Supplementary Material for Mapping State Space
using Landmarks for Universal Goal Reaching

1 Overview

This material contains five parts, in addition to the illustrations and experiments in the main paper.
The first part contains a proof about the feasibility of approximating value by pairwise distance,
which is introduced in Section 4 of the main paper. The second part is a Pseudo-code of our frame-
work, which clearly shows the algorithm. In the third part, we compare our method with the state-
of-the-art hierarchical reinforcement learning algorithms, HIRO [1] and HAC [2] on the AntMaze
of size 24 x 24. And we also show the forgetting issue of HER [3], as a result of the limited network
capacity. In the last part, we show the implementation parameters for experiments.

2 Proof of the Approximation in Section 4

In Section 4 of the main paper, we propose to view the MDP as a directed graph, and this is true
when v =~ 1.

Assume that a policy 7 takes at most steps 1" to move from s to g and the reward at each step r1’s
absolute value is bounded by R,4.. Let wy(s,t) be the expected total reward along the trajectory,
and d.(s,t) = —wx(s,t) for all s,¢. If ¥ = 1 — ¢, we can prove that ': |V, (s,g) — wx(s,9)| <

T?Rypaze. Thus, when v ~ 1 and T2 Rynax(1 — ) - 0, UVFA can be approximated as:
V‘ﬂ'(sag) ~ E[wﬂ'(svg)] = E[id‘ﬂ'(sag)] (1)

In this case, it is easy to show that the value iteration based on Bellman Equation V;«(s,g) =

R(57 a, g) + 'YE[VTr* (3/7 9)] ‘S,NP‘!\'* (-|s,a) lmphes W= (57 g) ~ R(Sa a, g) + W= (sla g)ls’NPW* (-]s,a)»
where P« is the transition probability of optimal policy 7*.

To prove this, note that v is smaller than 1, we can further replace v with e = 1 — ~. When ¢ N 0,
we can approximate (1 — €)” by its first-order Taylor expansion 1 — ek. Thus we have:
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'When ¢ = 0, we can approximate (1 — e)k by its first-order Taylor expansion 1 — ek.



05M 0.75M 1M 125M 1.5M 1.75M 2M
Ours Sparse 0.0 0.03 0.3 0.4 0.45 0.5 0.5
HIRO Sparse | 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ours Dense 0.0 0.09 045 05 0.7 0.8 0.9
HIRO Dense | 0.0 0.0 0.0 0.1 0.4 0.6 0.8

Table 1: Success Rate on Large AntMaze at different training steps.

So we finish the proof of the relationship between V; and w, when v — 1, as mentioned in the
main paper.

3 Training Algorithm Outline

The Pseudo-code for the training algorithm is listed in Algorithm ??. The latter is how we build the
map and select subgoals by planning in a dynamic programming way.

Algorithm 1 Train and Test with Planning

Input: current observation obs, desired goal g
for every training step do
with probability a:
action = Actor(obs, g) + noise
with probability 1 — a:
action = Planner(obs, g)
next_obs = env.step(action)
Train actor and critic network with hindsight experience replay
store trajectories in replay buffer when episode ends
end
for every test step do
action = Planner(obs, g)
next_obs = env.step(action)
end

4 Comparison with HRL

We compare our method with HRL algorithms on large AntMaze (size 24 x 24), as shown in Ta-
ble 1. We choose to compare with HIRO [1], which is the SOTA HRL algorithm on AntMaze,
and HAC [2], which also uses the hindsight experience replay. We test these algorithms with the
published codes??, under both sparse reward setting and dense reward setting.

On sparse reward setting, our algorithm can work well and reach the goal at the very early stage
(Ours sparse in Table 1). In contrast, neither HAC nor HIRO are able to reach the goal in 2M
steps. HIRO doesn’t use HER to replace the unachievable goals, which makes such setting very
challenging for the algorithm.

For dense reward setting, the map planner can obtain a high success rate at very early stage shown
as Ours dense in Table 1. Compared with HIRO dense, we can see that a planner can reach distant
goals sooner, since we don’t need to train a high-level policy to propose subgoals for the low-level
agent.

HAC introduced several complex hyper-parameters, and we couldn’t make it work well for both
settings.

S The Forgetting Issue of HER

We observe that HER may forget how to reach the ultimate goal even if it learns to reach it some
steps ago. For AntMaze, as shown in the main paper, the success rate for pure HER is always below

HIRO: https://github.com/tensorflow/models/tree/master/research/efficient-hrl
SHAC:https://github.com/andrew-j-levy/Hierarchical- Actor-Critc-HAC-
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Figure 1: The success rate of HER to reach a random goal after we flip the training and testing
setting.

0.2. Since the goal for testing is the most difficult one, to better evaluate this issue for a larger goal
space G of different difficulties, we then flip the setting for training and testing, i.e., for training, the
agent aims to reach a fixed goal at the other side of the maze, but for testing, the agent is born at a
random location and tries to reach a random goal. Here we use a well-pretrained model, which has
almost 0.7 success rate to reach a random sampled goal within 200 steps. We then retrain it to reach
a fixed goal under the new setting. We observe that, although its performance to reach a fixed goal
is slowly increasing, its ability to reach a randomly picked goal in the maze drops to 0.5 ~ 0.6.

6 Implementation Parameters

We use the following DDPG architecture and hyper-parameters for all the experiments:
Q/Critic Network Layers: 5

Q/Critic Network Hidden Dimension: 400

Policy Network Layers: 3

Policy Network Hidden Dimension: 400

Network Activation: ReLU

Noise: For the environments except AntMaze, we use OU-noise with 0 = 0.02 for DDPG. For
AntMaze, we use 0.2 epsilon-greedy to improve exploration.

Discount Factor: 0.99

Batch Size: 128

Actor Learning Rate: 0.0003

Critic Learning Rate: 0.0003

Target Network Update Ratio: 0.005
HER Replace Ratio: 0.8

Episode Length: 500 for PointMaze and AntMaze; 50 for the Fetch/Push environments; 1500 for
Complex AntMaze; 200 for Acrobot.

Distance Threshold The distance threshold § is used to judge whether a goal has been reached in
HER module. This is different for each environment:

1. 2DMaze & 2DPush & Acrobot: 0.03
2. FetchPush & FetchReach: 0.025
3. PointMaze & AntMaze & Complex AntMaze: 0.1
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