 1 — max {|A2(W2)|, [Aa(We)| }.

We start the convergence analysis by using the smoothness property of the objectives and write

n n

Assunglionf% Ef (X;lln> — oeE <Vf (Xt]-n) ’ af(Xt)1n>

B/ (Xt211n> gy (Xtvzgln L 2= X)(W = Wp)l, aaaﬂxmn)

n n
2K
2

LK (2= X)W — W)L, _agf(Xt)ln ’

n

(36)

n

We specifically used the following equivalent form of the smoothness (Assumption 3) for every local
and hence the global objective

K
fily) < fi(x) + <Vfi(x),y — x> + 3”3’ — x||2 , foralli€ [n],x,y € RP
Also, we used the following simple fact:

Wi, =((1-e)l+eW)l,=(1-¢)1,+eWl, =1

Now let us bound the term in (36) as follows:

~ 2
gl Ze= X)W —Wp)1,  0f(Xi)1n

n

; (37
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where we used Assumption 2 to derive the first term in (37). To bound the second term in (37), we
have

gllorcon | _ |2 Ve ‘
n n
i Vi) = Vi) + Vi) |2
n
_ g Zi Vi) = Vi) ‘ 4 ]| i Vi) ‘
n n

2
7 (E[I/V] 1)ss ) Vilxia)
—n Ty m n

n 2

_ : E ZiZI vnfi(xi,t) ’ ) (38)

where the last inequality follows from Lemma 1.
Plugging (38) in (36) yields

Ef( Xisily )<Ef (X;n> _%E<W (X;ln) )8f();t)1n>

2K 2 2K n ( ) 2
€ 5 Qe 9 ie1 (Xt
o T Ty 2T |
2
_Ef X1, _as—as 8f( )1, _aeg v X1,
n 2 n 2 n
+52K 2+a252K 9
2n 7 2n 12
X1, of (X1,
+&€E Vf( t L)_ f( t) 2 (39)
2 n n
T

where we used the identity 2(a, b) =||a||> +||b]|* —|la — b]||*. The term T} defined in (39) can be

bounded as follows:
n n

2

1< X1,
<= D EIVfi|— ) = V/fi(xi
_nz Vf( - ) V filxis)
K2 & ‘Xt 2
< — — Xt
n
Qit
Let us define
X1, 2
Qi,t :E‘ : — Xit||

and
2

ZQlt* ZEHXt — Xt
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Here, (); + captures the deviation of the model at node 7 from the average model at iteration ¢ and M,
aggregates them to measure the average total consensus error. To bound M;, we need to evaluate the
following recursive expressions:

Xe =X Wete(Zyo1 — Xo)(W —=Wp) — Oéggf(Xt—l)
t—1 t—1
= XoW! 4> (Ze— X)W = Wp)WE*" —ae > Of(X)WE="1 (40)

s=0 s=0
Now, using (40) we can write

2

X1
Mtzfz H t n_ Xiy
= "B % - x|}
1 117
= —E|| X, - X,
n
F
1 117 i1 117
= —E|| X, ( — Wt> +e) (Zs— X)W —Wp) < — Wi 1)
n n =0 n

2

_%Z‘af (11T s 1)

F
2

s=0 F
T
2
2 t—1 11'|'
+ =B (Ze— X)W = Wp) | — — w1,
s=0

Ts

where we used the fact that quantiziations and stochastic gradients are statistically independent and
Xo = 0. We continue the analysis by bounding 7% as follows:

2

T, =E Zaf ( Wt s— 1)
F
t—1 ~ 11T 2
= (8f(Xs) — 0f(Xs) +8f(XS)) ( _ W;—s—1>
n
s=0 .
2
N 1T
2_;( ~of(x ))( L )
F
Ty
t—1 2
+2E z_:af(X) 11T Wt s—1
s=0 ’ n
F

Ts
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We can write

where we used the facts that || AB|| . <||A|| || B|| for matrices A, B and also thatH % -

forany ¢t = 0,1, ---. We continue by bounding T5:

t—1
—EE:WM®<€;—WZSQ
s=0

= 117
= E||0f(X,) (n - W;—5—1>
s=0

+ > E<af(Xs)<11TWt51) af (X )<11nTWt51

0<s#s'<t—1

(41)

Wi < gt

), -

Let us first bound the term T§:

— 11T t—s—1
To =) E|0f(X.) | =— - W!
s=0

T
t—s—1
e

= ZEHaf NHE

23
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where

Ty = E||0f(X,)|%

2
< 3E|0f(x.) - 0f (anf)

X, 1 X, 1
+3E af( s "12)—Vf< 2 ”)12
n n
F
2
Xs]-n
+ 3E Vf(‘) 1)
n
F
X1 ’
< 3E||0f(X,) - Of (”LI)
n F
+3n’yf
2
X, 1
+3E Vf(”) 1)
n
F

2
+3nv] + 3E

X1,
Vf( jll)ll

2
Xsln
w( - >1§

F

n
X1
< 3K? E EH” — X5
n
i=1

F

= 3K? Z Qi.s +3n7% + 3E (44)
=1

Plugging (44) in (43) yields

t—1 n 2

117
Ts < 3K* ZZQz‘,s — =Wl
s=0 1=1 n
1
3ny2——
t—1 2 2
X.1, 117 L

+3) E Vf(‘n) 1) T—W; s—1

s=0 F
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Going back to terms 75 and 77, we can write

t—s—1 11T t—s'—1
g;E<af < — W >,aﬂxg><7lwe >>F

<ZE8f — Wit Of(Xs) £—W“—1
+s! ® n
SFES F F
t—s—1 11T t—s'—1
< Z E||6f ||F - We H@f(Xs )HF n We
s;és’
\W Wlﬂ IR (] b
<§E Fn‘wgl‘T W
of(X 117 a2’ e
+;E| — - wlH = —we
Wf|fHW@M2 ()
< ;E E 5 F ﬁ?t (s+s')—2
t—1 ) /
= > E[of(x)|[ 202 (45)
s#s’!
— a X1 ’ :
<3> [3K*) Qis+3E Vf( : ") Ly | Btz
s#s’ i=1 n F
Ty
Fam? ¥ geer2,
s#s!
T1o
In above, the term 77 can be simply bounded as:
T10 — 3”'}/1 Z BQt S+s _
s#s’
t—1
= 6ny? Z ﬁ?t—(5+5’)—2
s>s’

’y2 (ﬂ; B 1) (Bé B ﬁa)
' (ﬂs - 1)2 (ﬁs + 1)

< 6nv;

_
(1 - 55)2.
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The other term, i.e. Ty can be bounded as follows:

t—1 n
Xe]-n _ 7y
Ty =3 3K22Q17s+3E|Vf< : )11 g2 (552
s#s! =1 " F
t—1 n Y1 2 t—1
=6> |3K*> Qi.+3E Vf( n") 1, > pret=2
s=0 i=1 F ) s'=s+1
t—1 n 2
X 17 t—s—1
<6 3K*) Qi+ 3E Vf< s ‘)11 Be
s=0 — n P 1- 55

Now that we have bounded T and 7+, we go back and plug in (42) to bound 75:

2

t—1 n
Ty <3K2Y 03 Qi o -
s=0i=1
2 2
— T 11T t—s—1
+3ZE i L = —w
F
-1 2
X 1 T t—s—1
+6Y 3K2ZQN+3E vf 1] :
pors — o] 15
+3n711 ﬂ2
1
+ 60y ——s
(1_56)2
t—1 n 2
<3K° ZQ” — Wit
s=01i=1
= X,1 117 ’
+3) E|\Vf (") 1T — Wit
n n
s=0 F
t—1 2 ﬁt_s_l
+6) KQZQ”ME Vf( )1T 16
s=0 i=1 F *55
1
+ 9y ——
71 (1_56)2
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where we used the fact that 17—1[32 < ((=TAEE Now we bound the term 75 having T and T5 bounded:

Ty = 2T, + 275
2
<9 nvy3
T o1-p2
t—1 n 11T 2
FOR? S Q| Fm - e
s=0 i=1 n
t—1 2 2
X1 117 el
+6) E|Vf (n> 1 |[=— —wist
s=0 F
-1 n X.1 2 Bt=s—1
12 2 is s—n T €
+12) | 3K ZQ,JrS]EVf( - >1n T
s=0 =1 F
1
+ 18n727.
F(1 - B2

Moreover, the term 73 can be bounded as follows:

t—1 11T
T3 =E||> (Zs — X)(W — Wp) (n - WQ“)
s=0
t—1
2 2
<EY [1Z, — X5 |W — W

117
s=0 n

4no?

<
_1_/8527
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where we used the fact that||W — Wp|| < 2. Now we use the bounds derived for T, and T to bound
the consensus error M; as follows:
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As we defined earlier, we have M, = % >, Qi,s which simplifies (46) to the following:
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Now we can sum (47) overt = 0,1,--- , 7 — 1 which yields
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Note that ||V f (%) 17| =n||vy (%) , which simplifies (49) as follows:
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Rearranging the terms implies that
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and rewrite (50) as
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Note that from definition of 73} we have
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Now use the above fact in the recursive equation (39) which we started with, that is

(P <m (5)

2.2
— K

_as—a’?K
2

e?K 2 a?e?’K

2n 7 2n 72

aeK?

2
If we sum (52) overt =0,1,--- ;T — 1, we get
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We ca rearrange the terms in (53) and rewrite it as
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Now, we define Dy as follows
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and replace in (54) which yields
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To balance the terms in RHS of (55), we need to know how (. behaves with . As we defined before,

W. = (1—¢)l +eW. Hence, \;(W.) =1 — e + e\;(W). Therefore, for e < #(W), we have
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Now, we pick the step-sizes as follows:
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It is clear that in order to satisfy the conditions mentioned before, that are ¢ < #(W), %5

and o <

f = it suffices to pick 7" as large as the following:
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Now we bound the consensus error. From (51) we have
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For the same step-sizes o and ¢ defined in (58) and large enough 7' as in (60), we can use the
convergence result in (61) which yields
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