
Private Stochastic Convex Optimization with Optimal Rates

Abstract

We study the differentially private analogue of the classical stochastic convex optimization problem,
where we wish to approximately minimize the expected loss over a distribution of convex and Lipschitz
loss functions, given access to samples from the the distribution. We present algorithms that achieve
optimal rates and are computationally efficient. Our work builds on the long line of work on the empirical
versions of this question, the Differentially Private Empirical Risk Minimization problem (DP-ERM).
Previous attempts to derive population risk bounds have yielded suboptimal results and the correct rate
was previously unknown. By drawing on the connection with algorithmic stability, we show that up to
logarithmic factors, the optimal private population risk is equal to the larger of the optimal non-private
population risk, and the optimal private empirical risk. This implies that, contrary to intuition based
on private ERM, private SCO has asymptotically the same rate of 1/

√
n as non-private SCO in the

parameter regime most common in practice.

1 Introduction

Many fundamental problems in machine learning reduce to the problem of minimizing the expected loss
(a.k.a. population loss) L(w) = E

z∼D
[`(w, z)] for convex loss functions of w given access to samples

z1, . . . , zn from the data distributionD. This problem arises in various settings, such as estimating the mean
of a distribution, least squares regression, or minimizing a convex surrogate loss for a classification problem.
This problem is commonly referred to as Stochastic Convex Optimization (SCO) and has been the subject of
extensive study in machine learning and optimization [SSBD14]. In this work we study this problem with
the additional constraint of differential privacy.

A closely related problem is that of minimizing the loss L̂(w) = 1
n

∑
i `(w, zi) on the sampled set of

functions, often known as Empirical Risk Minimization (ERM). The problem of private ERM has been well-
studied and tight upper and lower bounds are known for private ERM. At first glance these two problems
may appear to be essentially the same as an optimal algorithm for minimizing the empirical risk should also
achieve the best bounds for the population risk itself, i.e. the best approach to private SCO is to use the best
private ERM.

This simple intuition is unfortunately false, even in the non-private case. A natural approach of bounding
the population loss is by proving an upper bound on E

z1,...,zn

[
supw(L(w)− L̂(w))

]
. This is known as

uniform convergence. There are examples of distributions over losses where uniform convergence based
bounds are provably sub-optimal. For example, for convex Lipschitz losses in d-dimensional Euclidean
space, the best bound on the population loss achievable via uniform convergence is Ω(

√
d/n) [Fel16]. In

contrast, SGD is known to achieve excess loss of O(
√

1
n) which is independent of the dimension.

As a result, in the high-dimensional settings often considered in modern ML the case (when n = Θ(d)),

the optimal achievable excess loss is O(
√

1
n), whereas the uniform convergence bound is Ω(1).
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This discrepancy implies that using private ERM and appealing to uniform convergence will not lead to
optimal bounds for private SCO. The first work to address the population loss for private SCO is [BST14]
which gives bounds based on several natural approaches. Their first approach is to use the generaliza-
tion properties of differential privacy itself to bound the gap between the empirical and population losses
[DFH+15, BNS+16], and thus derive bounds for SCO from bounds on ERM. This approach leads to a

suboptimal bound for private SCO (specifically1, ≈ max

(
d
1
4√
n
,
√
d

εn

)
[BST14, Sec. F]). For the important

case of d being on the order of n and ε being on the order of one this results in Ω(n−
1
4 ) bound on excess

population loss. Their second approach uses stability induced by regularizing the empirical loss before it
is minimized via a private ERM algorithm for strongly convex losses. This technique also yields a subop-

timal bound on the excess population loss ≈ d
1
4√
ε n

. Finally, they note that for some simple subclasses of
convex functions such as Generalized Linear Models, uniform convergence bounds on the order of 1/

√
n

are known [KST08] and therefore optimal bounds for private SCO are implied by optimal bounds on private
ERM [JT14, BST14].

There are two natural lower bounds that apply to private SCO. Naturally, it cannot achieve better bounds

than non-private SCO, that is the excess loss is Ω(
√

1
n). Further it is not hard to show that lower bounds for

private ERM translate to essentially the same lower bound for private SCO, leading to a lower bound of the
form Ω(

√
d

εn ). We give complete argument for the lower bound in Appendix C .
In this work, we address the question:

What is the optimal rate for the excess loss of private SCO? Is the rate of O
(√

1
n +

√
d

εn

)
achievable?

1.1 Our contribution

We show that the optimal rate of O
(√

1
n +

√
d

εn

)
is achievable. In particular, we obtain the statistically

optimal rate of O(1/
√
n) whenever d = O(n). This is in contrast to the situation for private ERM where

the cost of privacy grows with the dimension for all n.
In fact, under relatively mild smoothness assumptions, it is achieved by a variant of the standard noisy

mini-batch SGD. The parameters of the scheme need to be tuned carefully to satisfy a delicate balance. The
classical analyses for non-private SCO depend crucially on making only one pass over the dataset. However,
a single pass noisy SGD is not sufficiently accurate as we need a non-trivial amount of noise in each step to
carry out the privacy analysis. We rely instead on a different approach to generalization, known as uniform
stability [BE02]. The stability parameter degrades with the number of passes over the dataset [HRS15,
FV19], while the empirical accuracy improves as we make more passes. We show that ≈ max(

√
n,
√
d)

passes are sufficient to get a good enough approximation to the ERM, while still ensuring sufficient uniform
stability to bound the population objective. We also need to choose the batch size carefully since privacy
amplification by subsampling technique used in prior works [BST14] does not cover the desired range of ε
when few steps of SGD are taken.

Our second contribution is to show that the smoothness assumptions can be relaxed at essentially no
additional loss. We use a general smoothing technique based on the Moreau-Yosida envelope operator that
ends up giving the exact result we need to not change the asymptotic bounds. This operator cannot be im-
plemented efficiently in general, but for algorithms based on gradient steps we exploit the well-known con-

1In this Introduction, we will primarily be concerned with the dependence on d and n, and on (ε, δ)-DP. We therefore suppress
the dependence on δ as well as on parameters of the loss function such as Lipschitz constant and the constraint set diameter.

2



nection between the gradient step on the smoothed function and the proximal step on the original function.
Thus our algorithm effectively becomes the (stochastic, noisy, mini-batch) proximal descent. Importantly,
we show that our analysis in the smooth case is robust to inaccuracies in the computation of the gradient.
This allows us to show that sufficient approximation to the proximal steps can be implemented in polynomial
time given access to gradient of the `(w, zi)’s.

Finally, we show that Objective Perturbation [CMS11, KST12] also achieves optimal bounds for private
SCO. However, objective perturbation is only known to satisfy privacy under some additional assumptions
(most notably, Hessian being rank 1 on all points in the domain). The generalization analysis in this case is
based on the uniform stability of the solution to strongly convex ERM. Aside from extending the analysis of
this approach to population loss, we show that it can lead to algorithms for private SCO that use only near-
linear number of gradient evaluations (whenever these assumptions hold). In particular, we give a variant
of objective perturbation in conjunction with the stochastic variance reduced gradient descent (SVRG) with
only O(n log n) gradient evaluations. We remark that the known lower bounds for uniform convergence
[Fel16] hold even under those additional assumptions invoked in objective perturbation. Finding algorithms
with near-linear running time in the general setting of SCO is a natural avenue for future research.

Our work highlights the importance of uniform stability as a tool for analysis of this important class of
problems. We believe it should have applications to other differentially private statistical analyses.

Related work: Differentially private empirical risk minimization (ERM) is a well-studied area spanning
over a decade [CM08, CMS11, JKT12, KST12, ST13, SCS13, DJW13, Ull15, JT14, BST14, TTZ15,
STU17, WLK+17, WYX17, INS+19]. Aside from [BST14] and work in the local model of DP [DJW13]
these works focus on achieving optimal empirical risk bounds under privacy. Our works builds heavily on
algorithms and analyses developed in this line of work while contributing additional insights.

2 Preliminaries

Notation: We useW ⊂ Rd to denote the parameter space, which is assumed to be a convex, compact set.
We denote by M = max

w∈W
‖w‖ the L2 diameter ofW . We use Z to denote an arbitrary data universe and D

to denote an arbitrary distribution over Z . We let ` : Rd ×Z → R be a loss function that takes a parameter
vector w ∈ W and a data point z ∈ Z as inputs and outputs a real value.

Empirical loss: The empirical loss of w ∈ W w.r.t. loss ` and dataset S = (z1, . . . , zn) is defined as
L̂(w; S) , 1

n

∑n
i=1 `(w, zi). The excess empirical loss of w is defined as L̂(w; S)− min

w̃∈W
L̂ (w̃; S) .

Population loss: The population loss of w ∈ W with respect to a loss ` and a distribution D over Z , is de-
fined asL(w;D) , E

z∼D
[`(w, z)] . The excess population loss of w is defined asL(w; D)−min

w̃∈W
L(w̃; D).

Definition 2.1 (Uniform stability). Let α > 0. A (randomized) algorithm A : Zn → W is α-uniformly
stable (w.r.t. loss ` :W ×Z → R) if for any pair S, S′ ∈ Zn differing in at most one data point, we have

sup
z∈Z

E
A

[
` (A(S), z)− `

(
A(S′), z

)]
≤ α

where the expectation is taken only over the internal randomness of A.

The following is a useful implication of uniform stability.
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Lemma 2.2 (See, e.g., [SSBD14]). Let A : Zn → W be an α-uniformly stable algorithm w.r.t. loss
` :W ×Z → R. Let D be any distribution over Z , and let S ∼ Dn. Then,

E
S∼Dn,A

[
L (A(S); D)− L̂ (A(S); S)

]
≤ α.

Definition 2.3 (Smooth function). Let β > 0. A differentiable function f : Rd → R is β-smooth if for every
w,v ∈ Rd, we have

f(v) ≤ f(w) + 〈∇f(w),v −w〉+ β ‖w − v‖2.

In the sequel, whenever we attribute a property (e.g., convexity, Lipschitz property, smoothness, etc.) to
a loss function `, we mean that for every data point z ∈ Z, the loss `(·, z) possesses that property.

Stochastic Convex Optimization (SCO): Let D be an arbitrary (unknown) distribution over Z , and S =
{z1, . . . , zn} be a sample of i.i.d. draws fromD. Let ` :W×Z → R be a convex loss function. A (possibly
randomized) algorithm for SCO uses the sample S to generate an (approximate) minimizer ŵS for L(·; D).
We measure the accuracy of A by the expected excess population loss of its output parameter ŵS , defined
as:

∆L (A; D) , E
[
L(ŵS ; D)− min

w∈W
L(w; D)

]
,

where the expectation is taken over the choice of S ∼ Dn, and any internal randomness in A.

Differential privacy [DMNS06, DKM+06]: A randomized algorithm A is (ε, δ)-differentially private if,
for any pair of datasets S and S′ differ in exactly one data point, and for all events O in the output range of
A, we have

P [A(S) ∈ O] ≤ eε · P
[
A(S′) ∈ O

]
+ δ,

where the probability is taken over the random coins of A. For meaningful privacy guarantees, the typical
settings of the privacy parameters are ε < 1 and δ � 1/n.

Private Stochastic Convex Optimization (PSCO): An (ε, δ)-PSCO algorithm is a SCO algorithm that
satisfies (ε, δ)-differential privacy. Our goal is to provide (ε, δ)-PSCO algorithms that attain the optimal
excess population loss among all (ε, δ)-PSCO algorithms.

3 Private SCO via Mini-batch Noisy SGD

In this section, we consider the setting where the loss ` is convex, Lipschitz, and smooth. We give a
technique that is based on a mini-batch variant of Noisy Stochastic Gradient Descent (NSGD) algorithm
[BST14, ACG+16].

Theorem 3.1 (Privacy guarantee of ANSGD). Algorithm 1 is (ε, δ)-differentially private.

Proof. The proof follows from [ACG+16, Theorem 1], which gives a tight privacy analysis for mini-batch
NSGD via the Moments Accountant technique and privacy amplification via sampling. We note that the
setting of the mini-batch size in Step 2 of Algorithm 1 satisfies the condition in [ACG+16, Theorem 1] (we
obtain here an explicit value for the universal constants in the aforementioned theorem in that reference).
We also note that the setting of the Gaussian noise in [ACG+16] is not normalized by the mini-batch size,
and hence the noise variance reported in [ACG+16, Theorem 1] is larger than our setting of σ2 by a factor
of m2.
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Algorithm 1 ANSGD: Mini-batch noisy SGD for convex, smooth losses
Input: Private dataset: S = (z1, . . . , zn) ∈ Zn, L-Lipschitz, β-smooth, convex loss function `, convex set
W ⊆ Rd, step size η, mini-batch size m, # iterations T , privacy parameters ε ≤ 1, δ ≤ 1/n2.

1: Set noise variance σ2 := 8T L2 log(1/δ)
n2ε2

.
2: Set mini-batch size m := max

(
n
√

ε
4T , 1

)
.

3: Choose arbitrary initial point w0 ∈ W.
4: for t = 0 to T − 1 do
5: Sample a batch Bt = {zi(t,1) , . . . , zi(t,m)

} ← S uniformly with replacement.

6: wt+1 := ProjW

(
wt − η ·

(
1
m

∑m
j=1∇`(wt, zi(t,j)) + Gt

))
, where ProjW denotes the Euclidean

projection ontoW , and Gt ∼ N
(
0, σ2Id

)
drawn independently each iteration.

7: return wT = 1
T

∑T
t=1wt

The population loss attained by ANSGD is given by the next theorem.

Theorem 3.2 (Excess population loss of ANSGD). Let D be any distribution over Z, and let S ∼ Dn.

Suppose β ≤ L
M ·min

(√
n
4 ,

ε n

8
√
d log(1/δ)

)
. Let T = min

(
n
8 ,

ε2 n2

32 d log(1/δ)

)
and η = M

L
√
T

. Then,

∆L (ANSGD; D) ≤ 10M L ·max

(√
d log(1/δ)

ε n
,

1√
n

)
Before proving the above theorem, we first state and prove the following useful lemmas.

Lemma 3.3. Let S ∈ Zn. Suppose the parameter set W is convex and M -bounded. For any η > 0, the
excess empirical loss of ANSGD satisfies

E
[
L̂(wT ;S)

]
− min

w∈W
L̂(w;S) ≤ M2

2 η T
+
η L2

2

(
16
T d log(1/δ)

n2 ε2
+ 1

)
where the expectation is taken with respect to the choice of the mini-batch (step 5) and the independent
Gaussian noise vectors G1, . . . ,GT .

Proof. The proof follows from the classical analysis of the stochastic oracle model (see, e.g., [SSBD14])..
In particular, we can show that

E
[
L̂(wT ;S)

]
− min

w∈W
L̂(w;S) ≤ M2

2 η T
+
η L2

2
+ η σ2 d,

where the last term captures the additional empirical error due to privacy. The statement now follows from
the setting of σ2 in Algorithm 1.

The following lemma is a simple extension of the results on uniform stability of GD methods that
appeared in [HRS15] and [FV19, Lemma 4.3] to the case of mini-batch noisy SGD. For completeness, we
provide a proof in Appendix A.

Lemma 3.4. In ANSGD, suppose η ≤ 1
β , where β is the smoothness parameter of `. Then, ANSGD is

α-uniformly stable with α = 2L2 T η
n .
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Proof of Theorem 3.2

By Lemma 2.2, α-uniform stability implies that the expected generalization error is bounded by α. Hence,
by combining Lemma 3.3 with Lemma 3.4, we have

E
S∼Dn, ANSGD

[L(wT ; D)]− min
w∈W

L(w; D) ≤ E
S∼Dn, ANSGD

[
L̂(wT ;S)

]
− min

w∈W
L(w; D) + 2L2 η T

n

≤ E
S∼Dn, ANSGD

[
L̂(wT ;S)− min

w∈W
L̂(w;S)

]
+ 2L2 η T

n
(1)

≤ M2

2 η T
+
η L2

2

(
16

T d

n2 ε2
+ 1

)
+ 2L2 η T

n

where (1) follows from the fact that E
S∼Dn

[
min
w∈W

L̂(w;S)

]
≤ min

w∈W
E

S∼Dn

[
L̂(w;S)

]
= min

w∈W
L(w; D).

Optimizing the above bound in η and T yields the values in the theorem statement for these parameters, as
well as the stated bound on the excess population loss.

4 Private SCO for Non-smooth Losses

In this section, we consider the setting where the convex loss is non-smooth. First, we show a generic re-
duction to the smooth case by employing the smoothing technique known as Moreau-Yosida regularization
(a.k.a. Moreau envelope smoothing) [Nes05]. Given an appropriately smoothed version of the loss, we ob-
tain the optimal population loss w.r.t. the original non-smooth loss function. Computing the smoothed loss
via this technique is generally computationally inefficient. Hence, we move on to describe a computation-
ally efficient algorithm for the non-smooth case with essentially optimal population loss. Our construction
is based on an adaptation of our noisy SGD algorithm ANSGD (Algorithm 1) that exploits some useful
properties of Moreau-Yosida smoothing technique that stem from its connection to proximal operations.

Definition 4.1 (Moreau envelope). Let f : W → Rd be a convex function, and β > 0. The β-Moreau
envelope of f is a function fβ :W → Rd defined as

fβ(w) = min
v∈W

(
f(v) +

β

2
‖w − v‖2

)
, w ∈ W.

Moreau envelope has direct connection with the proximal operator of a function defined below.

Definition 4.2 (Proximal operator). The prox operator of f :W → Rd is defined as

proxf (w) = arg min
v∈W

(
f(v) +

1

2
‖w − v‖2

)
, w ∈ W.

It follows that the Moreau envelope fβ can be written as

fβ(w) = f
(
proxf/β (w)

)
+
β

2
‖w − proxf/β (w) ‖2.

The following lemma states some useful, known properties of Moreau envelope.

Lemma 4.3 (See [Nes05, Can11]). Let f :W → Rd be a convex, L-Lipschitz function, and let β > 0. The
β-Moreau envelope fβ satisfies the following:
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1. fβ is convex, 2L-Lipschitz, and β-smooth.

2. ∀w ∈ W fβ(w) ≤ f(w) ≤ fβ(w) + L2

2β .

3. ∀w ∈ W ∇fβ(w) = β
(
w − proxf/β(w)

)
.

The convexity and β-smoothness together with properties 2 and 3 are fairly standard and the proof can
be found in the aforementioned references. The fact that fβ is 2L-Lipschitz follows easily from property 3.
We include the proof of this fact in Appendix B for completeness.

Let ` :W×Z → R be a convex, L-Lipschitz loss. For any z ∈ Z, let `β(·, z) denote the β-Moreau enve-
lope of `(·, z). For a dataset S = (z1, . . . , zn) ∈ Zn, let L̂β(·; S) , 1

n

∑n
i=1 `β(·, zi) be the empirical risk

w.r.t. the β-smoothed loss. For any distribution D, let Lβ(·;D) , E
z∼D

[`(·, z)] denote the corresponding

population loss. The following theorem asserts that, with an appropriate setting for β, running ANSGD over
the β-smoothed losses `β(·, zi), i ∈ [n] yields the optimal population loss w.r.t. the original non-smooth
loss `.

Theorem 4.4 (Excess population loss for non-smooth losses via smoothing). Let D be any distribution

over Z . Let S = (z1, . . . , zn) ∼ Dn. Let β = L
M · min

(√
n
4 ,

ε n

8
√
d log(1/δ)

)
. Suppose we run ANSGD

(Algorithm 1) over the β-smoothed version of ` associated with the points in S: {`β(·, zi), i ∈ [n]}. Let η
and T be set as in Theorem 3.2. Then, the excess population loss of the output of ANSGD w.r.t. ` satisfies

∆L (ANSGD;D) ≤ 24M L ·max

(√
d log(1/δ)

ε n
,

1√
n

)
Proof. Let wT be the output of ANSGD. Using property 1 of Lemma 4.3 together with Theorem 3.2, we
have

E
S∼Dn,ANSGD

[Lβ(wT ;D)]− min
w∈W

Lβ(w; D) ≤ 20M L ·max

(√
d log(1/δ)

ε n
,

1√
n

)
.

Now, by property 2 of Lemma 2 and the setting of β in the theorem statement, for every w ∈ W , we have

Lβ(w; D) ≤ L(w; D) ≤ Lβ(w; D) + 2M L ·max

(
1√
n
,

2
√
d log(1/δ)

ε n

)
.

Putting these together gives the stated result.

Computationally efficient algorithm AProxGD (NSGD + Prox)

Computing the Moreau envelope of a function is computationally inefficient in general. However, by prop-
erty 3 of Lemma 4.3, we note that evaluating the gradient of Moreau envelope at any point can be attained by
evaluating the proximal operator of the function at that point. Evaluating the proximal operator is equivalent
to minimizing a strongly convex function (see Definition 4.2). This can be approximated efficiently, e.g.,
via gradient descent. Since our ANSGD algorithm (Algorithm 1) requires only sufficiently accurate gradient
evaluations, we can hence use an efficient, approximate proximal operator to approximate the gradient of
the smoothed losses. The gradient evaluations inANSGD will thus be replaced with such approximate gradi-
ents evaluated via the approximate proximal operator. The resulting algorithm, referred to as AProxGD, will
approximately minimize the smoothed empirical loss without actually computing the smoothed losses.
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Definition 4.5 (Approximate prox operator). We say that p̂roxf is an ξ-approximate proximal operator of
proxf for a function f :W → R if ∀w ∈ W, ‖p̂roxf (w)− proxf (w)‖ ≤ ξ.

Fact 4.6. LetW ⊂ Rd be M -bounded. Let f : W → R be convex, L-Lipschitz function. Suppose β ≥ L
M .

For all ξ > 0, there is ξ-approximate p̂roxf/β such that for each w ∈ W , computing p̂roxf/β(w) requires

time that is equivalent to at most d8M2

ξ2
e gradient evaluations.

This fact follows from the fact that proxf/β(w) = arg min
v∈W

gw(v),where gw(v) , 1
β f(v)+ 1

2‖v−w‖
2.

This is minimization of 1-strongly convex and 2M -Lipschitz function overW , The Lipschitz constant fol-
lows from the fact that β ≥ L/M . Hence, one can run ordinary Gradient Descent to obtain an approxi-
mate minimizer. From a standard result on convergence of GD for strongly convex and Lipschitz functions
[Bub15], in τ gradient steps we obtain an approximate vτ satisfying gw(vτ ) − gw(v∗) ≤ 8M2

τ , where

v∗ = arg min
v∈W

gw(v). Since gw is 1-strongly convex, we get ‖vτ − v∗‖ ≤
√

8M2

τ .

Description ofAProxGD: The algorithm description follows exactly the same lines asANSGD except that: (i)
the input loss ` is now non-smooth, and (ii) for each iteration t, the gradient evaluation ∇`(wt, z) for each
data point z in the mini-batch is replaced with the evaluation of an approximate gradient of the smoothed
loss `β(·, z). The approximate gradient, denoted as ∇̂`β(wt, z), is computed using an approximate proximal
operator. Namely,

∇̂`β(wt, z) := β ·
(
wt − p̂rox`z/β(wt)

)
,

where `z , `(·, z). Here, we use a computationally efficient ξ-approximate p̂rox`z/β like the one in Fact 4.6
with ξ set as

ξ := 4
M

n
·max

(
2
√
d log(1/δ)

ε n
,

1√
n

)
.

Note that the approximation error in the gradient ‖∇̂`β(wt, z) −∇`β(wt, z)‖ ≤ β · ξ, and that β · ξ = L
n ,

where L is the Lipschitz constant of `.

Running time of AProxGD: if we use the approximate proximal operator in Fact 4.6, then it is easy to see
that AProxGD requires a number of gradient evaluations that is a factor of n2 T more than ANSGD, where
T = O

(
max

(
n, ε2 n2

d log(1/δ)

))
. That is, the total number of gradient evaluations is n2 · T 2 · m, where

m = O

(
max

(
√
ε n,

√
d log(1/δ)

ε

))
is the mini-batch size.

We now argue that privacy, stability, and accuracy of the algorithm are preserved under the approximate
proximal operator.

Privacy: Note that to bound the sensitivity of the approximate gradient of the mini-batch, it suffices to
bound the norm of the approximate gradient. From the discussion above, note that ∀ z,∀ w ∈ W, we have
‖∇̂`β(w, z)‖ ≤ ‖∇̂`β(w, z) − ∇`β(w, z)‖ + ‖∇`β(w, z)‖ ≤ L (1 + 1

n). Thus, the sensitivity remains
basically the same as in the case where the algorithm is run with the exact gradients. Hence, the same
privacy guarantee holds as in ANSGD.

Empirical error: Note that the approximation error in the gradient of the mini-batch (due to the approximate
proximal operation) can be viewed as a fixed error term of magnitude at most Ln that is added to the Gaussian
noise. Thus, the variance of the total noise (Gaussian noise + approximation error) in each iteration is at
most σ̂2 = O

(
T L2 d log(1/δ)

n2 ε2

)
+ L2

n2 = O
(
T L2 d log(1/δ)

n2 ε2

)
. Hence, we get the same bound on the excess

empirical risk as in Lemma 3.3.
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Uniform stability: This easily follows from the following facts. First, note that the additional approximation
error due to gradient approximation is L

n . Second, the gradient update w.r.t. the exact gradient of the
smoothed loss is non-expansive operation (which is the key fact in proving uniform stability of (stochastic)
gradient methods [HRS15, FV19]), and hence the approximation error in the gradient is not going to be
amplified by the gradient update step. Hence, for any trajectory of T approximate gradient updates, the
accumulated approximation error in the final output wT cannot exceed T η L

n . This cannot increase the final
uniform stability bound by more than an additive term of T η L2

n . Thus, we obtain basically the same bound
in Lemma 3.4.

Putting these together, we have argued thatAProxGD is computationally efficient algorithm that achieves
the optimal population loss bound in Theorem 4.4.

5 Private SCO via Objective Perturbation

In this section, we show that the technique known as objective perturbation [CMS11, KST12] can be used
to attain optimal population loss for a large subclass of convex, smooth losses. In objective perturbation,
the empirical loss is first perturbed by adding two terms: a noisy linear term and a regularization term. As
shown in [CMS11, KST12], under some additional assumptions on the hessian of the loss, an appropriate
random perturbation ensures differential privacy. The excess empirical loss of this technique for smooth
convex losses was originally analyzed in the aforementioned works, and was shown to be optimal by the
lower bound in [BST14]. We revisit this technique and show that the regularization term added for privacy
can be used to attain the optimal excess population loss by exploiting the stability-inducing property of
regularization.

In addition to smoothness and convexity of `, as in [CMS11, KST12], we also make the following
assumption on the loss function.

Assumption 5.1. For all z ∈ Z, `(·, z) is twice-differentiable, and the rank of its Hessian ∇2`(w, z) at
any w ∈ W is at most 1.

The description of the objective perturbation algorithm AObjP is given in Algorithm 2. The outline of
the algorithm is the same as the one in [KST12] for the case of (ε, δ)-differential privacy.

Algorithm 2 AObjP: Objective Perturbation for convex, smooth losses
Input: Private dataset: S = (z1, . . . , zn) ∈ Zn, L-Lipschitz, β-smooth, convex loss function `, convex set
W ⊆ Rd, privacy parameters ε ≤ 1, δ ≤ 1/n2, regularization parameter λ.

1: Sample G ∼ N
(
0, σ2 Id

)
, where σ2 = 10L2 log(1/δ)

ε2

2: return ŵ = arg min
w∈W

L̂ (w; S) + 〈G, w〉
n + λ‖w‖2, where L̂(w; S) , 1

n

∑n
i=1 `(w, zi).

Note: The regularization term as appears in AObjP is of different scaling than the one that appears in
[KST12]. In particular, the regularization term in [KST12] is normalized by n, whereas here it is not.
Hence, whenever the results from [KST12] are used here, the regularization parameter in their statements
should be replaced with nλ. This presentation choice is more consistent with literature on regularization.

The privacy guarantee ofAObjP is given in the following theorem, which follows directly from [KST12].

Theorem 5.2 (Privacy guarantee of AObjP, restatement of Theorem 2 in [KST12]). Suppose that Assump-
tion 5.1 holds and that the smoothness parameter satisfies β ≤ ε n λ. Then, AObjP is (ε, δ)-differentially
private.

9



We now state our main result for this section showing that, with appropriate setting for λ, AObjP yields
the optimal population loss.

Theorem 5.3 (Excess population loss ofAObjP). LetD be any distribution overZ, and let S ∼ Dn. Suppose

that Assumption 5.1 holds. Suppose thatW is M -bounded. In AObjP, set λ = 2L
M

√
2
n + 4 d log(1/δ)

ε2 n2 . Then,
we have

∆L (AObjP; D) ≤ 2M L

√
2

n
+

4 d log(1/δ)

ε2 n2
= O

(
M L ·max

(
1√
n
,

√
d log(1/δ)

ε n

))
.

Note: According to Theorem 5.2, (ε, δ)-differential privacy of AObjP entails the assumption that β ≤ ε n λ.
With the setting of λ in Theorem 5.3, it would suffice to assume that β ≤ 2 ε L

M

√
2n+ 4 d log(1/δ).

To prove the above theorem, we use the following lemmas.

Lemma 5.4 (Excess empirical loss of AObjP, restatement of Theorem 26 in [KST12]). Let S ∼ Zn. Under
Assumption 5.1, the excess empirical loss of AObjP satisfies

E
[
L̂(ŵ;S)

]
− min

w∈W
L̂(w;S) ≤ 16L2 d log(1/δ)

n2 ε2 λ
+ λM2.

where the expectation is taken over the Gaussian noise in AObjP.

The next lemma states a well-known fact, namely, regularized empirical risk minimization is uniformly
stable.

Lemma 5.5 ([SSSSS09, SSBD14]). Let f : W ×Z → R be a convex, ρ-Lipschitz loss, and let λ > 0. Let
S = (z1, . . . , zn) ∼ Zn. Let A be an algorithm that outputs w̃ = arg min

w∈W

(
F̂(w; S) + λ ‖w‖2

)
, where

F̂(w; S) = 1
n

∑n
i=1 f(w, zi). Then, A is 2 ρ2

λn -uniformly stable.

Proof of Theorem 5.3

Fix any realization of the noise vector G. For every w ∈ W, z ∈ Z, define fG(w, z) , `(w, z) + 〈G,w〉
n .

Note that fG is
(
L+ ‖G‖

n

)
-Lipschitz. For any dataset S = (z1, . . . , zn) ∈ Zn, define F̂G(w;S) ,

1
n

∑n
i=1 fG(w, zi).Hence, the output ŵ ofAObjP on input dataset S can be written as ŵ = arg min

w∈W
F̂G(w; S)+

λ ‖w‖2. Define FG(w; D) , E
z∼D

[fG(w, z)] . Thus, for any fixed G, by combining Lemma 5.5 with

Lemma 2.2, we have E
S∼Dn

[
FG(ŵ; D)− F̂G(ŵ; S)

]
≤

2
(
L+
‖G‖
n

)2
λn . On the other hand, note that for any

dataset S, we always have FG(ŵ; D) − F̂G(ŵ; S) = L(ŵ; D) − L̂(ŵ; S) since the linear term cancels
out. Hence, the expected generalization error (w.r.t. S) satisfies

E
S∼Dn

[
L(ŵ; D)− L̂(ŵ; S)

]
≤ 2

(
L+ ‖G‖

n

)2
λn

Now, by taking expectation over G ∼ N
(
0, σ2Id

)
as well, we arrive at

E
[
L(ŵ; D)− L̂(ŵ; S)

]
≤ 2L2

(
1 +

√
10 d log(1/δ)

ε n

)2

λn
≤ 8

L2

λn
(2)

10



where we assume
√

10 d log(1/δ)

ε n ≤ 1 (since otherwise we would have the trivial error).
Now, observe that:

∆L (AObjP;D) = E [L(ŵ;D)]− min
w∈W

L(w; D)

≤ E
[
L̂(ŵ; S)− min

w∈W
L̂(w; S)

]
+ E

[
L(ŵ; D)− L̂(ŵ; S)

]
≤ 8

λ

(
2L2 d log(1/δ)

ε2 n2
+
L 2

n

)
+ λM2

where the second inequality follows from the fact that E
S∼Dn

[
min
w∈W

L̂(w; S)

]
≤ min

w∈W
E

S∼Dn

[
L̂(w; S)

]
=

min
w∈W

L(w; D), and the last bound follows from combining (2) with Lemma 5.4. Optimizing this bound in

λ yields the setting of λ in the theorem statement. Plugging that setting of λ into the bound yield the stated
bound on the excess population loss.
A note on the rank assumption: While in this section we presented our result under the assumption that
rank of 52`(w, z) is at most one, one can extend the analysis (by using similar argument in [INS+19]) to
a rank of Õ

(
L
√
n+d
βM

)
without affecting the asymptotic population loss guarantees. In general to ensure

differential privacy to AObjP, one only need the following assumption involving the Hessian of individual

losses:
∣∣∣det(I + 52`(w,z)

λ

)∣∣∣ ≤ eε/2 for all z ∈ Z and w ∈ W , rather than a constraint on the rank. We
defer this general analysis to the full version.

5.1 Oracle Efficient Objective Perturbation

The privacy guarantee of the standard objective perturbation technique is given only when the output is the
exact minimizer [CMS11, KST12]. In practice, we usually cannot attain the exact minimizer, but rather
obtain an approximate minimizer via efficient optimization methods. Hence, in this section we focus on
providing a practical version of algorithm AObjP, called approximate objective perturbation (Algorithm
AObjP−App), that i) is (ε, δ)-differentially private, ii) achieves the same optimal population loss as AObjP,
and iii) only makes O(n log n) evaluations of the gradient5w`(w, z) at any θ ∈ W and z ∈ Z . The main
idea inAObjP−App is to first obtain a w2 that ensures J (w2;S)−min

W
J (w;S) is at most α, and then perturb

w2 with Gaussian noise to “fuzz” the difference between w2 and the true minimizer. In this work, we use
Stochastic Variance Reduced Gradient Descent (SVRG) [JZ13, XZ14] as the optimization algorithm. This
leads to a construction that requires near linear oracle complexity (i.e., number of gradient evaluations). In
particular, AObjP−App achieves oracle complexity of O(n log n) for optimal population loss.

Theorem 5.6 (Privacy guarantee ofAObjP−App). Suppose that Assumption 5.1 holds and that the smoothness
parameter satisfies β ≤ ε n λ. Then, Algorithm AObjP−App is (ε, δ)-differentially private.

Proof. Let w1 = arg min
w∈W

L̂ (w; S) +
〈G, w〉

n
+ λ‖w‖2︸ ︷︷ ︸

J (w,S)

, and w2 = O(J , α), where O is the optimizer

defined in AlgorithmAObjP−App. Notice that one can compute w2 from the tuple (w1,w2−w1) by simple
post-processing. Furthermore, the algorithm that outputs w1 is (ε/2, δ/2)-differentially private by Theo-
rem 5.2. In the following, we will bound ‖w2 − w1‖ in order to make (w2 − w1) differentially private,
conditioned on the knowledge of w1.
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Algorithm 3 AObjP−App: Approximate Objective Perturbation for convex, smooth losses
Input: Private dataset: S = (z1, . . . , zn) ∈ Zn, L-Lipschitz, β-smooth, convex loss function `, convex set
W ⊆ Rd, privacy parameters ε ≤ 1, δ ≤ 1/n2, regularization parameter λ, OptimizerO : F × [0, 1]→
W (where F is the class of objectives, and the other argument is the optimization accuracy), α ∈ [0, 1] :
optimization accuracy.

1: Sample G ∼ N
(
0, σ2 Id

)
, where σ2 = 20L2 log(1/δ)

ε2
.

2: Let J (w;S) = L̂ (w; S) + 〈G, w〉
n + λ‖w‖2, where L̂(w; S) , 1

n

∑n
i=1 `(w, zi).

3: return ŵ = ProjW [O (J , α) + H], where H ∼ N
(
0, σ2 Id

)
, and σ2 = 40α log(1/δ)

λε2
.

As J (w, S) is λ-strongly convex, J (w2, S) ≥ J (w1, S) + λ
2‖w2 −w1‖2 so that

‖w2 −w1‖ ≤
√

2 · |J (w2, S)− J (w1, S)|
λ

≤
√

2α

λ
. (3)

Conditioned on w1, from (3) it follows that w2 −w1 has `2-sensitivity of
√

8α
λ . Therefore, by the standard

analysis of Gaussian mechanism [DR+14], it follows that (w2−w1)+H (with H sampled as in Step 3 of Al-
gorithm AObjP−App) satisfies (ε/2, δ/2)-differential privacy. Therefore by standard composition [DR+14],
the tuple (w1,w2 −w1 + H) (and hence ŵ) satisfies (ε, δ)-differential privacy.

Theorem 5.7 (Excess population loss guarantee of AObjP−App). Let D be any distribution over Z, and let
S ∼ Dn. Suppose that Assumption 5.1 holds and that W is M -bounded. In Algorithm AObjP−App, set

λ = 2L
M

√
2
n + 4 d log(1/δ)

ε2 n2 , α = M2λ
n2 . Then, we have

∆L (AObjP−App; D) ≤ O

(
M L ·max

(
1√
n
,

√
d log(1/δ)

ε n

))
.

Proof. Let w1 = arg min
w∈W

L̂ (w; S) + 〈G, w〉
n + λ‖w‖2. For ŵ defined in Step 3 ofAObjP−App, notice that

using Theorem 5.3, ∆L (ŵ; D) ≤ ∆L (w1; D)+L·E [‖ŵ −w1‖] ≤ O
(
M L ·max

(
1√
n
,

√
d log(1/δ)

ε n

))
+

L · E [‖H‖]. Now, E [‖H‖] = O

(√
dα log(1/δ)

λε2

)
= O

(
M L ·

√
d log(1/δ)

εn

)
when α = M2λ

n2 . Therefore,

∆L (ŵ; D) ≤ O
(
M L ·max

(
1√
n
,

√
d log(1/δ)

ε n

))
, which completes the proof.

Oracle complexity: The population loss guarantee of Algorithm AObjP−App is independent of the choice of
the exact optimizer O, as long it produces a ŵ ∈ W for an objective function J such that[
J (ŵ)− min

w∈W
J (w)

]
≤ α, where α = M2λ

n2 (defined in Theorem 5.7). We will now show that if one

uses SVRG (Stochastic Variance Reduced Gradient Descent Optimizer) from [JZ13, XZ14, Bub15] as the
optimizer O, then one can achieve an error of α in O ((n+ β/λ) log(1/α)) calls to the gradients of `(·, ·),
for any α ∈ (0, 1]. The following theorem immediately gives this. Plugging in the value of α from Theorem
5.7, noticing from Theorem 5.2 that β/λ ≤ εn, and considering ε,M and L to be constants, we get the
oracle complexity of Algorithm AObjP−App to be O(n log(n)).
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Theorem 5.8 (Convergence of SVRG [JZ13, XZ14, Bub15]). Let f1, · · · , fn be β-smooth, λ-strongly

convex functions over W , and F(w) = 1
n

n∑
i=1

fi(w). Let y(1) ∈ W be an arbitrary initial point. For

t = {1, 2, · · · }, let w(t)
1 = y(1). For s ∈ [k], let

w
(t)
s+1 = ProjW

[
w(t)
s −

1

10β

(
5f

i
(t)
s

(
w(t)
s

)
−5f

i
(t)
s

(
y(t)
s

)
+5F

(
y(t)
))]

,

where i(t)s is drawn uniformly at random from [n], and y(t+1) = 1
k

k∑
s=1

w
(t)
s . Then, for k = 20β/λ the

following is true:
E
[
F
(
y(t+1)

)]
−F (w∗) ≤ 0.9t

(
F
(
y(1)

)
−F (w∗)

)
.
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[BE02] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learn-
ing research, 2(Mar):499–526, 2002.

[BNS+16] Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and Jonathan Ull-
man. Algorithmic stability for adaptive data analysis. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages 1046–1059. ACM, 2016.

[BST14] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Differentially private empirical risk min-
imization: Efficient algorithms and tight error bounds. arXiv preprint arXiv:1405.7085, 2014.

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends R© in Machine Learning, 8(3-4):231–357, 2015.

[Can11] Emmanuel Candes. Mathematical optimization, volume Lec. notes: MATH 301. Stanford
Univesity, 2011.

[CM08] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In Daphne
Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, editors, NIPS. MIT Press, 2008.
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A Proof of Lemma 3.4

Consider T iterations of ANSGD. Let G1, . . . ,GT denote the noise vectors and I1, . . . , IT ∈ [n]m de-
note the index sets of the mini-batches selected in the T iterations. Consider any pair of datasets S =
(z1, . . . , zk, . . . , zn) and S′ = (z1, . . . , z

′
k, . . . , zn) differing in exactly one data point zk 6= z′k for some

fixed k ∈ [n]. Let w0,w1, . . . ,wT and w0,w
′
1, . . . ,w

′
T denote the trajectories of ANSGD corresponding to

input datasets S and S′, respectively. For any t ∈ [T ], let ξt , wt −w′t.
We follow the proof technique of [FV19, Lemma 4.3]. We prove the following claim via induction on t:

E [‖ξt‖] ≤ 4 c
η t

n
,

where the expectation is taken over I0, . . . , It−1,G0, . . . ,Gt−1. First, it’s trivial to see that the claim is
true for t = 0. Suppose the claim holds for all t ≤ τ . Fix the randomness in Gτ and Iτ . Let r denote the
number of occurrences of the index k (where S and S′ differ) in Iτ . By the non-expansiveness property of
the gradient update step, we have

‖ξτ+1‖ ≤ ‖ξτ‖+ 4 c η
r

m

Now, we now invoke the randomness in Gτ and Iτ . Note that r is a Binomial random variable with mean
m/n. Hence, by taking expectation and using the induction hypothesis, we end up with

E
I0,...,Iτ
G0,...,Gτ

[‖ξτ+1‖] ≤ 4 c
η (τ + 1)

n

This proves the claim. Now, let wT = 1
T

∑T
t=1wt and w′T = 1

T

∑T
t=1w

′
T . Since ` is c-Lipschitz, thus for

every z ∈ Z , we have

E
I0,...,It−1
G0,...,Gt−1

[
`(wT , z)− `(w′T , z)

]
≤ c E

I0,...,It−1
G0,...,Gt−1

[
‖wT −w′T ‖

]
≤ c 1

T

T∑
t=1

E
It,Gt

[‖ξt‖]

≤ 4 c2
η

nT

T (T + 1)

2
= 2 c2

η (T + 1)

n

This completes the proof.
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B Proof of Lipschitz property of Moreau envelope (in Part 1, Lemma 4.3)

Fix any w ∈ W . We will show that ‖∇fβ(w)‖ ≤ 2L. Define g(v) , f(v) + β
2 ‖v −w‖2, v ∈ W . Note

that proxf/β(w) = arg min
v∈W

g(v). Let v∗ denote proxf/β(w). Now, observe that

0 ≤ g(w)− g(v∗) = f(w)− f(v∗)− β

2
‖w − v∗‖2

Thus, we have

β

2
‖w − v∗‖2 ≤ f(w)− f(v∗) ≤ L ‖w − v∗‖

where the last inequality follows from the fact that f is L-Lipschitz. Thus, we get ‖w − v∗‖ ≤ 2L/β. By
property 3, we have ‖∇fβ(w)‖ = β ‖w−v∗‖. This together with the above bound gives the desired result.

C Optimality of Our Bounds

Our upper bounds in Sections 3 and 4 are tight (up to logarithmic factors in 1/δ). In particular, our bounds
match a lower bound of Ω

(
M L ·max

(
1√
n
,
√
d
n

))
on the excess population loss. Such lower can be ob-

tained by combining a lower bound implied by the results of [BST14] together with the known lower bound
in the non-private setting. The first term is simply the known lower bound on the excess population loss in
the non-private setting. The second term follows from the lower bound in [BST14] on excess empirical loss,
and the fact that a lower bound on excess empirical loss implies nearly the same lower bound on the excess
population loss. We elaborate on this below.

Reduction from Private ERM to Private SCO: To show that a lower bound on the excess empirical loss
in [BST14] implies essentially the same lower bound on the excess population loss, it suffices to show the
following reduction. For any γ > 0, suppose there is

(
ε

4 log(2/δ) ,
e−εδ

8 log(2/δ)

)
-differentially private algorithm

A such that for any distribution on a domainZ , whenA is given a sample T ∼ Dn, it yields expected excess
population loss ∆L(A; D) ≤ γ. Then, there is (ε, δ)-differentially private algorithm B that when given any
dataset S ∈ Zn, it yields expected excess empirical loss ∆L̂(B; S) , E

B

[
L̂ (B(S);S)

]
−min

w
L̂(w;S) ≤ γ.

Fix any γ > 0. Suppose algorithm A described above exists. We construct algorithm B as follows:

1. Given input dataset S ∈ Zn, let DS be the empirical distribution induced by S.

2. Sample T ∼ DnS .

3. Return A(T )

First, note that ∆L̂(B;S) ≤ γ. This easily follows from the fact that for any w, L(w;DS) = L̂(w;S). In
particular, observe that

E
B

[
L̂ (B(S);S)

]
−min

w
L̂(w;S) = E

T∼DnS ,A
[L (A(T ); DS)]−min

w
L(w; DS)

= ∆L (A;DS) ≤ γ.

Next, we show that B is (ε, δ)-differentially private. Let S = (z1, . . . , zk, . . . , zn), S′ = (z1, . . . , z
′
k, . . . , zn)

be neighboring datasets differing in single point whose index is k ∈ [n]. Let T, T ′ be the samples obtained
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by running B on S, S′, respectively, with the same set of random coins in Step 2. More precisely, let R
denote the random sampling procedure used in Step 2, and define T = R(S) and T ′ = R(S′). Let r be
the number of times the k-th point of the input dataset is sampled by R. Hence, r = |T∆T ′|, i.e., r is the
number of points where T and T ′ differ. By Chernoff’s bound, r ≤ 4 log(2/δ) with probability 1 − δ/2.
Let V be any measurable subset of the range of B. Observe that

P
B

[B(S) ∈ V] = P
A,R

[A(T ) ∈ V]

≤ P
A,R

[A(T ) ∈ V| r ≤ 4 log(2/δ)] · P [ r ≤ 4 log(2/δ)] + δ/2

≤ e
r ε

4 log(2/δ) · P
A,R

[
A(T ′) ∈ V| r ≤ 4 log(2/δ)

]
· P [ r ≤ 4 log(2/δ)] +

δ

2
+ r e

r ε
4 log(2/δ)

e−εδ

8 log(2/δ)

≤ eε · P
A,R

[
A(T ′) ∈ V

]
+ δ

= eε · P
B

[
B(S′) ∈ V

]
+ δ,

where the third inequality follows from the fact thatA is
(

ε
4 log(2/δ) ,

δ
2

)
-differentially private and the notion

of group differential privacy. This shows that B is (ε, δ)-differentially private, proving the reduction, and
hence, the lower bound.
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