
A Further details on the lower bound361

Our formal lower bound reads as follows:362

Theorem 9 Let ⇢ 2 (0, 1), and let C = 12 + 4 logd(Q/⇢). Assume that log(N)N
q

C log(d)
d 

1
4363

(i.e., N .
q
d/ log3(d)). Fix a randomized algorithm that queries at most Q points per iteration364

(both function value and gradient), and that runs for at most N iterations. Then, with probability at365

least 1� ⇢, when run on the shielded Nemirovski function f one has for any queried point:366

f(x)� f
⇤
�

1

4
p
N

.

To prove Theorem 9, we consider the following game between the algorithm (player A) issuing the367

queries, and the adversary (player B) building the hard shielded Nemirovski function f (as defined in368

Section 2.3 and Section 2.4), i.e., player B chooses the orthonormal vectors in the definition of f . To369

make explicit the dependency of the shielded Nemirovski function on the choice of the orthonormal370

vectors v1, · · · , vN , we denote it by f
v1,··· ,vN (with similar notation for the Nemirovski function371

N and the wall function W). We restrict our attention to a deterministic player A and randomized372

player B, which is without loss of generality thanks to the minimax theorem. The game has N373

iterations, and at each iteration t, players A and B maintain a common set of orthonormal vectors374

Vt = {v1, v2, · · · , vt}, and common sets of vectors Q1,Q2, · · · ,Qt where initially Q0 = ;. At each375

iteration,376

1. Simultaneously:377

(a) Player A queries a set of Q points Qt = {z
(1)
t , · · · , z

(Q)
t } inside the unit ball.378

(b) Player B randomly sample N � t+ 1 orthonormal vectors v(t)t , v
(t+1)
t , · · · , v

(N)
t from379

span(Vt�1)?.380

2. Player B returns fv1,v2,··· ,vt,v(t+1)
t ,··· ,v(N)

t (x) and rfv1,v2,··· ,vt,v(t+1)
t ,··· ,v(N)

t (x) to player381

A for every x 2 Qt where vt := v
(t)
t .382

Note that at each iteration Player B answers the query with a different function, however we will383

show that in fact with high probability all the given answers are consistent with the final function.384

More precisely let us introduce the high probability event under which we will carry the proof. We385

say that Player B wins the game if the following holds:386

8t 2 [N], z 2 Qt, s1, s2 � t,

���hx, v(s2)s1 i

��� <
r

C log d

d
·

���PV ?
t�1

x

��� .

387

Lemma 10 Let ⇢ 2 (0, 1). Assume N 
d
2 and let C = 12+ 4 logd(Q/⇢). Then player B wins with388

probability at least 1� ⇢.389

Proof For any s1 and s2, we note that v(s2)s1 follows the uniform distribution on the unit sphere390

restricted on the subspace V
?
s1�1. For any x 2 Qt, we have that391

hx, v
(s2)
s1 i = hPV ?

s1�1
x, PV ?

s1�1
v
(s2)
s1 i.

By [Ball, 1997, Lemma 2.2], we have that392

P
v
(s2)
s1

⇣���hPV ?
s1�1

x, PV ?
s1�1

v
(s2)
s1 i

��� � t · kPV ?
s1�1

xk2

⌘
 2 exp(� dimV

?
s1�1 ·

t
2

2
).

Since dimV
?
s1�1 = d � s1 + 1 � d � N �

d
2 and kPV ?

s1�1
xk2  kPV ?

t�1
xk2 (using t  s1), we393

have that394

P
 ���hx, v(s2)s1 i

��� >
r

C log d

d
·

���PV ?
t�1

x

���
2

!
 2 exp(�

d

2
·
1

2
·
C log d

d
) = 2d�

C
4 .

11

Taking union bound over at most N2 pairs of v(j)i and NQ many x, we have that player B wins with395

probability at least 1�Q · d
3�C

4 , which concludes the proof.396

397

Next we show that if Player B wins the game, then indeed all answers are consistent with the final398

function.399

Lemma 11 Assume player B wins the game and that � = 2�
q

C log(d)
d . Then, for all t 2 [N] and400

all x 2 Qt, we have that401

f
v1,v2,··· ,vt,v(t+1)

t ,··· ,v(N)
t (x) = f

v1,v2,··· ,vt,vt+1,··· ,vN (x) (7)

and that402

rf
v1,v2,··· ,vt,v(t+1)

t ,··· ,v(N)
t (x) = rfv1,v2,··· ,vt,vt+1,··· ,vN (x) (8)

Proof Fix any t 2 [N] and any x 2 Qt. Write x = w + z with w 2 Vt�1 and z 2 V
?
t�1. Since403

player B wins, we have that404
���hz, v(s)t i

��� 
r

C log d

d
· kzk ,

for all s � t. Lemma 2 shows that405

W
v1,v2,··· ,vt,v(t+1)

t ,··· ,v(N)
t (x) = W

v1,v2,··· ,vt,vt+1,··· ,vN (x) . (9)

Moreover the equations following Lemma 2 show that (9) also holds for the function f itself provided406

that kzk � � (indeed, as discussed there if the argmax index in the definition of the Nemirovski407

function is attained at an index� t then in fact f(x) = W(x), and otherwise the Nemirovski function408

value itself does not depend on v
(t+1)
t , · · · , v

(N)
t).409

Thus we only need to consider the case where kzk  �. In this case we prove that (9) also holds for410

the Nemirovski function (and thus it also holds for f). Indeed for any s > t411

hvs, xi � � · s = hvs, zi � hvt, zi+ hvt, xi � � · s

 2

r
C log d

d
· � + hvt, xi � � · s

 hvt, xi � � · t ,

where the last inequality uses that
q

C log d
d 

�
2� . This concludes the proof of (7). For (8) we simply412

note that (7) remains true for infinitesimal perturbations of x.413

414

Finally we show that no queried point could have a suboptimal gap smaller than o(1/
p
N).415

Lemma 12 Assume player B wins and that log(N)N
q

C log(d)
d 

1
4 . Then, for all t 2 [N] and all416

x 2 Qt, we have that417

f(x)� f
⇤
�

1

4
p
N

.

Proof First we claim that418

f(x)� f
⇤
�

1
p
N
�

r
C log(d)

d
� �N .

This follows from (1), Lemma 1, and the fact that:419

f(x) � N (x) � hvN , xi � �N .

Next recall from Lemma 11 that we take � = 2�
q

C log(d)
d , and from Lemma 1 that �

log2(1/�)
=420

4
q

CN log(d)
d + 1p

N


2p
N

where the inequality follows from the assumption on N . In particular we421

12

have � 
log(N/2)p

N
. Thus:422

f(x)� f
⇤
�

1
p
N
�

r
C log(d)

d

⇣
1 + 2 log(N/2)

p

N

⌘
�

1

4
p
N

,

where the second inequality follows from the assumption on N .423

424

B Acceleration with Approximate Proximal Step Oracles425

Here we provide the proofs associated with Section 3.1 and prove Theorem 6. Our proof is split into426

several parts. In Section B.1 we provide the acceleration framework we leverage, in Section B.2 we427

show how to instantiate the framework using our oracles, and in Section B.3 we then prove Theorem 6.428

This analysis relies on a line search result deferred to Appendix E.429

B.1 Framework430

In this section we present the general acceleration framework based on Monteiro and Svaiter [2013]431

which we leverage to achieve our result. This acceleration framework is given by Algorithm 3 and is432

a noise-tolerant analog of the one present in Bubeck et al. [2018]. The framework maintains points433

xk and yk in each iteration k. To compute the next point, a careful convex combination of them is434

chosen, denote exk, and the next yk+1 is chosen a point that has similar properties to the result of435

an approximate proximal step oracle and the next xk+1 is then the result of moving from xk in the436

direction of rg(yk+1). Here we provide general results regarding the iterates in the general setting437

of Algorithm 3. In the next section we show how to implement the framework and ultimately bound438

the error.439

Algorithm 3: Acceleration Framework
1 Input: x0 = y0 = 0d, � 2 (0, 1), A0 = 0, K > 0
2 for k = 0, . . . ,K � 1 do
3 Compute �k+1 > 0 and yk+1 2 Rd such that for

ak+1
def
=

1

2

h
�k+1 +

q
�2
k+1 + 4�k+1Ak

i
, Ak+1

def
= Ak+ak+1 , exk

def
=

Ak

Ak+1
yk+

ak+1

Ak+1
xk,

the following condition holds

k�k+1rg(yk+1) + yk+1 � exkk  �kyk+1 � exkk+ �k+1� . (10)

4 Compute xk+1 such that the following holds

kxk+1 � (xk � ak+1rg(yk+1))k  ak+1� (11)

5 end
6 return yK

Remark 13 The definition of ak+1 was chosen such that �k+1Ak+1 = a
2
k+1. To see this, note that440

ak+1 is a solution to a
2
k+1 � �k+1ak+1 � �k+1Ak = 0, which is equivalent as Ak+1 = Ak + ak.441

In the following theorem we give a general bound for the quality of the iterates in Algorithm 3.442

Theorem 14 (Framework Convergence) Algorithm 3 above gives for all k � 1 that443

Ak [g(yk)� g
⇤] +

1

2
kxk � x

⇤
k
2 +

X

i2[k]

(1� �)Ai

2�i
kyi � exi�1k

2


1

2
kx

⇤
k
2 + �k

where444

�k = �

X

i2[k]

aikxi � x
⇤
k+

�
2

2(1� �)

X

i2[k]

a
2
i .

13

Proof Let �k+1
def
= xk+1 � (xk � ak+1rg(yk+1)), rk

def
= 1

2kxk � x
⇤
k
2, and "k

def
= g(yk)� g

⇤ so445

1

2
kxk+1 � x

⇤
��k+1k

2 = rk + ak+1rg(yk+1)
>(x⇤

� xk) +
a
2
k+1

2
krg(yk+1)k

2
.

Now, since446

xk = yk +
Ak+1

ak+1
(exk � yk) = yk+1 +

Ak+1

ak+1
(exk � yk+1) +

Ak

ak+1
(yk+1 � yk)

and by convexity g(z) � g(yk+1) +rg(yk+1)>(z � yk+1) for all z we have447

ak+1rg(yk+1)
>(x⇤

� xk)  Ak+1rg(yk+1)
>(yk+1 � exk) +Ak"k �Ak+1"k+1 .

Combining these inequalities and applying Cauchy Schwarz yields448

rk+1 =
1

2
kxk+1 � x

⇤
��k+1k

2 +�>
k+1(xk+1 � x

⇤
��k+1) +

1

2
k�k+1k

2

 rk +Ak+1rg(yk+1)
>(yk+1 � exk) +Ak"k �Ak+1"k+1 +

a
2
k+1

2
krg(yk+1)k

2

+ k�k+1kkxk+1 � x
⇤
k

Now rearranging (10) and applying (a+ b)2  (1 + t)a2 + (1 + t
�1)b2 for t = 1��

� yields449

2�k+1rg(yk+1)
>(yk+1� exk)+�

2
k+1krg(yk+1)k

2
 �(1��)kyk+1� exkk

2+(1��)�1
�
2
k+1�

2

Combining with the facts that �kAk = a
2
k and k�k+1k  ak+1� yields450

rk+1 +Ak+1"k+1 +
(1� �)Ak+1

2�k+1
kyk+1 � exkk

2
 rk +Ak"k + ak+1�kxk+1 � x

⇤
k+

�
2

2(1� �)
a
2
k+1

Summing over k and using that A0 = 0 and x0 = 0 yields the result.451

452

Next we show that for sufficiently small �, the error in Theorem 14 is increased by only a constant453

factor. This will allow us to apply Theorem 14 when � 6= 0.454

Lemma 15 (Error Tolerance) Algorithm 3 with �  c
p
1� �kx

⇤
k/AK for some c,K � 0 gives455

that �k  c(1 + 3c)kx⇤
k
2
. Consequently, if c 

1
4 then for all k 2 [K]456

Ak [g(yk)� g
⇤] +

1

2
kxk � x

⇤
k
2 +

X

i2[k]

(1� �)Ai

2�i
kyi � exi�1k

2
 kx

⇤
k
2 (12)

In particular, this implies that taking � 
kx⇤k
µ·AK

for µ
def
= 4

p
2p

1��
then kxk � x

⇤
k  2kx⇤

k. Further-457

more, we have that either g(yk)  g
⇤ + " or Ak 

kx⇤k2

" .458

Proof Theorem 14, the assumption on �, � 2 [0, 1) and AK =
P

i2[K] ai yield that for all k 2 [K]459

1

2
kxk � x

⇤
k
2


1

2
kx

⇤
k
2 + ckx

⇤
kmax
i2[K]

kxi � x
⇤
k+

c
2

2
kx

⇤
k
2

Since this holds for all k 2 [K] it clearly holds for k 2 argmaxi2[K] kxi � x
⇤
k and therefore460

max
i2[K]

kxi � x
⇤
k
2
� 2ckx⇤

kmax
i2[K]

kxi � x
⇤
k � (1 + c

2)kx⇤
k
2
 0

Solving the quadratic and using
p
a+ b 

p
a+
p
b implies that461

max
i2[K]

kxi � x
⇤
k 

1

2

h
2ckx⇤

k+
p
4c2kx⇤k2 + 4(1 + c2)kx⇤k2

i
 (c+ (1 + c

p
2))kx⇤

k .

Therefore by the definition of �k, we have462

�k = c[c+ (1 +
p
2c)]kx⇤

k
2 +

c
2

2
kx

⇤
k
2
 (3c2 + c)kx⇤

k
2

for all k 2 [K] and (12) follows from Theorem 14 and that c(1 + 3c)  1
2 for c 2 [0, 1

4].463

464

14

B.2 Leveraging Approximate Proximal Step Oracle465

Here we show how to implement and bound the convergence of Algorithm 3 given an approximate466

proximal step oracle. First, we show that given �k+1!(kyk+1 � exkk) is sufficiently close to 1 then467

yk+1 can be computed with an approximate proximal oracle. We show that such a yk+1 can always468

be found (for suitable choice of �) in Appendix E.469

Lemma 16 (Line Search Guarantee) If in each iteration k of Algorithm 3 we choose �k+1 and470

yk+1 such that for d = kyk+1 � exkk471

krg(yk+1) + !(d)(yk+1 � exk)k  ↵ · !(d)d+ � and
1� �

1� ↵
 �k+1!(d)  1

for ↵ 2 [0, 1) and ! : R+ ! R+ then (10) is satisfied.472

Proof Leveraging that the assumptions imply |�k+1!(d)� 1| = 1� �k+1!(d) yields473

k�k+1rg(yk+1) + yk+1 � exkk  �k+1 krg(yk+1) + !(d)(yk+1 � exk)k+ |�k+1!(d)� 1| kyk+1 � exkk

 �k+1 (↵ · !(d)d+ �) + (1� �k+1!(d))d

= [1� (1� ↵)�k+1!(d)]d+ �k+1� .

Since (1� ↵)�k+1!(d) � 1� � by assumption the result follows.474

475

Note that the update xk+1 can simply be read as xk+1 = xk � ak+1 · vk+1 where kvk+1 �476

rg(yk+1)k  �. Consequently, vk+1 can just be the result of a �-approximate gradient oracle477

(Definition 5). Consequently, this lemma shows that Algorithm 3 can be implemented with the oracles478

at our disposal, provided line search can be performed to achieve the guarantee of Lemma 16. We479

discuss this in the next section.480

Next we bound the diameter of the iterates of the algorithm, i.e. how much the points vary.481

Lemma 17 (Diameter Bound) If in Algorithm 3 we have � 
kx⇤k
µ·AK

for µ
def
= 4

p
2p

1��
and some482

K > 0. Then for all k 2 [K] and ✓ 2 [0, 1 we have kyk � x
⇤
k  µkx

⇤
k and kex✓ � x

⇤
k  µkx

⇤
k483

for ex✓ = (1� ✓)xk + ✓yk.484

Proof Let Dk = kyk � x
⇤
k. Using exk = Ak

Ak+1
yk + ak+1

Ak+1
xk, we have485

kexk � x
⇤
k 

Ak

Ak+1
Dk +

2ak+1

Ak+1
kx

⇤
k.

Hence, Dk+1 
Ak

Ak+1
Dk + 2ak+1

Ak+1
kx

⇤
k+ kyk+1 � exkk. Rescaling and summing over k yields486

Dk+1  2kx⇤
k+ kyk+1 � exkk+

Ak

Ak+1
kyk � exk�1k+

Ak�1

Ak+1
kyk�1 � exk�2k+ · · ·

 2kx⇤
k+

1

Ak+1

k+1X

j=1

Ajkyj � exj�1k

 2kx⇤
k+

qPk+1
j=1 Aj�j

Ak+1

vuut
k+1X

j=1

Aj

�j
kyj � exj�1k

2

 2kx⇤
k+

qPk+1
j=1 �j

p
Ak+1

r
2kx⇤k2

1� �

 2kx⇤
k+

2
p
2

p
1� �

kx
⇤
k  µkx

⇤
k

where we used Aj is increasing and Lemma 15 in the third to last equation, and equation 14 for the487

second to last. The assumption on the relation between ↵ and � implies � = 1+↵
2 = [12 , 1) and the488

definition of µ gives the last inequality.489

15

The second part of the claim follows by observing that ex✓ is a convex combination of xk and yk,490

therefore491

kex✓ � x
⇤
k  max{kxk � x

⇤
k, kyk � x

⇤
k}  µkx

⇤
k .

492

493

Finally, we bound the growth of Ak; this is crucial to derive the final convergence rate of the algorithm.494

Lemma 18 (Growth of Ak) Let ⇢
def
= 1�↵

1�� = 2 and µ
def
= 4

p
2p

1��
= 8p

1�↵
. If in Algorithm 3 for495

K � 0 we have � 
kx⇤k
µ·AK

and �k �
1

⇢·!(kyk�exk�1k) for all k 2 {0, ...,K} then for all J 2 (0, k
2)496

we have497

Ak � min

8
<

:
4J

⇢ · !(µkx⇤k/4)
,

(k/J)2

16⇢ · !
⇣

4µkx⇤k
(k/J)3/2

⌘

9
=

; .

Further, if kx
⇤
k  R, for all k 2 [K] then Ak �

1
2!(2µR) .498

Proof Let dk
def
= kyk � exk�1k. By (12) of Lemma 15 we obtain for all k 2 [K]499

X

i2[k]

Ai

�i
d
2
i 

2kx⇤
k
2

1� �
. (13)

Since A0 = 0 we have A1 = a1 = �1 and consequently, (13) yields d
2
1 

2kx⇤k2

1�� and therefore500

d1 
µ
4 kx

⇤
k. Since ! is monotonic the assumptions imply501

A1 = �1 �
1

c · !(d1)
�

1

⇢ · !(µkx⇤k/4)
.

Since the Ak increase monotonically this immediately implies Ak � A1 � 1/[⇢!(µkx⇤
k/4)] as502

desired. Further, this implies that if Ak � 4JA1 then the result holds.503

On the other hand, suppose Ak < 4JA1. Then, for some 1  i  j  k we have Aj < 4Ai and504

|j � i| � k/J . The construction of Ak then implies505

p
Aj >

p
Aj �

p
Ai =

j�1X

t=i

hp
At+1 �

p
At

i
=

j�1X

t=i

at+1p
At+1 +

p
At

�
1

2

j�1X

t=i

p
�t+1 (14)

Hence, at least
⌃ j�i

2

⌥
many �’s have value less than 16Aj

(j�i)2 . Letting S denote the indices of these �506

we have by (13) that507

2kx⇤
k
2

1� �
�

X

t2S

At

�t
d
2
t �

⇠
j � i

2

⇡
Ai⇣
16Aj

(j�i)2

⌘ ·
1

|S|

X

t2S

d
2
t �

(k/J)3

32 · 4
·
1

|S|

X

t2S

d
2
t

Consequently, dt  16p
1��

kx⇤k
(k/J)3/2


4µkx⇤k
(k/J)3/2

and �t <
16Aj

(j�i)2 
16Aj

(k/J)2 for some t 2 [k]. However,508

the monotonicity of ! and the assumptions on � also imply509

�t �
1

⇢ · !(dt)
�

1

⇢ · !(4µkx⇤k
(k/J)3/2

)

and the result now follows by observing that510

Ak � At � �t
(k/J)2

16

giving the second term in the result.511

512

16

B.3 Putting It All Together513

Here we put together the analysis from the preceding sections and prove Theorem 6. Our proof relies514

on the following theorem giving our main guarantee regarding such a line search algorithm (See515

Section E for the proof.)516

Theorem 19 (Line Search Algorithm) Let g : Rd
! R be a twice differentiable function that is517

minimized at a point x
⇤
2 Rd

with kx
⇤
k  R. Further, let ! : R+ ! R+ be a continuously518

differentiable function where 0 < !
0(s)  �

!(s)
s for some fixed � � 1 and all s > 0. Further, let519

µ
def
= 8p

1�↵
and suppose520

�  min

⇢
"

µ ·R · 9c[(1 + ↵)c+ 1]
, 8µR · !(8µR)

�
and 64

✓
↵+

1

c

◆
�
2
 1 for some c � 1 .

Then for any inputs x
(1)

, x
(2)

with kx
(1)
k, kx

(2)
k  2µR,

1
2!(2µR)  A 

R2

" there is an algorithm521

that returns y and � such that ex = a
A+ax

(1) + A
A+ax

(2)
for a = �+

p
�2+4�A
2 that either satisfies522

g(y)  g
⇤ + " and !(ky � exk2) · ky � exk2  c · �

or, satisfies523

1

2
 � · !(ky � exk2)  1 , !(ky � exk2) · ky � exk2 > c · �,

and524

krg(y) + !(ky � exk2) · (y � ex)k  ↵ · !(ky � exk2) · ky � exk2 + �

after525

6 + log2

h⇣160µRc

�
+

9R2

"

⌘
· !(8cµR)

i

calls to the (↵, �)-approximate !-proximal step oracle Tprox for g.526

Leveraging this we can prove our main theorem regarding our acceleration framework. We first give527

this result below as a slightly more general result and then use it to immediately improve the theorem.528

Theorem 20 (General Tunable Acceleration Framework) Let g : Rd
! R be a convex twice-529

differentiable function minimized at x
⇤

with kx
⇤
k  R, " > 0, ↵ 2 [0, 1), and c � 150, � � 1 such530

that 64(↵ + c
�1)�2

 1. Further, let ! : R+ ! R+ be a monotonically increasing continuously531

differentiable function with 0 < !
0(s)  � · !(s)/s for all s > 0. There is an algorithm which for all532

k computes a point yk with533

g(yk)� g
⇤
 max

(
" ,

32 · !
⇣

4µkx⇤k
k3/2

⌘
kx

⇤
k
2

k2

)
where µ

def
=

8
p
1� ↵

using k(6 + log2[(1500µ
3
R

3
c
2[(1 + ↵)c+ 1]) · !(8cµR) · "�1])2 queries to a (↵, �)-approximate534

!-proximal step oracle for g and a �-approximate gradient oracle for g provided that it holds that535

�  "/[20µ3
R[(1 + ↵)c+ 1]] and "  72c[(1 + ↵)c+ 1](µR)3 · !(8µR).536

Proof Consider an application of Algorithm 3 where in each iteration k we invoke Theorem 19537

with x
(1) = yk, x(2) = xk, and A = Ak to compute yk+1 = y and �k = �. Now supposing that538

Ak  R
2
/" and that in this invocation we choose the � of Theorem 19 to be �0 def

= min{"0/(µR), 8µR·539

!(8µR)} = "
0
/(µR) for "0 def

= "/[µ ·R · 9c[(1+↵)c+1]] , we have that the conditions of Lemma 15540

and Theorem 19 are met as "0  ". Further, if !(ky � exk2) · ky � exk2  c · �
0 then we output yk+1541

and are guaranteed that g(yk+1)  g
⇤ + " by Theorem 19 and the choice of parameters.542

Otherwise, !(ky � exk2) · ky � exk2 > c · �
0 and the necessary conditions are met for Algorithm 3 to543

proceed by Lemma 16. Further, in this case, we have that544

�k+1 
1

!(kyk+1 � exkk)

kyk+1 � exkk

c · �0


2µkx⇤
k

c · �0
.

17

Furthermore, the assumption that Ak 
kx⇤k2

" , Remark 13, and the assumption on � yield545

Ak+1 = Ak + ak+1  Ak +
p

Ak+1 ·

r
2µkx⇤k

c · �0

kx

⇤
k
2

"
+

1

2
Ak+1 +

µkx
⇤
k

c�0

which implies that546

Ak+1 
2kx⇤

k
2

"
+

2µkx⇤
k

c · �0


2R2

"
+

19µ2
R

2[(1 + ↵)c+ 1]

"


20µ2
R

2[(1 + ↵)c+ 1]

"

Since, kx⇤
k/(µAk+1) � "/[20µ3

R[(1 + ↵)c + 1]] � � by the assumption c � 150, we have that547

Lemma 15 still holds and therefore either Ak+1  kx
⇤
k
2
/" or g(yk+1)� g

⇤
 " and we can repeat548

the inductive argument.549

Consequently, if after k steps we have not already returned an "-approximate point then we have from550

Lemma 15 and Lemma 18 the convergence rate to an "-optimal point of the general framework as551

g(yk)� g
⇤

kx

⇤
k
2

Ak
 min

J2[k2]
max

8
<

:
2 · !(µkx⇤

k/4)

4J
,

32 · !
⇣

4µkx⇤k
(k/J)3/2

⌘

(k/J)2

9
=

; kx
⇤
k
2

and the convergence rate follows by considering J = d1 + log4(2kx
⇤
k
2
!(µkx⇤

k/4)/")e and the552

monotonicity of !. Putting together with Theorem 19, we have that for553

K
def
=
l
1 + log4

⇣2kx⇤
k
2
!(µkx⇤

k/4)

"

⌘m
·

⇣
6 + log2

h⇣160µkx⇤
kc

�0
+

9kx⇤
k
2

"

⌘
· !(8cµkx⇤

k)
i⌘



⇣
6 + log2

h170µ2
R

2
c

"0
· !(8cµR)

i⌘
·

l
1 +

1

2
log2

⇣
2R2!(

µR
4)

"

⌘m



⇣
6 + log2

⇥170µ2
R

2
c

"0
· !(8cµR)

⇤⌘2


⇣
6 + log2

h1500µ3
R

3
c
2[(1 + ↵)c+ 1]

"
· !(8cµR)

i⌘2

K queries to a (↵, �0)-approximate !-proximal step oracle is needed at each iteration.554

555

556

Leveraging this, we prove Theorem 6.557

Proof [Proof of Theorem 6] Consider invoke Theorem 20 with c = 150�2. Since � � 1 we have558

c � 150. Further, since ↵  1/(128�2) and c
�1
 1/(128�2) we have 64(↵ + c

�1)�2
 1.559

Further, under these assumptions we have µ
def
= 8/(

p
1� ↵)  10 and [(1 + ↵)c + 1]  200�2.560

Consequently, � and " are constrained sufficiently to invoke Theorem 20 and the result follows.561

562

C Applications563

Here we briefly sketch several applications of the acceleration framework described in Section 3.1.564

First we show how minimizing the regularized p-th order Taylor approximation to g is yields an565

approximate !-proximal step oracle.566

Lemma 21 (Accelerated Taylor Descent) Suppose that r
p
g is Lp-Lipschitz and that T (x)

def
=567

argminy gp(y;x)+
Lp+L

p! ky�xk
p+1

where gp(y;x) is the value of the p’th order Taylor approxima-568

tion of g about x evaluated at y and L � 0. Then, Tprox is a ((1+p)�1(1+L/Lp)�1
, 0)-approximate569

!-proximal step oracle (Definition 4) for !(d)
def
= (Lp+L)·(p+1)

p! d
p�1

.570

Proof Let y = Tprox(x) for arbitrary x. The optimality conditions of y yield that571

rygp(y;x) =
(p+ 1)(Lp + L)

p!
ky � xk

p�1(x� y) = !(ky � xk)(x� y) .

18

Further, since Taylor expansion of rg(y) yields572

krg(y) + !(ky � xk)(y � x)k = krg(y)�rygp(y;x)k 
Lp

p!
ky � xk

p

=
Lp

(1 + p)(Lp + L)
!(ky � xk)ky � xk

the result follows by observing that ↵ = (1 + p)�1(1 + L/Lp)�1 and � = 0, as claimed.573

574

Now, note that for !(d) defined in this lemma we have that !0(d) = (p� 2)!(s)/s. Consequently,575

with respect to Theorem 6 we have that � = p � 2 and ↵ = (1 + p)�1(1 + L/Lp)�1 for the576

oracle defined in this lemma. Consequently, by picking L = O(Lppoly(p)) this oracle satisfies the577

necessary conditions of the theorems and therefore (up to logarithmic factors) with k queries to the578

oracle and a gradient oracle invoking Theorem 6 yields that one can compute a point yk with579

g(yk)� g
⇤ .

!(kx
⇤k

k3/2)kx
⇤
k
2

k2
. (Lp + L) · (p+ 1) · kx⇤

k
p+1

p! · k
3p+1

2

.

This matches the rate of [Gasnikov et al., 2018, Jiang et al., 2018, Bubeck et al., 2018] up to580

polylogarithmic factors.581

Next we show how approximately minimizing a regularization of g yields an approximate !-proximal582

step oracle.583

Lemma 22 (Approximate Proximal Point) Suppose that g is L-smooth and convex and that T (x)584

is a point yx where for Gx(y)
def
= g(y) + 

2 ky � xk
2

we have Gx(yx) � G
⇤
x  ⇢ where G

⇤
x is585

the minimum value of Gx. Then, Tprox is a (0, ⇢(L + ))-approximate !-proximal step oracle586

(Definition 4) for !(d)
def
= .587

Proof Since G is L+ -smooth we have that588

⇢ �
1

L+ 
krGx(yx)k =

1

L+ 
krg(yx) + (yx � x)k .

The result follows by observing that ↵ = 0 and � = ⇢(L+ ), as claimed.589

590

Now, note that for !(d) defined in this lemma we have that !0(d) = 0. Consequently, with respect to591

Theorem 6 we have that � = 0 and ↵ = 0 for the oracle defined in this lemma. Consequently, this592

oracle satisfies the necessary conditions of the theorems for some " so long as ⇢ = O("/[kx⇤
k(L+)]593

and therefore (up to logarithmic factors) with k queries to the oracle and a gradient oracle invoking594

Theorem 6 yields that one can compute a point yk with595

g(yk)� g
⇤ .

!(kx
⇤k

k3/2)kx
⇤
k
2

k2
.  · kx

⇤
k
2

k2
.

This matches the rate of [Frostig et al., Lin et al., 2015] up to polylogarithmic factors with slightly596

stronger assumptions. We leave it to future work to use this framework to fully generalize this result597

and develop further applications.598

D Upper Bound599

Here we provide the proofs associated with Section 3.2 and prove Theorem 3. Our proof is split600

into several parts. In Section D.1 we provide basic facts about the convolved function we optimize,601

in Section D.2 we analyze our algorithm for approximating the gradient, in Section D.3 we then602

analyze our algorithm for computing an approximate proximal step, and in Section D.4 we then put603

everything together to prove Theorem 3.604

Throughout this section we use k ·kop to denote the operator norm of a matrix and D as the differential605

operator.606

19

D.1 Gaussian Convolution for Approximation607

Here we prove Lemma 7 which provides basic facts about g, e.g. convexity and continuity, that we608

use throughout our analysis.609

Proof [Proof of Lemma 7] Since g is a weighted linear combination of shifted f , i.e.610

g(y) =

Z

Rd

�r(x)f(y � x)dx

and as f is convex, so is g. Similarly, we have g is L-Lipschitz. Finally, we note that611

|g(y)�f(y)| 

Z

Rd

�r(y�x)|f(x)�f(y)|dx  L

Z

Rd

�r(y�x)kx�yk2dx = L·Ex⇠�rkxk2  L

p

d·r

where we used Ex⇠�rkxk2 
p
Ex⇠�rkxk

2
2 
p
d · r.612

Next, we note that rg = �r ⇤ rf and hence r2
g = r�r ⇤ rf613

v
>
r

2
g(y)v =

Z

Rd

�r(y � x) ·

⌧
�
y � x

r2
, v

�
· hrf(x), vi dy.

So we have for any kvk2 = 1, by the fact that f is L-Lipschitz that614

��v>r2
g(y)v

��  L

r
·

Z

Rd

�r(y � x)

����

⌧
y � x

r
, v

����� dy =
L

r
· E⇣⇠N (0,1)|⇣| =

L

r
·

r
2

⇡


L

r
.

and therefore kr2
g(y)kop 

L
r .615

616

D.2 Noisy Gradient Oracle: Sampling617

In this section we prove Lemma 8 bounding the performance of Algorithm 1 for approximating the618

gradient of g. We begin by studying each sampled vector in Algorithm 1.619

Lemma 23 (Statistics of one sample) Given a L-Lipschitz function f on Rd
, a vector c, radius620

r > 0, and error parameter 1 > ⌘ > 0. Sample x according to �r(x� c). Define the vector field621

`(y)
def
=

�r(y � x)

�r(c� x)
·rf(x) · �((x� c)>(y � c)) · 1kx�ck(

p
d+ 1

⌘)r.

For any y such that ky � ck 
⌘
4 r, we have that622

kE`(y)�r(�r ⇤ f)(y)k2  2L · exp(�
1

2⌘2
),

k`(y)k2  3L,

kD`(y)kop 
20L
p
d

r⌘
.

Proof For the bias, we note that623

E`(y) =
Z

Rd

�r(y � x)

�r(x� c)
·rf(x) · �((x� c)>(y � c)) · �r(x� c) · 1kx�ck(

p
d+ 1

⌘)r dx

=

Z

Rd

�r(y � x) ·rf(x) · �((x� c)>(y � c)) · 1kx�ck(
p
d+ 1

⌘)r dx

= r(�r ⇤ f)(y)�

Z

Rd

�r(y � x) ·rf(x) · �(y, x) dx

where624

�(y, x) = 1� �((x� c)>(y � c)) · 1kx�ck(
p
d+ 1

⌘)r.

20

Since 1 � �(y, x) � 0 for all x, y, we have625

kE`(y)�r(�r ⇤ f)(y)k2 
Z

Rd

�r(y � x) · krf(x)k2 · �(y, x) dx

 L ·

Z

Rd

�r(y � x) · �(y, x) dx

 L · Px [�(y, x) > 0] .

Now, we note that �(y, x) > 0 implies either kx� ck > (
p
d+ 1

⌘)r or |(x� c)>(y � c)| > r2

2 .626

By a tail bound of Chi-square distribution [Laurent and Massart, 2000], we have627

Px

✓
kx� ck >

✓
p

d+
1

⌘

◆
r

◆
 exp

✓
�

1

2⌘2

◆
. (15)

Next, we note that for any fixed c and y, (x� c)>(y � c) follows the normal distribution N (ky �628

ck
2
, ky � ck

2
r
2) when x is sampled from �r(y � x). By the assumption that ky � ck 

⌘
4 r 

r
4 , we629

have that630

Px


|(x� c)>(y � c)| >

r
2

2

�
 P⇣⇠N (0,1)

⇣
|⇣| �

r
2

4ky � ckr

⌘

 exp
⇣
�

r
2

32ky � ck2

⌘

 exp(�
1

2⌘2
). (16)

Union bound over case (15) and case (16) gives that Px [�(y, x) > 0]  2 exp(� 1
2⌘2). This gives the631

bound on E`(y).632

For the bound on k`k, we note from the Lipschitz assumption of f that633

k`(y)k2  L ·
�r(y � x)

�r(x� c)
· �((x� c)>(y � c)).

 L ·
�r(y � x)

�r(x� c)
· 1|(x�c)>(y�c)|r2

For any x with |(x� c)>(y � c)|  r
2, we have that634

log
�r(y � x)

�r(x� c)
= �

1

2r2
ky � xk

2
2 +

1

2r2
kc� xk

2
2

=
1

2r2
�
�2(c� x)>(y � c)� ky � ck

2
2

�


|(x� c)>(y � c)|

r2
< 1. (17)

Hence, we have k`(y)k2  3L.635

For the bound of the Jacobian of `, we note that636

D`(y) =
�r(y � x)

�r(x� c)
·rf(x) ·

⇣
�

y � x

r2

⌘>
· �((x� c)>(y � c)) · 1kx�ck(

p
d+ 1

⌘)r

+
�r(y � x)

�r(c� x)
·rf(x) · (x� c)>�0((x� c)>(y � c)) · 1kx�ck(

p
d+ 1

⌘)r.

Since the Lipschitz constant of � is bounded by 2
r2 and the Lipschitz assumption of f is bounded by637

L, (17) and the above equation shows that638

kD`(y)kop  e · L ·
ky � xk2

r2
· 1kx�ck(

p
d+ 1

⌘)r + e · L · kx� ck2 ·
2

r2
· 1kx�ck(

p
d+ 1

⌘)r

 e · L ·
(
p
d+ 1

⌘ + ⌘
4)r

r2
+ 2e · L

(
p
d+ 1

⌘)r

r2


Lr

r2
+

9L

r
· (
p

d+
1

⌘
) 

20L
p
d

r⌘
.

21

639

640

By a concentration and "-net argument we use Lemma 23 to prove Lemma 8.641

Proof [Proof of Lemma 8] Fix y such that ky � ck2 
⌘
4 r, we let v(y)�rg(y) = 1

N

PN
i=1 "

(i) be642

the sum of N independent vectors "(i). Lemma 23 shows that643

kE"(i)k2  2L · exp
⇣
�

1

2⌘2

⌘
and k"(i)k2  3L+ L = 4L.

Pinelis’s inequality [Pinelis, 1994] shows that644

P
 ���

1

N

NX

i=1

"
(i)
���
2
� 2L · exp(�

1

2⌘2
) + 4L · t

!
 2 exp

✓
�
Nt

2

2

◆
.

To make this holds for all y with ky � ck2 
⌘
4 r, we pick an "-net N on {y : ky � ck2 

⌘
4 r} with645

" = ⌘
4 r ·

exp(� 1
2⌘2)

3
p
d

. It is known that |N"(Bd(0, r))|  (3r")
d, therefore, using 0 < ⌘  1646

|N | 

0

B@
3⌘
4 r

⌘
4 r ·

exp(� 1
2⌘2)

3
p
d

1

CA

d

=
⇣
9
p

d

⌘d
exp

✓
d

2⌘2

◆
 exp

✓
d log(81d)

⌘2

◆
.

For any y with ky � ck2 
⌘
4 r, there is y0 2 N with ky0 � yk2  ", therefore by Lemma 7 we have647

krg(y0)�rg(y)k 
L"

r
 L · exp(�

1

2⌘2
).

Lemma 23 shows that kDv(y)kop 
20L

p
d

r⌘ . Hence, we have648

kv(y0)� v(y)k2  " ·
20L
p
d

r⌘
 2L exp(�

1

2⌘2
).

Taking the union bound on N , we have that649

P
✓

max
y:ky�ck2 ⌘

4 r
kv(y)�rg(y)k2 � 5L · exp(�

1

2⌘2
) + 4L · t

◆
 2 exp

✓
d log(81d)

⌘2
�

Nt
2

2

◆
.

Setting 2 exp
⇣

d log(81d)
⌘2 �

Nt2

2

⌘
= �, we get650

4L · t 
4L
p
N

s
2d log(81d)

⌘2
+ 2 log

2

�


8L
p
N

s
d log(9d)

⌘2
+ log

1

�

on the LHS.651

652

D.3 Approximate Proximal Step Oracle Implementation653

Here we prove the following theorem which bounds the performance of Algorithm 2.654

Theorem 24 Algorithm 2 outputs y such that krg(y) + !(ky � ck) · (y � c)k  L · " in O(p
p
d

"2)655

iterations with N = O([d log d log(1") + log(1�)]"
�2) oracle calls to f in parallel with probability at656

least 1� � where ! is defined by (5) with er = r

8
q

log(60
")

.657

Proof [Proof of Theorem 24] First, we need to prove that y stays inside ky � ck2  er. Given this,658

the correctness of the output follows from the error bound on v and the stopping condition.659

22

We prove ky � ck2  er by induction. Let y0 be the one step from y, namely y
0 = y � h · �y. Then,660

we have661

ky
0
� ck2  ky � h · !(ky � ck2) · (y � c)� ck2 + hkv(y)k2

= |1� h · !(ky � ck2)| ky � ck2 +
4

3
Lh

where we used the induction hypothesis ky � ck2  er and the approximation guarantee to show that662

kv(y)k2  kv(y)�rg(y)k2 + krg(y)k2 
L"
6 + L 

4
3L. Next, we note from the assumption on663

step size that664

h · !(ky � ck2)  h ·
4Lerp

erp+1
 1.

Hence, we have665

ky
0
� ck2  (1� h · !(ky � ck2)) ky � ck2 +

4

3
Lh

= ky � ck2 � h!(ky � ck2)ky � ck2 +
4

3
Lh.

Note that 4
3Lh 

er
3p . Hence, if ky � ck2 

⇣
1� 1

3p

⌘
er, we know that ky0 � ck2  er. Otherwise if666

ky � ck2 �

⇣
1� 1

3p

⌘
er, we know that667

!(ky � ck2)ky � ck2 �
4L

erp+1

✓
1�

1

3p

◆p

erp+1
�

4

3
L

which implies ky0 � ck2  ky � ck2. Hence, in both cases, we have ky0 � ck2  er. This completes668

the induction.669

Finally, we need to bound the number of iterations before the algorithm terminates. Let L(y) :=670

g(y) + �(ky � ck2) where � is defined in (6). By Lemma 7, we have that671

r
2
L �

⇣
L

r
+

5L
p
d

er

⌘
· Id �

6L
p
d

er · Id

Hence, by smoothness we have672

L(y0)  L(y)� h hrL(y), �yi+ 3
L

er
p

d · h
2
k�yk

2
.

Note that �y = rL(y) + ⌘ for some vector ⌘ such that k⌘k2  L ·
"
6 by the approximation guarantee.673

Therefore674

L(y0)  L(y)� hkrL(y)k2 + hkrL(y)kk⌘k+ 3
L

er
p

dh
2(2krL(y)k2 + 2k⌘k2)

 L(y)�
7h

8
krL(y)k2 + hkrL(y)kk⌘k+

h

8
k⌘k

2

 L(y)�
7h

8
krL(y)k2 +

h

2
krL(y)k2 +

h

2
k⌘k

2 +
h

8
k⌘k

2

 L(y)�
7h

8

⇣
L ·

2"

3

⌘2
+

5h

8

⇣
L ·

"

6

⌘2

= L(y)�
h

3
L
2
"
2 = L(y)�

erL"2

144p
p
d

where we used that krL(y)k � k�yk � k⌘k � 2"
3 L from the stopping criteria. This shows that L675

decreased by erL"2

144p
p
d

every iteration. Since L has Lipschitz constant L+ 4L = 5L on ky � ck  er,676

max
ky�cker

L(y)� min
ky�cker

L(y)  10Ler.

Therefore the number of step is at most O(p
p
d

"2) and we have677

krg(y) + !(ky � ck2) · (y � c)k2 
L"

6
+

5"

6
L  L · "

23

as claimed.678

679

The above theorem shows that we can implement (1) a noisy gradient oracle with � = L·"
6 ; and (2)680

an optimization oracle with ↵ = 0 and � = L · ". Since by Theorem 24 we have kyk+1 � exkk  er,681

i.e., the output of the optimization oracle is bounded in a ball of radius er from the center, therefore682

gyk+1 := v(yk+1) as the vector field formed by sampling satisfies kgyk+1 � rg(yk+1)k 
�
6 ,683

justifying its validity as a noisy gradient oracle at yk+1.684

D.4 Parallel Complexity685

Here we show how to put everything together to prove Theorem 3, our main highly-parallel optimiza-686

tion result.687

Proof [Proof of Theorem 3] Invoking the result of Section B and following the discussion in688

Section D.1, with r = "p
dL

, we have er = rp
log(60

"0)
= "

L
p

d log(60
"0)

and since689

!(x) =
4Lxp

erp+1
=

4Lp+2
x
p[d log(60"0)]

p+1
2

"p+1
,

from Theorem 6 we have for �2

c = p2

c 
1
64 , the convergence rate to an "-optimal point as690

f(yk)� f
⇤ = O

⇣!(kx
⇤k

k3/2)

k2
kx

⇤
k
2
⌘
= O

⇣
L
p+2
kx

⇤
k
p[d log(1

"0)]
p+1
2

"p+1 · k2 · k
3p
2

kx
⇤
k
2
⌘

with O

⇣
d log d log(1

"0)+log(1
⇢)

"02 ⇥ K

⌘
(sub)gradient queries to f in parallel in each round for "0 =691

O("
kx⇤k·L), as required by the accuracy for which the optimization oracle is implemented in Theo-692

rem 6 and the number of proximal oracle calls the line search procedure needs where693

K
def
=
⇣
6+log2

h1500µ3
R

3
c
2[(1 + ↵)c+ 1]

"
!(8cµR)

i⌘2
= O

⇣
log2

h
L
p+2
kx

⇤
k
p+3[d log(1

"0)]
p+1
2

"p+2

i⌘
.

Setting the result to the desired accuracy ", we have that it suffices to pick k = K for694

K = O

⇣h
L
p+2

· kx
⇤
k
p+2
i 2

3p+4
·

h [d log(kx
⇤k·L
")]

p+1
2

"p+2

i 2
3p+4

⌘

= O

⇣h
L
p+2

· kx
⇤
k
p+2
i 2

3p+4
·

⇣
d

"2

⌘ p+1
3p+4

⇣1
"

⌘ 2
3p+4

·

h
log
⇣
kx

⇤
k · L

"

⌘i p+1
3p+4

⌘

Picking p such that log(d
"2) = 3(3p+ 4), end up with695

K = O

⇣⇣
d

"2

⌘ 1
3
·

⇣1
"

⌘ 1
log(d/"2)

· log
1
3

⇣1
"

⌘
·

⇣
log
⇣1
"

⌘⌘ 1
log(d/"2)

⌘

which is eO(d1/3"�2/3), as claimed. Setting ⇢ = O(⌫
K) for the algorithm to succeed with probability696

at least 1� ⌫, denote ⌘
def
= log(d

"2) the number of parallel (sub)gradient queries is697

O

⇣
d log d log(1") + log(d1/3"�2/3

/⌫)

"2
⇥K

⌘

= O

⇣
d log d log(1") + log(d1/3"�2/3

/⌫)

"2
⇥ log2

h [d log(1")]
p+1
2

"p+2

i⌘

= O

⇣
d log d log(1") + log(d1/3"�2/3

/⌫)

"2
⇥ log2

h [d log(1")]
1
18⌘�

1
6

"
1
9⌘+

2
3

i⌘

With the choice of p, it suffices to pick c large enough such that 81c
64 � (log(d

"2) � 12)2 for the698

assumption to hold.699

700

24

E Line Search Implementation701

In this section, we assume access to an (↵, �)-approximate !-proximal step oracle Tprox for a convex702

function g. The goal is to use Tprox to find a point y that satisfies Lemma 16, as required by the703

algorithm framework at each iteration. In particular, below is the assumption we are making and the704

main theorem we are going to prove, which we recall from Appendix B.705

Theorem 19 (Line Search Algorithm) Let g : Rd
! R be a twice differentiable function that is706

minimized at a point x
⇤
2 Rd

with kx
⇤
k  R. Further, let ! : R+ ! R+ be a continuously707

differentiable function where 0 < !
0(s)  �

!(s)
s for some fixed � � 1 and all s > 0. Further, let708

µ
def
= 8p

1�↵
and suppose709

�  min

⇢
"

µ ·R · 9c[(1 + ↵)c+ 1]
, 8µR · !(8µR)

�
and 64

✓
↵+

1

c

◆
�
2
 1 for some c � 1 .

Then for any inputs x
(1)

, x
(2)

with kx
(1)
k, kx

(2)
k  2µR,

1
2!(2µR)  A 

R2

" there is an algorithm710

that returns y and � such that ex = a
A+ax

(1) + A
A+ax

(2)
for a = �+

p
�2+4�A
2 that either satisfies711

g(y)  g
⇤ + " and !(ky � exk2) · ky � exk2  c · �

or, satisfies712

1

2
 � · !(ky � exk2)  1 , !(ky � exk2) · ky � exk2 > c · �,

and713

krg(y) + !(ky � exk2) · (y � ex)k  ↵ · !(ky � exk2) · ky � exk2 + �

after714

6 + log2

h⇣160µRc

�
+

9R2

"

⌘
· !(8cµR)

i

calls to the (↵, �)-approximate !-proximal step oracle Tprox for g.715

We assume � 
"0

µ·R to make sure the oracle gives out information for different x (and therefore we716

can achieve sufficiently small error). Furthermore, assume �  8µR · !(8µR). The reason is that if717

both x and y lie in a radius µR ball, ↵ · !(ky � xk2) · ky � xk2 is bounded by 2µR · !(2µR). So if718

� is much larger than this, the oracle essentially can always output the same y regardless of x.719

E.1 Line Search Algorithm720

To simplify the notation, we define ex✓
def
= (1� ✓)x(1) + ✓x

(2). Now, our goal is to find ✓ such that721

1

2
 ⇣(✓)  1 where ⇣(✓)

def
= �✓ · !(ky✓ � ex✓k2) (18)

for y✓ = Tprox(ex✓) and �✓ = (1�✓)2A
✓ .722

First, we note that ⇣(0) = +1 and ⇣(1) = 0 (or otherwise, we find an approximate minimizer).723

Lemma 25 We have either ⇣(0) = +1 or g(x(1))  g(x⇤) + "
0
. Moreover, we have ⇣(1) = 0.724

Proof By the definition of the (↵, �) proximal oracle, we have725

���rg(Tprox(x(1))) + !(kTprox(x
(1))� x

(1)
k) · (Tprox(x

(1))� x
(1))
���

 ↵ · !(kTprox(x
(1))� x

(1)
k) · kTprox(x

(1))� x
(1)
k+ �.

If kTprox(x(1))� x
(1)
k = 0, we have Tprox(x(1)) = x

(1) and hence krg(x(1))k  �. By convexity726

of g, we have that from Lemma 17727

g(x(1))  g(x⇤) + �kx
(1)
� x

⇤
k2  g(x⇤) + µ�R  g(x⇤) + "

0
.

25

where we used � 
"0

µ·R at the end. Otherwise, we have kTprox(x(1)) � x
(1)
k > 0 therefore728

⇣(0) = +1 and ⇣(1) = 0 from the definition.729

730

Therefore, to find ✓ such that ⇣(✓) = 3
4 , we can simply perform binary search. In particular, in731

log2(
1
⌧) iterations, we can find 0  `  u  1 with |` � u|  ⌧ such that ⇣(`) � 3

4 and ⇣(u) � 3
4732

have different signs. See Algorithm 4 for the algorithm details. The key question is how small ⌧ we733

need to make sure 1
2  ⇣(`+u

2)  1.734

The difficultly here is that ⇣ may not be continuous. Therefore, we cannot bound the Lipschitz735

constant of ⇣ directly. Different from previous papers [Bubeck et al., 2018], our proof does not736

depend on how we implement the proximal oracle Tprox and do not assume how Tprox(x) changes737

with respect to x. In fact, the oracle Tprox we constructed in Section D may not even give the same738

output for the same input. Therefore, it is difficult to bound how far Tprox(x) changes under the739

change of �. To avoid this problem, we first relate the noisy oracle Tprox with the ideal oracle with740

↵ = � = 0. We note that the ideal oracle is exactly performing a proximal step as follows:741

Lemma 26 (Exact Proximal Map) Given x, let y
⇤ := O(x) := argminy G(y) where742

G(y)
def
= g(y) +W (ky � xk2) with W (s)

def
=

Z s

0
!(u) · u du

then O is a (0, 0) proximal oracle for g. Furthermore, G is strictly convex with r
2
G(y) ⌫ !(ky �743

xk2) · I for any x.744

Proof From the optimality condition we have for y⇤ = O(x)745

rG(y⇤) = rg(y⇤) + !(ky⇤ � xk2) · (y
⇤
� x) = 0.

which means O is a (0, 0) proximal oracle according to the definition. Note that746

r
2
G(y) = r2

g(y) + !(ky � xk2)I + !
0(ky � xk2) ·

(y � x)(y � x)>

ky � xk2

⌫ !(ky � xk2)I

where we used g is convex and ! is increasing. Since G is strictly convex, this shows that y⇤ is the747

unique minimizer of G.748

749

In Section E.2, we show that ⇣ is close to some continuous function ⇣
⇤ (except for some cases that750

we can handle separately).751

E.2 Line Search Regime: Relation between Exact and Inexact Proximal Map752

The goal of this section is to relate753

⇣(✓)
def
=

(1� ✓)2A

✓
!(ky✓ � ex✓k2)

for y✓ = Tprox(ex✓) is output of an (↵, �) proximal oracle to754

⇣
⇤(✓) =

(1� ✓)2A

✓
!(ky⇤✓ � ex✓k2)

where y
⇤
✓ = argminy G✓(y) with755

G✓(y) = g(y) +W (ky � ex✓k2) , (19)

the exact proximal map. In particular, we will show in Lemma 28 that ⇣(✓) is an constant approxima-756

tion of ⇣⇤(✓). Therefore, one can study the binary search of ⇣ via ⇣
⇤.757

First we give a lemma that relates ky✓ � ex✓k2 and ky⇤✓ � ex✓k2.758

26

Algorithm 4: Line Search Algorithm

1 Input: x(1)
, x

(2)
2 Rd and 1

2!(2µR)  A 
R2

" .
2 Input: "0 = "

9c((1+↵)c+1) 2 (0, 1].
3 Input: an (↵, �) proximal oracle Tprox for a convex twice-differentiable function g.
4 Assumption: kx(1)

k2  2µR, kx(2)
k2  2µR, kx⇤

k2  R for some minimizer x⇤ of g.
5 Assumption: �  min{ "0

µ·R , 8µR · !(8µR)}. 0 < !
0(s)  �

!(s)
s for all s > 0. 1��

1�↵ = 1
2 .

64(↵+ 1
c)�

2
 1 for some c � 1.

6 Define ex✓ = (1� ✓)x(1) + ✓x
(2), y✓ = Tprox(ex✓) and ⇣(✓) according to (18).

7 Let ⌧ = min
n

1
4 ,

1
2

q
1
4

1
A·!(8cµR) ,

A�
64µR ,

c�
360µ�R·!(8cµR) ,

1
200(1+A·!(8cµR)+ 4µR

A� +µR
� ·!(8cµR))

o
.

8 Set ` = 0, u = 1.
9 while u � `+ ⌧ do

10 m = `+u
2 .

11 if ⇣(m) � 3
4 then

12 ` m.
13 else
14 u m.
15 end
16 end
17 if !(ky` � ex`k2) · ky` � ex`k2  c · � then
18 Return y` as an approximate minimizer.
19 else if !(kyu � exuk2) · kyu � exuk2  c · � then
20 Return yu as an approximate minimizer.
21 else
22 Return y` as an approximate solution for the line search.
23 end

Lemma 27 Assume that 8(↵+ 1
c)�  1. If !(ky✓ � ex✓k2) · ky✓ � ex✓k2 � c · �, then759

✓
1� 8

✓
↵+

1

c

◆
�

◆
ky✓ � ex✓k2  ky

⇤
✓ � ex✓k2 

✓
1 + 8

✓
↵+

1

c

◆
�

◆
ky✓ � ex✓k2.

Proof We define y
(t)
✓ = (1� t)y✓ + ty

⇤
✓ . Then, we have that760

rG✓(y
⇤
✓)�rG✓(y✓) =

Z 1

0
r

2
G✓(y

(t)
✓) · (y⇤✓ � y✓)dt. (20)

Lemma 26 shows that761

r
2
G✓(y

(t)
✓) ⌫ !(ky(t)✓ � ex✓k2) · I. (21)

To lower bound ky(t)✓ � ex✓k2, we split the proof into two cases:762

Case 1: ky✓ � y
⇤
✓k2 � 4ky✓ � ex✓k2. Since y

(t)
✓ = (1� t)y✓ + ty

⇤
✓ , then for t � 1

2 ,763

ky
(t)
✓ � ex✓k2 = ky✓ � ex✓ + t(y⇤✓ � y✓)k2

� tky
⇤
✓ � y✓k2 � ky✓ � ex✓k2

� ky✓ � ex✓k2.

Since ! is increasing, we have !(ky(t)✓ � ex✓k2) � !(ky✓ � ex✓k2). Together with (20) and (21), we764

have that765

krG✓(y✓)�rG✓(y
⇤
✓)k2 �

Z 1

1/2
!(ky✓ � ex✓k2)dt · ky✓ � y

⇤
✓k2

=
1

2
!(ky✓ � ex✓k2) · ky✓ � y

⇤
✓k2.

27

Case 2: ky✓ � y
⇤
✓k2  4ky✓ � ex✓k2. Since y

(t)
✓ = (1� t)y✓ + ty

⇤
✓ , we have766

ky
(t)
✓ � ex✓k2 � ky✓ � ex✓k2 � tky

⇤
✓ � y✓k2 � (1� 4t)ky✓ � ex✓k2.

Using this and !(⌘ · �)  ⌘
�
!(�) (which is implied by !

0(s)  �
!(s)
s from Grönwall’s inequality),767

for 0  t 
1
4 , we have that768

!(ky(t)✓ � ex✓k2) � (1� 4t)�!(ky✓ � ex✓k2).

Together with (20) and (21), we have that769

krG✓(y✓)�rG✓(y
⇤
✓)k2 �

Z 1/4

0
(1� 4t)�dt · !(ky✓ � ex✓k2) · ky✓ � y

⇤
✓k2

=
1

4(� + 1)
· !(ky✓ � ex✓k2) · ky✓ � y

⇤
✓k2. (22)

In both cases, we have (22) as � � 1.770

On the other hand, the assumption on y✓ shows that771

krG✓(y✓)�rG✓(y
⇤
✓)k2 = krG✓(y✓)k2  ↵ · !(ky✓ � ex✓k2) · ky✓ � ex✓k2 + �

 (↵+
1

c
) · !(ky✓ � ex✓k2) · ky✓ � ex✓k2 (23)

where we used the assumption on !(ky✓ � ex✓k2) · ky✓ � ex✓k2.772

Combining (22) and (23), we have that773

ky✓ � y
⇤
✓k2  4(↵+

1

c
)(� + 1) · ky✓ � ex✓k2  8(↵+

1

c
)� · ky✓ � ex✓k2

where we used that � � 1. The claim now follows from triangle inequality.774

775

Since ⇣ is only a function of ky✓ � ex✓k2, we have the following main result of this section:776

Lemma 28 If 64(↵+ 1
c)�

2
 1 and !(ky✓�ex✓k2)·ky✓�ex✓k2 � c·�, then

7
8⇣(✓)  ⇣

⇤(✓)  5
4⇣(✓).777

Proof Lemma 27 shows that778

(1� 8(↵+
1

c
)�)ky✓ � ex✓k2  ky

⇤
✓ � ex✓k2  (1 + 8(↵+

1

c
)�)ky✓ � ex✓k2.

Using ! is non-decreasing and !(⌘ · �)  ⌘
�
!(�), we have779

(1� 8(↵+
1

c
)�)�!(ky✓ � ex✓k2)  !(ky⇤✓ � ex✓k2)  (1 + 8(↵+

1

c
)�)�!(ky✓ � ex✓k2).

The result now follows from the assumption 64(↵+ 1
c)�

2
 1.780

781

E.3 Approximate Minimization Regime: when y✓ is close to ex✓782

In Section E.2, we show that if ky✓ � ex✓k2 is large, ⇣ approximates ⇣⇤ up to constant factor. In this783

section, we handle the other case. We show that if ky✓ � ex✓k2 is small, then we can find a y with784

small function value g(y). First, we show that ky✓ � ex✓k2 cannot be too large.785

Lemma 29 Assume that 16(↵+ 1
c)�  1. We have786

ky✓ � ex✓k2  8cµR

for all ✓ 2 [0, 1].787

28

Proof Case 1: !(ky✓ � ex✓k2) · ky✓ � ex✓k2 � c · �. Using this and 16(↵ + 1
c)�  1, Lemma 27788

shows that789

ky✓ � ex✓k2  2ky⇤✓ � ex✓k2. (24)

To upper bound ky⇤✓ � ex✓k2, we use the fact that y⇤✓ is the minimizer of G✓ and get790

g(x⇤) +W (kx⇤
� ex✓k2) = G✓(x

⇤) � G✓(y
⇤
✓) � g(x⇤) +W (ky⇤✓ � ex✓k2).

Since W is increasing, we have ky⇤✓ � ex✓k2  kx
⇤
� ex✓k2  µR where we used Lemma 17. Putting791

it into (24) gives the result.792

Case 2: !(ky✓ � ex✓k2) · ky✓ � ex✓k2  c · �. Since �  8µR · !(8µR) and that ! is increasing, we793

have that794

ky✓ � ex✓k2  8cµR.

Therefore in both cases we have ky✓ � ex✓k2  8cµR as c � 1.795

796

Now, we show that small ky✓ � ex✓k2 implies small g(y✓).797

Lemma 30 If !(ky✓ � ex✓k2) · ky✓ � ex✓k2  c · �, we have that798

g(y✓)  g(x⇤) + ".

Proof By the definition of y✓ and the assumption, we have799

krg(y✓)k2  (1 + ↵)!(ky✓ � ex✓k2) · ky✓ � ex✓k2 + �  ((1 + ↵)c+ 1)� (25)

Hence, convexity of g shows that800

g(y✓)� g(x⇤)  hrg(y✓), y✓ � x
⇤
i  ((1 + ↵)c+ 1)�ky✓ � x

⇤
k2.

To bound ky✓ � x
⇤
k2, we note that801

ky✓ � x
⇤
k2  kex✓ � x

⇤
k2 + ky✓ � ex✓k2  µR+ 8cµR  9cµR

where we used Lemma 29 and Lemma 17. Hence, convexity of g shows that802

g(y✓)� g(x⇤)  hrg(y✓), y✓ � x
⇤
i  ((1 + ↵)c+ 1)� · 9cµR  9c((1 + ↵)c+ 1)"0 .

where we used � 
"0

µ·R .803

804

E.4 Bounding Lipschitz constant of ⇣⇤(✓)805

To derive the stopping criteria ⌧ (and therefore the iteration complexity), we need to bound the806

Lipschitz constant of ⇣⇤(✓). We first give an upper bound on k d
d✓ (y

⇤
✓ � ex✓)k.807

Lemma 31 We have:808 ����
d

d✓
(y⇤✓ � ex✓)

����  12µ�R.

Proof To compute the derivative of y✓, we note by optimality condition that809

rG✓(y
⇤
✓) = 0.

Taking derivatives with respect to ✓ on both sides gives810

d

d✓
rG✓(y

⇤
✓) +r

2
G✓(y

⇤
✓) ·

d

d✓
y
⇤
✓ = 0.

Hence, we have811

d

d✓
y
⇤
✓ = �

�
r

2
G✓(y

⇤
✓)
��1

✓
(
d

d✓
rG✓)(y

⇤
✓)

◆
. (26)

29

To bound d
d✓y

⇤
✓ , we first compute d

d✓rG✓(y) and r2
G✓(y). For d

d✓rG✓(y), we have812

d

d✓
rG✓(y) =

d

d✓
[!(ky � ex✓k2) · (y � ex✓)]

= �!0(ky � ex✓k2) ·
(y � ex✓)(y � ex✓)>

ky � ex✓k2
(x(2)

� x
(1))� !(ky � ex✓k2) · (x

(2)
� x

(1)).

For r2
G✓(y), Lemma 26 shows that813

r
2
G✓(y) ⌫ !(ky � ex✓k2) · I.

Now, (26) shows814

k
d

d✓
y
⇤
✓k 


!
0(ky⇤✓ � ex✓k2)

!(ky✓ � ex✓k2)
·

���(y⇤✓ � ex✓)
>(x(2)

� x
(1))
���+ kx(2)

� x
(1)
k2

�


!
0(ky⇤✓ � ex✓k2)

!(ky⇤✓ � ex✓k2)
· ky

⇤
✓ � ex✓k · kx

(2)
� x

(1)
k+ kx(2)

� x
(1)
k2

 (1 + �) · kx(2)
� x

(1)
k2

where we used that !0(s)  � ·
!(s)
s at the end. Hence, we have815

k
d

d✓
(y⇤✓ � ex✓)k  k

d

d✓
y
⇤
✓k+ kx

(2)
� x

(1)
k  (2 + �)kx(2)

� x
(1)
k2.

The result follows from � � 1 and kx(2)
� x

(1)
k2  4µR.816

817

We now give a bound on the Lipschitz constant ⇣⇤(✓).818

Lemma 32 We have819 ����
d

d✓
log ⇣⇤(✓)

���� 
2

1� ✓
+

1

✓
+

12µ�2
R

ky⇤✓ � ex✓k2
.

Proof Note that820

d

d✓
log ⇣⇤(✓) = �

2

1� ✓
�

1

✓
+

!
0(ky⇤✓ � ex✓k2)

!(ky⇤✓ � ex✓k2)

(y⇤✓ � ex✓)>
d
d✓ (y

⇤
✓ � ex✓)

ky⇤✓ � ex✓k2
.

Using !
0(s)  � ·

!(s)
s , we have821

����
d

d✓
log ⇣⇤(✓)

���� 
2

1� ✓
+

1

✓
+ �

��(y⇤✓ � ex✓)>
d
d✓ (y

⇤
✓ � ex✓)

��
ky⇤✓ � ex✓k

2
2


2

1� ✓
+

1

✓
+ �
k

d
d✓ (y

⇤
✓ � ex✓)k2

ky⇤✓ � ex✓k2


2

1� ✓
+

1

✓
+

12µ�2
R

ky⇤✓ � ex✓k2

from Lemma 31.822

823

Since the Lipschitz constant of ⇣⇤ depends on the term 1
1�✓ and 1

✓ , we need to show that ✓ cannot be824

too close to 0 and 1. First, we give an upper bound ✓.825

Lemma 33 (Upper bound on ✓) Assume that 16(↵ + 1
c)�  1. For any ✓ 2 [0, 1] with

1
2  ⇣(✓),826

we have827

✓  max

1

2
, 1�

s
1

4

1

A · !(8cµR)

!

In particular, we have u  max
⇣

3
4 , 1�

1
2

q
1
4

1
A·!(8cµR)

⌘
.828

30

Proof Suppose that ✓ � 1
2 , then we have829

1

2
 ⇣(✓) =

(1� ✓)2A

✓
!(ky✓ � ex✓k2)  2(1� ✓)2A!(ky✓ � ex✓k2).

The bound on ✓ now follows from Lemma 29. Since we stop the binary search when |u� `| less than830

1
2 min

⇣
1
2 ,

q
1
4

1
A·!(8cµR)

⌘
, we have the upper bound on u.831

Next, we give a lower bound on ✓.832

Lemma 34 (Lower bound on ✓) Assume 16(↵ + 1
c)�  1. For any ✓ 2 [0, 1] with ⇣(✓)  1 and833

!(ky✓ � ex✓k2) · ky✓ � ex✓k2 � c · �, we have834

✓ � min
⇣1
2
,

A�

32µR

⌘
.

In particular, we have ` � min
⇣

1
4 ,

A�
64µR

⌘
or !(ky✓ � ex✓k2) · ky✓ � ex✓k2  c · �.835

Proof Suppose that ✓  1
2 , then we have from the assumption836

1 � ⇣(✓) =
(1� ✓)2A

✓
!(ky✓ � ex✓k2).

�
1

4
·
A

✓
!(ky✓ � ex✓k2)

�
1

4
·
A

✓

c�

ky✓ � ex✓k2

�
1

4
·
A

✓

c�

8cµR

where we used Lemma 29. This gives the lower bound on ✓. Since we stop the binary search when837

|u� `| less than 1
2 min

⇣
1
2 ,

A�
32µR

⌘
, we have the lower bound on `.838

839

Now, we are ready to show the correctness of Algorithm 4 with the assumed ⌧ .840

Theorem 35 (Correctness of Algorithm) Assume 64(↵+ 1
c)�

2
 1. Algorithm 4 outputs either y841

such that842

g(y)  g
⇤ + "

or y = y✓ such that843

1

2
 ⇣(✓)  1

with844

krg(y✓) + !(ky✓ � ex✓k2) · (y✓ � ex✓)k  ↵ · !(ky✓ � ex✓k2) · ky✓ � ex✓k2 + �

where � 
1
c!(ky✓ � ex✓k2) · ky✓ � ex✓k2.845

Proof For the case !(ky` � ex`k2) · ky` � ex`k2  c · � and !(kyu � exuk2) · kyu � exuk2  c · �,846

Lemma 30 shows that g(y)  g
⇤ + ".847

Otherwise, Lemma 33 and Lemma 34 show that848

` � min

⇢
1

4
,

A�

64µR

�
(27)

and849

u  max

(
3

4
, 1�

1

2

s
1

4

1

A · !(8cµR)

)
. (28)

31

Therefore, together with Lemma 32 we have850

����
d

d✓
log ⇣⇤(✓)

���� 
2

1� ✓
+

1

✓
+

12µ�2
R

ky⇤✓ � ex✓k2

 12 + 4
p
4A · !(8cµR) +

64µR

A�
+

12µ�2
R

ky⇤✓ � ex✓k2
(29)

for all `  ✓  u. To bound the term ky⇤✓ � ex✓k2, note from Lemma 28 we have851

8

7
ky

⇤
u � exuk2 � kyu � exuk2 �

c�

!(kyu � exuk2)
. (30)

Using 3
4 � ⇣(u) (due to binary search), we have852

3

4
� ⇣(u) =

(1� u)2A

u
!(kyu � exuk2) � (1� u)2A!(kyu � exuk2).

Putting it into (30) gives853

ky
⇤
u � exuk2 �

28c�(1� u)2A

24
�

7c�A

6

1

16A · !(8cµR)
�

c�

15 · !(8cµR)

where we used (28) for the last inequality. Lemma 31 shows that854

����
d

d✓
(y⇤✓ � ex✓)

����  12µ�R.

Since we have from the stopping criteria ⌧ = |u� `| 
c�

360µ�R·!(8cµR) , for all `  ✓  u, this gives855

ky
⇤
✓ � ex✓k2 � ky

⇤
u � exuk2 � 12µ�R · ⌧ �

c�

30!(8cµR)
.

Put together with (29) we have856

����
d

d✓
log ⇣⇤(✓)

����  12 + 8
p
A · !(8cµR) +

64µR

A�
+

360µ�2
R!(8cµR)

c�

 20 + 20A · !(8cµR) +
64µR

A�
+

6µR!(8cµR)

�

 20

✓
1 +A · !(8cµR) +

4µR

A�
+

µR

�
· !(8cµR)

◆

where we used 64(↵ + 1
c)�

2
 1 and ↵  1. Due to the choice of ⌧ 857

1
200(1+A·!(8cµR)+ 4µR

A� +µR
� ·!(8cµR))

, this shows that ⇣⇤(`)  e
1
10 ⇣

⇤(u). Now, using Lemma 28,858

we have859

⇣(`) 
8

7
⇣
⇤(`) 

8

7
e

1
10 ⇣

⇤(u) 
8

7
e

1
10
5

4
· ⇣(u) 

8

7
e

1
10
5

4

3

4
 1.

Moreover, by the definition of binary search, we know ⇣(`) � 3
4 . This completes the proof that we860

have found a point satisfying 1
2  ⇣(✓)  1.861

862

E.5 Bounding the number of steps863

To bound the number of steps, we need to have a lower and upper bound on A. We note that when864

we apply the line search procedure, we have A = Ak at iteration k. Furthermore, we assume k � 1865

because no line search is needed for k = 0. Under the assumption, we have 1
2!(2µR)  A 

R2

" .866

Below we give the proof of the main theorem for the line search implementation.867

32

Proof [Proof of Theorem 19] Recall from the algorithm description, we set868

1

⌧
 4 + 2

p
4A · !(8cµR) +

64µR

A�
+

360µ�R · !(8cµR)

c�

+ 200

✓
1 +A · !(8cµR) +

4µR

A�
+

µR

�
· !(8cµR)

◆

 300

✓
1 +A · !(8cµR) +

4µR

A�
+

µR

�
· !(8cµR)

◆

where we used 16(↵+ 1
c)�  1. Now using 1

2!(2µR)  A 
R2

" from the assumption we get869

1

⌧
 300

✓
1 +

⇣
R

2

"
+

9µR

�

⌘
· !(8cµR)

◆

 40
h160µRc

�
+

9R2

"

i
· !(8cµR)

where we used �  8µR · !(8µR) at the end. Putting together with Theorem 35 yields the result.870

871

33

	Introduction
	Classical optimality results
	Optimality for highly parallel algorithms
	Related works

	Lower bound
	The classical argument
	The basic parallel argument
	The wall function
	Building the wall

	Upper bound
	Acceleration Framework
	Highly Parallel Optimization

	Further details on the lower bound
	Acceleration with Approximate Proximal Step Oracles
	Framework
	Leveraging Approximate Proximal Step Oracle
	Putting It All Together

	Applications
	Upper Bound
	Gaussian Convolution for Approximation
	Noisy Gradient Oracle: Sampling
	Approximate Proximal Step Oracle Implementation
	Parallel Complexity

	Line Search Implementation
	Line Search Algorithm
	Line Search Regime: Relation between Exact and Inexact Proximal Map
	Approximate Minimization Regime: when y is close to x"0365x
	Bounding Lipschitz constant of *()
	Bounding the number of steps

