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Abstract

We derive PAC-Bayesian learning guarantees for heavy-tailed losses, and obtain
a novel optimal Gibbs posterior which enjoys finite-sample excess risk bounds
at logarithmic confidence. Our core technique itself makes use of PAC-Bayesian
inequalities in order to derive a robust risk estimator, which by design is easy
to compute. In particular, only assuming that the first three moments of the
loss distribution are bounded, the learning algorithm derived from this estimator
achieves nearly sub-Gaussian statistical error, up to the quality of the prior.

1 Introduction

More than two decades ago, the origins of PAC-Bayesian learning theory were developed with
the goal of strengthening traditional PAC learning guarantees1 by explicitly accounting for prior
knowledge [20, 15, 7]. Subsequent work developed finite-sample risk bounds for “Bayesian” learning
algorithms which specify a distribution over the model [16]. These bounds are controlled using
the empirical risk and the relative entropy between “prior” and “posterior” distributions, and hold
uniformly over the choice of the latter, meaning that the guarantees hold for data-dependent posteriors,
hence the naming. Furthermore, choosing the posterior to minimize PAC-Bayesian risk bounds leads
to practical learning algorithms which have seen numerous successful applications [3].

Following this framework, a tremendous amount of work has been done to refine, extend, and apply
the PAC-Bayesian framework to new learning problems. Tight risk bounds for bounded losses are
due to Seeger [18] and Maurer [14], with the former work applying them to Gaussian processes.
Bounds constructed using the loss variance in a Bernstein-type inequality were given by Seldin et al.
[19], with a data-dependent extension derived by Tolstikhin and Seldin [21]. As stated by McAllester
[17], virtually all the bounds derived in the original PAC-Bayesian theory “only apply to bounded
loss functions.” This technical barrier was solved by Alquier et al. [3], who introduce an additional
error term depending on the concentration of the empirical risk about the true risk. This technique
was subsequently applied to the log-likelihood loss in the context of Bayesian linear regression by
Germain et al. [12], and further systematized by Bégin et al. [5]. While this approach lets us deal
with unbounded losses, naturally the statistical error guarantees are only as good as the confidence
intervals available for the empirical mean deviations. In particular, strong assumptions on all of
the moments of the loss are essentially unavoidable using the traditional tools espoused by Bégin
et al. [5], which means the “heavy-tailed” regime cannot be handled, where all we assume is that a
few higher-order moments are finite (say finite variance and/or finite kurtosis). A new technique for
deriving PAC-Bayesian bounds even under heavy-tailed losses is introduced by Alquier and Guedj
[2]; their lucid procedure provides error rates even under heavy tails, but as the authors recognize, the
guarantees are sub-optimal at high confidence levels due to direct dependence on the empirical risk,
leading in turn to sub-optimal algorithms derived from these bounds.2

1PAC: Probably approximately correct [22].
2See work by Catoni [9], Devroye et al. [11] and the references within for background on the fundamental

limitations of the empirical mean for real-valued random variables.
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In this work, while keeping many core ideas of Bégin et al. [5] intact, using a novel approach we
obtain exponential tail bounds on the excess risk using PAC-Bayesian bounds that hold even under
heavy-tailed losses. Our key technique is to replace the empirical risk with a new mean estimator
inspired by the dimension-free estimators of Catoni and Giulini [10], designed to be computationally
convenient. We review some key theory in section 2 before introducing the new estimator in section
3. In section 4 we apply this estimator to the PAC-Bayes setting, deriving a new robust optimal Gibbs
posterior. Empirical inquiries into the properties of the new mean estimator are given in section 5.
All proofs are relegated to supplementary materials.

2 PAC-Bayesian theory based on the empirical mean

Let us begin by briefly reviewing the best available PAC-Bayesian learning guarantees under general
losses. Denote by z1, . . . ,zn ∈ Z a sequence of independent observations distributed according to
common distribution µ. Denote by H a model/hypothesis class, from which the learner selects a
candidate based on the n-sized sample. The quality of this choice can be measured in a pointwise
fashion using a loss function l : H×Z → R, assumed to be l ≥ 0. The learning task is to achieve a
small risk, defined by R(h) ..= Eµ l(h; z). Since the underlying distribution is inherently unknown,
the canonical proxy is

R̂(h) ..=
1

n

n∑
i=1

l(h; zi), h ∈ H.

Let ν and ρ respectively denote “prior” and “posterior” distributions on the modelH. The so-called
Gibbs risk induced by ρ, as well as its empirical counterpart are given by

Gρ ..= EρR =

∫
H
R(h) dρ(h), Ĝρ ..= Eρ R̂ =

1

n

n∑
i=1

∫
H
l(h; zi) dρ(h).

When our losses are almost surely bounded, lucid guarantees are available.
Theorem 1 (PAC-Bayes under bounded losses [16, 5]). Assume 0 ≤ l ≤ 1, and fix any arbitrary
prior ν onH. For any confidence level δ ∈ (0, 1), we have with probability no less than 1− δ over
the draw of the sample that

Gρ ≤ Ĝρ +

√
K(ρ; ν) + log(2

√
nδ−1)

2n
uniformly in the choice of ρ.

Since the “good event” where the inequality in Theorem 1 holds is valid for any choice of ρ, the
result holds even when ρ depends on the sample, which justifies calling it a posterior distribution.
Optimizing this upper bound with respect to ρ leads to the so-called optimal Gibbs posterior, which
takes a form which is readily characterized (cf. Remark 13).

The above results fall apart when the loss is unbounded, and meaningful extensions become chal-
lenging when exponential moment bounds are not available. As highlighted in section 1 above, over
the years, the analytical machinery has evolved to provide general-purpose PAC-Bayesian bounds
even under heavy-tailed data. The following theorem of Alquier and Guedj [2] extends the strategy
of Bégin et al. [5] to obtain bounds under the weakest conditions we know of.
Theorem 2 (PAC-Bayes under heavy-tailed losses [2]). Take any p > 1 and set q = p/(p− 1). For
any confidence level δ ∈ (0, 1), we have with probability no less than 1 − δ over the draw of the
sample that

Gρ ≤ Ĝρ +

(
Eν |R̂−R|q

δ

) 1
q (∫

H

(
dρ

dν

)p
dν

) 1
p

uniformly in the choice of ρ.

For concreteness, consider the case of p = 2, where q = 2/(2− 1) = 2, and assume that the variance
of the loss is varµ l(h; z) is ν-finite, namely that

Vν ..=

∫
H

varµ l(h; z) dν(h) <∞.
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From Proposition 4 of Alquier and Guedj [2], we have Eν |R̂−R|2 ≤ Vν/n. It follows that on the
high-probability event, we have

Gρ ≤ Ĝρ +

√√√√ Vν
n δ

(∫
H

(
dρ

dν

)2

dν

)
While the

√
n rate and dependence on a divergence between ν and ρ are similar, note that the

dependence on the confidence level δ ∈ (0, 1) is polynomial; compare this with the logarithmic
dependence available in Theorem 1 above when the losses were bounded.

For comparison, our main result of section 4 is a uniform bound on the Gibbs risk: with probability
no less than 1− δ, we have

Gρ ≤ Ĝρ,ψ +
1√
n

(
K(ρ; ν) +

log(8πM2δ
−2)

2
+M2 + ν∗n(H)− 1

)
+O

(
1

n

)
where Ĝρ,ψ is an estimator of Gρ defined in section 3, ν∗n(H) is a term depending on the quality
of prior ν, and the key constants are bounds such that for all h ∈ H we have M2 ≥ Eµ l(h; z)2.
As long as the first three moments are finite, this guarantee holds, and thus both sub-Gaussian and
heavy-tailed losses (e.g., with infinite higher-order moments) are permitted. Given any valid M2,
the PAC-Bayesian upper bound above can be minimized in ρ based on the data, and thus an optimal
Gibbs posterior can also be computed in practice. In section 4, we characterize this “robust posterior.”

3 A new estimator using smoothed Bernoulli noise

Notation In this section, we are dealing with the specific problem of robust mean estimation, thus
we specialize our notation here slightly. Data observations will be x1, . . . , xn ∈ R, assumed to be
independent copies of x ∼ µ. Denote the index set [k] ..= {1, 2, . . . , k}. WriteM1

+(Ω,A) for the set
of all probability measures defined on the measurable space (Ω,A). Write K(P,Q) for the relative
entropy between measures P and Q (also known as the KL divergence; definition in appendix). We
shall typically suppress A and even Ω in the notation when it is clear from the context. Let ψ be a
bounded, non-decreasing function such that for some b > 0 and all u ∈ R,

− log
(
1− u+ u2/b

)
≤ ψ(u) ≤ log

(
1 + u+ u2/b

)
. (1)

As a concrete and analytically useful example, we shall use the piecewise polynomial function of
Catoni and Giulini [10], defined by

ψ(u) ..=


u− u3/6, −

√
2 ≤ u ≤

√
2

2
√

2/3, u >
√

2

−2
√

2/3, u < −
√

2

(2)

which for b = 2 satisfies (1). Slightly looser bounds hold with b = 1 for an analogous procedure
using a Huber-type influence function.

Estimator definition We consider a straightforward procedure, in which the data are subject to a
soft truncation after re-scaling, defined by

x̂ ..=
s

n

n∑
i=1

ψ
(xi
s

)
(3)

where s > 0 is a re-scaling parameter. Depending on the setting of s, this function can very closely
approximate the sample mean, and indeed modifying this scaling parameter controls the bias of this
estimator in a direct way, which can be quantified as follows. As the scale grows, note that

sψ
(x
s

)
= x− x3

6s2
→ x, as s→∞

which implies that taking expectation with respect to the sample and s → ∞, in the limit this
estimator is unbiased, with

E

(
s

n

n∑
i=1

ψ
(xi
s

))
= Eµ x−

Eµ x
3

6s2
→ Eµ x.
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Figure 1: Graph of the Catoni function ψ(u) over ±
√

2± 2.5.

On the other hand, taking s closer to zero implies that more observations will be truncated. Taking s
small enough,3 we have

s

n

n∑
i=1

ψ
(xi
s

)
=

2
√

2s

3n
(|I+| − |I−|) ,

which converges to zero as s→ 0. Here the positive/negative indices are I+
..= {i ∈ [n] : xi > 0}

and I− ..= {i ∈ [n] : xi < 0}. Thus taking s too small means that only the signs of the observations
matter, and the absolute value of the estimator tends to become too small.

High-probability deviation bounds for x̂ We are interested in high-probability bounds on the
deviations |x̂−Eµ x| under the weakest possible assumptions on the underlying data distribution. To
obtain such guarantees in a straightforward manner, we make the simple observation that the estimator
x̂ defined in (3) can be related to an estimator with smoothed noise as follows. Let ε1, . . . , εn be
an iid sample of noise ε ∈ {0, 1} with distribution Bernoulli(θ) for some 0 < θ < 1. Then, taking
expectation with respect to the noise sample, one has that

x̂ =
1

θ
E

(
s

n

n∑
i=1

ψ
(xi εi

s

))
. (4)

This simple observation becomes useful to us in the context of the following technical fact.

Lemma 3. Assume we are given some independent data x1, . . . , xn, assumed to be copies of the
random variable x ∼ µ. In addition, let ε1, . . . , εn similarly be independent observations of “strategic
noise,” with distribution ε ∼ ρ that we can design. Fix an arbitrary prior distribution ν, and consider
f : R2 → R, assumed to be bounded and measurable. Write K(ρ; ν) for the Kullback-Leibler
divergence between distributions ρ and ν. It follows that with probability no less than 1− δ over the
random draw of the sample, we have

E

(
1

n

n∑
i=1

f(xi, εi)

)
≤
∫

logEµ exp(f(x, ε)) dρ(ε) +
K(ρ; ν) + log(δ−1)

n
,

uniform in the choice of ρ, where expectation on the left-hand side is over the noise sample.

The special case of interest here is f(x, ε) = ψ(xε/s). Using (1) and Lemma 3, with prior ν =
Bernoulli(1/2) and posterior ρ = Bernoulli(θ), it follows that on the 1− δ high-probability event,

3More precisely, taking s ≤ min{|xi| : i ∈ [n]}/
√
2.
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uniform in the choice of 0 < θ < 1, we have(
θ

s

)
x̂ ≤

∫ (
εEµ x

s
+
ε2 Eµ x

2

2s2

)
dρ(ε) +

K(ρ; ν) + log(δ−1)

n
(5)

=
θEµ x

s
+
θEµ x

2

2s2
+

1

n

(
θ log(2θ) + (1− θ) log(2(1− θ)) + log(δ−1)

)
where we have used the fact that E ε2 = E ε = θ in the Bernoulli case. Dividing both sides by (θ/s)
and optimizing this as a function of s > 0 yields a closed-form expression for s depending on the
second moment, the confidence δ, and θ. Analogous arguments yield lower bounds on the same
quantity. Taking these facts together, we have the following proposition, which says that assuming
only finite second moments Eµ x2 < ∞, the proposed estimator achieves exponential tail bounds
scaling with the second non-central moment.
Proposition 4 (Concentration of deviations). Scaling with s2 = nEµ x

2/2 log(δ−1), the estimator
defined in (3) satisfies

|x̂−Eµ x| ≤
√

2Eµ x2 log(δ−1)

n
(6)

with probability at least 1− 2δ.
Remark 5. While the above bound (6) depends on the true second moment, the result is easily
extended to hold for any valid upper bound on the moment, which is what will inevitably have to be
used in practice.

Centered estimates Note that the bound (6) depends on the second moment of the underlying data;
this is in contrast to M-estimators which due to a natural “centering” of the data typically have tail
bounds depending on the variance [9]. This results in a sensitivity to the absolute value of the location
of the distribution, e.g., on a distribution with unit variance and Eµ x = 0 will tend to be much better
than a distribution with Eµ x = 104. Fortunately, a simple centering strategy works well to alleviate
this sensitivity, as follows. Without loss of generality, assume that the first 0 < k < n estimates are
used for constructing a shifting device, with the remaining n− k > 0 points left for running the usual
routine on shifted data. More concretely, define

xψ =
s

k

k∑
i=1

ψ
(xi
s

)
, where s2 =

kEµ x
2

2 log(δ−1)
. (7)

From (6) in Proposition 4, we have

|xψ −Eµ x| ≤ εk ..=

√
2Eµ x2 log(δ−1)

k
on an event with probability no less than 1 − 2δ, over the draw of the k-sized sub-sample. Using
this, we shift the remaining data points as x′i ..= xi − xψ . Note that the second moment of this data is
bounded as Eµ(x′)2 ≤ varµ x+ ε2

k. Passing these shifted points through (3) with analogous second
moment bounds used for scaling, we have

x̂′ =
s

(n− k)

n∑
i=k+1

ψ

(
x′i
s

)
, where s2 =

(n− k)(varµ x+ ε2
k)

2 log(δ−1)
. (8)

Shifting the resulting output back to the original location by adding and shifting x̂′ back to the original
location by adding xψ , conditioned on xψ , we have by (6) again that

|(x̂′ + xψ)−Eµ x| = |x̂−Eµ(x− xψ)| ≤

√
2(varµ x+ ε2

k) log(δ−1)

n− k
with probability no less than 1 − 2δ over the draw of the remaining n − k points. Defining the
centered estimator as x̂ = x̂′ + xψ, and taking a union bound over the two “good events” on the
independent sample subsets, we may thus conclude that

P {|x̂−Eµ x| > ε} ≤ 4 exp

(
−(n− k)ε2

2(varµ x+ ε2
k)

)
(9)

where probability is over the draw of the full n-sized sample. While one takes a hit in terms of the
sample size, the variance works to combat sensitivity to the distribution location (see section 5 for
empirical tests).
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4 PAC-Bayesian bounds for heavy-tailed data

An import and influential paper due to D. McAllester gave the following theorem as a motivating
result. To get started, we give a slightly modified version of his result.
Theorem 6 (McAllester [15], Preliminary Theorem 2). Let ν be a prior probability distribution over
H, assumed countable, and to be such that ν(h) > 0 for all h ∈ H. Consider the pattern recognition
task with z = (x, y) ∈ X × {−1, 1}, and the classification error l(h; z) = I{h(x) 6= y}. Then with
probability no less than 1− δ, for any choice of h ∈ H, we have

R(h) ≤ 1

n

n∑
i=1

l(h; zi) +

√
log (1/ν(h)) + log (1/δ)

2n

One quick glance at the proof of this theorem shows that the bounded nature of the observations plays
a crucial role in deriving excess risk bounds of the above form, as it is used to obtain concentration
inequalities for the empirical risk about the true risk. While analogous concentration inequalities hold
under slightly weaker assumptions, when considering the potentially heavy-tailed setting, one simply
cannot guarantee that empirical risk is tightly concentrated about the true risk, which prevents direct
extensions of such theorems. With this in mind, we take a different approach, that does not require
the empirical mean to be well-concentrated.

Our motivating pre-theorem The basic idea of our approach is very simple: instead of using the
sample mean, bound the off-sample risk using a more robust estimator which is easy to compute
directly, and which allows risk bounds even under unbounded, potentially heavy-tailed losses. Define
a new approximation of the risk by

R̂ψ(h) ..=
s

n

n∑
i=1

ψ

(
l(h; zi)

s

)
, (10)

for s > 0. Note that this is just a direct application of the robust estimator defined in (3) to the case of
a loss which depends on the choice of candidate h ∈ H. As a motivating result, we basically re-prove
McAllester’s result (Theorem 6) under much weaker assumptions on the loss, using the statistical
properties of the new risk estimator (10), rather than relying on classical Chernoff inequalities.
Theorem 7 (Pre-theorem). Let ν be a prior probability distribution over H, assumed countable.
Assume that ν(h) > 0 for all h ∈ H, and that m2(h) ..= E l(h; z)2 <∞ for all h ∈ H. Setting the
scale in (10) to s2

h = nm2(h)/2 log(δ−1), then with probability no less than 1− 2δ, for any choice
of h ∈ H, we have

R(h) ≤ R̂ψ(h) +

√
2m2(h) (log(1/ν(h)) + log(1/δ))

n
.

Remark 8. We note that all quantities on the right-hand side of Theorem 7 are easily computed
based on the sample, except for the second moment m2, which in practice must be replaced with an
empirical estimate. With an empirical estimate of m2 in place, the upper bound can easily be used to
derive a learning algorithm.

Uncountable model case Next we extend the previous motivating theorem to a more general result
on a potentially uncountableH, using stochastic learning algorithms, as has become standard in the
PAC-Bayes literature. We need a few technical conditions, listed below:

1. Bounds on lower-order moments. For all h ∈ H, we require Eµ l(h; z)2 ≤ M2 < ∞,
Eµ l(h; z)3 ≤M3 <∞.

2. Bounds on the risk. For all h ∈ H, we require R(h) ≤
√
nM2/(4 log(δ−1)).

3. Large enough confidence. We require δ ≤ exp(−1/9) ≈ 0.89.

These conditions are quite reasonable, and easily realized under heavy-tailed data, with just lower-
order moment assumptions on µ and say a compact class H. The new terms that appear in our
bounds that do no appear in previous works are Ĝρ,ψ ..= Eρ R̂ψ and ν∗n(H) = Eν exp(

√
n(R −

R̂ψ))/Eν exp(R− R̂ψ). The former is the expectation of the proposed robust estimator with respect
to posterior ρ, and the latter is a term that depends directly on the quality of the prior ν.
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Theorem 9. Let ν be a prior distribution on modelH. Let the three assumptions listed above hold.
Setting the scale in (10) to s2 = nM2/2 log(δ−1), then with probability no greater than 1− δ over
the random draw of the sample, it holds that

Gρ ≤ Ĝρ,ψ +
1√
n

(
K(ρ; ν) +

log(8πM2δ
−2)

2
+M2 + ν∗n(H)− 1

)
+O

(
1

n

)
for any choice of probability distribution ρ onH, since Gρ <∞ by assumption.
Remark 10. As is evident from the statement of Theorem 9, the convergence rate is clear for all terms
but ν∗n(H)/

√
n. In our proof, we use a modified version of the elegant and now-standard strategy

formulated by Bégin et al. [5]. A glance at the proof shows that under this strategy, there is essentially
no way to avoid dependence on ν∗n(H). Since the random variable R − R̂ψ is bounded over the
random draw of the sample and h ∼ ν, the bounds still hold and are non-trivial. That said, ν∗n(H)
may indeed increase as n→∞, potentially spoiling the

√
n rate, and even consistency in the worst

case. Clearly ν∗n(H) presents no troubles if R− R̂ψ ≤ 0 on a high-probability event, but note that
this essentially amounts to asking for a prior that on average realizes bounds that are better than
we can guarantee for any posterior though the above analysis. Such a prior may indeed exist, but
if it were known, then that would eliminate the need for doing any learning at all. If the deviations
R− R̂ψ are truly sub-Gaussian [6], then the

√
n rate can be easily obtained. However, impossibility

results from Devroye et al. [11] suggest that under just a few finite moment assumptions, such an
estimator cannot be constructed. As such, here we see a clear limitation of the established PAC-Bayes
analytical framework under potentially heavy-tailed data. Since the change of measures step in the
proof is fundamental to the basic argument, it appears that concessions will have to be made, either in
the form of slower rates, deviations larger than the relative entropy, or weaker dependence on 1/δ.
Remark 11. Note that while in its tightest form, the above bound requires knowledge of Eµ l(h; z)2,
we may set s > 0 used to define R̂ψ using any valid upper bound M2, under which the above bound
still holds as-is, using known quantities. Furthermore, for reference the content of the O(1/n) term
in the above bound takes the form

1

n

(
2
√
V log(δ−1) +

M3 log(δ−1)

3M2
√
n

)
where V is an upper bound on the variance varµ l(h; z) ≤ V <∞ over h ∈ H.

As a principled approach to deriving stochastic learning algorithms, one naturally considers the
choice of posterior ρ in Theorem 9 that minimizes the upper bound. This is typically referred to as
the optimal Gibbs posterior [12], and takes a form which is easily characterized, as we prove in the
following proposition.
Proposition 12 (Robust optimal Gibbs posterior). The upper bound of Theorem 9 is optimized by a
data-dependent posterior distribution ρ̂, defined in terms of its density function with respect to the
prior ν as (

dρ̂

dν

)
(h) =

exp
(
−
√
nR̂ψ(h)

)
Eν exp

(
−
√
nR̂ψ

) .
Furthermore, the risk bound under the optimal Gibbs posterior takes the form

Gρ̂ ≤
1√
n

(
logEν exp

(√
nR̂ψ

)
+

log(8πM2δ
−1)

2
+M2 + ν∗n(H)− 1

)
+O

(
1

n

)
with probability no less than 1− δ over the draw of the sample.
Remark 13 (Comparison with traditional Gibbs posterior). In traditional PAC-Bayes analysis [12,
Equation 8], the optimal Gibbs posterior, let us write ρ̂emp, is defined by(

dρ̂emp

dν

)
(h) =

exp
(
−nR̂(h)

)
Eν exp

(
−nR̂

)
where R̂(h) = n−1

∑n
i=1 l(h; zi) is the empirical risk. We have nR̂ and

√
nR̂ψ , but since scaling in

the latter case should be done with s ∝
√
n, so in both cases the 1/n factor cancels out. In the special
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case of the negative log-likelihood loss, Germain et al. [12] demonstrate that the optimal Gibbs
posterior coincides with the classical Bayesian posterior. As noted by Alquier et al. [3], the optimal
Gibbs posterior has shown strong empirical performance in practice, and variational approaches
have been proposed as efficient alternatives to more traditional MCMC-based implementations.
Comparison of both the computational and learning efficiency of our proposed “robust Gibbs posterior”
with the traditional Gibbs posterior is a point of significant interest moving forward.

5 Empirical analysis

In this section, we use tightly controlled simulations to investigate how the performance of x̂ (cf. (3)
and Proposition 4) compares with the sample mean and other robust estimators. We pay particular
attention to how performance depends on the underlying distribution family, the value of second
moments, and the sample size.

Experimental setup For each experimental setting and each independent trial, we generate a
sample x1, . . . , xn of size n, compute some estimator {xi}ni=1 7→ x̂, and record the deviation
|x̂− Eµ |. The sample sizes range over n ∈ {10, 20, 30, . . . , 100}, and the number of trials is 104.
We draw data from two distribution families, the Normal family with mean a and variance b2, and the
log-Normal family, with log-mean alog and log-variance b2log, under multiple parameter settings. In
particular, we consider the impact of shifting the distribution location over [−40.0, 40.0], with small
and large variance settings. Regarding the variance, we have “low,” “mid,” and “high” settings, which
correspond to b = 0.5, 5.0, 50.0 in the Normal case, and blog = 1.1, 1.35, 1.75 in the log-Normal
case. Over all settings, the log-location parameter of the log-Normal data is fixed at alog = 0. Shifting
the Normal data is trivially accompished by taking the desired a ∈ [−40.0, 40.0]. Shifting the
log-Normal data is accomplished by subtracting the true mean (pre-shift) equal to exp(alog + b2log/2)
to center the data, and subsequently adding the desired location.

The methods being compared are as follows: mean denotes the empirical mean, med the empirical
median,4 mult_g is the estimator of Holland [13] using smoothed Gaussian noise, mult_b the
proposed estimator x̂ defined in (3) using smoothed Bernoulli noise, and finally mult_bc the centered
version of x̂, see the discussion culminating in (9). The latter methods are given access to the true
variance or second moment as needed for scaling purposes, and all algorithms are run with confidence
parameter δ = 0.01.

Impact of distribution family In Figure 2, we give histograms of the deviations for each method
of interest under high variance settings. Colored vertical rules correspond to the error bounds for
x̂ under Gaussian noise and Bernoulli noise (bound via Proposition 4), with probability δ. When
the standard deviation is not much larger than the mean, we can see substantial improvement over
traditional estimators. The bias introduced by the different x̂ choices is clearly far smaller on average
than the median, with substantially improved sensitivity to outliers when compared with the mean.
The centered version of x̂ has a deviation distribution somewhere between that of the empirical mean
and that of the other x̂ choices.

Impact of distribution location In Figure 3 (a), we plot the graph of average/median deviations
over trials, taken as a function of the true location Eµ x. From these results, two clear observations
can be made. First, note that the performance of the Gaussian-type (mult_g) and Bernoulli-type
(mult_b) estimators methods tend to differ greatly as a function of the true mean; in particular, we
see that the bias of the Gaussian case is far more sensitive to the true location, providing strong
evidence for use of our proposed Bernoulli version, which is less expensive, essentially uniformly
better than the Gaussian version (as we would expect from the tighter bounds), with error growing
slower as a function of the true mean value. Second, the fact that the centering procedure works very
well to mitigate the effect of the second moment value is lucid, also a price is paid in overall accuracy
due to the naive sample-splitting technique discussed used.

Impact of sample size In Figure 3 (b), we show the graph of average/median deviations taken over
all trials, viewed as a function of the sample size n. The most distinct observation that can be made

4After sorting, this is computed as the middle point when n is odd, or the average of the two middle points
when n is even.
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Figure 2: Histograms of deviations |x̂ − Eµ x| for different distributions and estimators, with
accompanying error bounds. Sample size is n = 10. Distributions centered such that mean is equal
to “low” level standard deviation. Top: Normal data. Bottom: log-Normal data.
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Figure 3: (a) Deviations |x̂−Eµ x| as a function of the true mean Eµ x. (b) Deviations |x̂−Eµ x|
as a function of the sample size n. In both sub-figures, left is Normal data, right is log-Normal data.

here is that the estimator x̂ (3) considered here has learning efficiency which is far superior to the
empirical mean and median, though as expected the centered version of x̂ has poorer efficiency, a
direct result of the sample-splitting scheme used in its definition. As discussed before, this comes
with the caveat that the mean cannot be too much larger than the standard deviation; when the second
moment is exceedingly large, this leads to a rather large bias as seen in Figure 3 (a) previously.

6 Conclusions

The main contribution of this paper was to develop a novel approach to obtaining PAC-Bayesian
learning guarantees, which admits deviations with exponential tails under weak moment assumptions
on the underlying loss distribution, while still being computationally amenable. In this work, our
chief interest was the fundamental problem of obtaining strong guarantees for stochastic learning
algorithms which can reflect prior knowledge about the data-generating process, from which we
derived a new robust Gibbs posterior. Moving forward, a deeper study of the statistical nature of this
new stochastic learning algorithm, as well as computational considerations to be made in practice are
of significant interest.
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A Technical appendix

A.1 Preparatory results

Relative entropy Here we recall the basic notions of the relative entropy, or Kullback-Leibler
divergence, between two probability distributions. Consider P and Q, both defined over a finite space
Ω. The relative entropy of P from Q is defined

K(P ;Q) ..=
∑
ω∈Ω

P (ω) log

(
P (ω)

Q(ω)

)
, (11)

where this definition clearly includes the possibility that K(P ;Q) =∞, which occurs only when Q
assigns zero probability to an element that P assigns positive probability to.

More generally, when Ω is potentially uncountably infinite, consider two probabilities P and Q on
the measurable space (Ω,A), where A is an appropriate σ-algebra.5 In this case, the relative entropy
is defined

K(P ;Q) ..=

∫
Ω

log

(
dP

dQ

)
dP, P � Q (12)

where dP/dQ denotes the Radon-Nikodym derivative of P with respect to Q, typically called the
density of P with respect to Q. The basic underlying technical assumption, denoted P � Q, is that
P be absolutely continuous with respect to Q, meaning that P (A) = 0 whenever Q(A) = 0, for
A ∈ A. In the event that P � Q does not hold, by convention we define K(P ;Q) ..= ∞. Recall
that the Radon-Nikodym theorem guarantees that when P � Q, there exists a measurable function
g ≥ 0 such that

P (A) =

∫
A

g dQ, A ∈ A.

This function g is unique in the sense that if there exists another f satisfying the above equality, then
f = g almost everywhere [Q]. This uniqueness justifies using the notation dP/dQ, and calling this
function the density of P (rather than a density of P ).
Lemma 14 (Chain rule). On measure space (Ω,A, Q), let g ≥ 0 be a Borel-measurable function,
and define measure P by

P (A) =

∫
A

g dQ, A ∈ A.

For any Borel-measurable function f on Ω, it follows that∫
Ω

f dP =

∫
Ω

fg dQ.

Proof. See section 2.2, problem 4 of Ash and Doleans-Dade [4].

Lemma 15 (Non-negativity of relative entropy). For any probabilities P andQ, we have K(P ;Q) ≥
0.

Proof of Lemma 15. If P � Q does not hold, then K(P ;Q) = ∞ and non-negativity follows
trivially. As for the case of P � Q, we begin with the basic logarithmic inequality x < (1 +
x) log(1 + x) for any x > −1 [1]. We thus have x − 1 < x log(x) for any x > 0. Using this
inequality and the chain rule (Lemma 14), we have

K(P ;Q) = EP log
dP

dQ

= EQ
dP

dQ
log

dP

dQ

≥ EQ

(
dP

dQ
− 1

)
= 0.

The final equality uses the Radon-Nikodym theorem.
5A certain degree of measure theory is assumed in this exposition, at approximately the level of the first few

chapters of Ash and Doleans-Dade [4].
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Lemma 16 (Lower bound on Bernoulli relative entropy). The relative entropy between Bernoulli(p)
and Bernoulli(q) is bounded below by K(p; q) ≥ 2(p− q)2.

Proof of Lemma 16. Consider the function f(p, q) defined

f(p, q) ..= K(p; q)− 2(p− q)2.

Fix any arbitrary p ∈ (0, 1), and take the derivative with respect to q, noting that

d

dq
f(p, q) = (−1)(p− q)

(
1

q(1− q)
− 4

)
.

Using the basic fact that q(1− q) ≤ 1/4 for all q ∈ (0, 1), we have that the factor (q(1− q))−1 − 4
is non-negative. Thus, the slope is negative when p > q, postive when p < q, and zero when p = q.
Thus this is the only minimum of the function in q. Note that f(p, p) = 0, and so for all q ∈ (0, 1) it
follows that f(p, q) ≥ 0. This holds for any choice of p as well, implying the desired result by the
definition of f .

Lemma 17 (Chernoff bound for Bernoulli data). Let x1, . . . , xn be independent and identically
distributed random variables, taking values x ∈ {0, 1}. Write x ..= n−1

∑n
i=1 xi for the sample

mean. The tails of the sample mean deviations can be bounded as

P {x−Ex > ε} ≤ exp
(
−2nε2

)
P {x−Ex < −ε} ≤ exp

(
−2nε2

)
for any 0 < ε < 1−Ex.

Proof of Lemma 17. For random variable x ∼ Bernoulli(θ), recall that using Markov’s inequality,
for any t > 0 we have

P{X > ε} = P{exp(tX) > exp(tε)}
≤ exp(−tε)E etX

= exp(−tε)
(
1− θ + θet

)
.

Taking the derivative of this upper bound with respect to t and setting it to zero, we obtain the
condition

t∗(ε) = log
(ε
θ

)(1− θ
1− ε

)
,

where we write t∗(ε) to emphasize the dependence of t∗ on ε. We must have t∗(ε) > 0 for the
bounds to hold. The value being passed into the log function must be greater than one. Fortunately,
some simple re-arranging of factors shows that(ε

θ

)(1− θ
1− ε

)
> 1 ⇐⇒ ε > θ.

So we have t∗(ε) > 0 whenever θ < ε < 1. Plugging this in, some algebra shows that

exp(−t∗ε)
(

1− θ + θet
∗
)

= exp

(
(1− ε) log

(
1− θ
1− ε

)
+ ε log

(
θ

ε

))
= exp (−K(ε; θ))

where we note that the form given in precisely the relative entropy between Bernoulli(ε) and
Bernoulli(θ).

Returning to the setting of interest with x1, . . . , xn and the sample mean x, note that using Markov’s
inequality again and the iid assumption on the data, we have

P{x > θ + ε} = P

{
n∑
i=1

xi > n(θ + ε)

}
≤
(
exp(−t(θ + ε))Eµ e

tx
)n
.
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Setting t = t∗(ε+ θ) then, and using a classical lower bound on the relative entropy (Lemma 16), we
obtain

P{x > θ + ε} ≤ (exp (−K(θ + ε; θ)))
n

≤
(
exp

(
−2((θ + ε)− θ)2

))n
= exp

(
−2nε2

)
. (13)

Note that since ε+ θ > θ for all ε > 0, it follows that t∗(ε+ θ) > 0 for all 0 < ε < 1− θ.

Next we seek a lower bound on x− θ, equivalently an upper bound on −x+ θ. This can be done by
essentially the same process. Again for X ∼ Bernoulli(θ), using Markov’s inequality, we have for
any s > 0 that

P{X − θ < −ε} = P{−X > ε− θ}
= P{exp(−sX) > exp(s(ε− θ))}
≤ exp(−s(ε− θ))E e−sX

= exp(s(θ − ε))
(
1− θ + θe−s

)
.

This is, of course, a rather familiar form. Writing a = θ − ε, note that the function

exp(sa)
(
1− θ + θe−s

)
is minimized as a function of s at

s∗ = log

(
1− a
1− θ

)(
θ

a

)
,

which analogous to earlier in the proof, satisfies s∗ > 0 only when θ > a = θ − ε, which is to say
whenever ε > 0. Keeping with the a notation, note that plugging in s∗ to the bound above, we have

exp(s∗a)
(

1− θ + θe−s
∗
)

= exp

(
(1− a) log

(
1− θ
1− a

)
+ a log

(
θ

a

))
= exp (−K(a; θ)) ,

the exact same bound as before. It follows that

P{x− θ < −ε} = P{−x > ε− θ}

= P

{
−

n∑
i=1

xi > n(ε− θ)

}
≤
(
exp(s(θ − ε))Eµ e−sx

)n
.

Setting s = t∗ with a = θ − ε, in a form analogous to the upper bounds done earlier, we have

P{x− θ < −ε} ≤ (exp (−K(θ − ε; θ)))n

≤
(
exp

(
−2((θ − ε)− θ)2

))n
= exp

(
−2nε2

)
. (14)

Taking a union bound over the two “bad events” in (13) and (14), we have

P{|x− θ| < −ε} ≤ P{x− θ < −ε} ∪P{x− θ > ε}
≤ P{x− θ < −ε}+ P{x− θ > ε}
≤ 2 exp

(
−2nε2

)
,

concluding the proof.

Fundamental PAC-Bayes identity The following identity is fundamental to theoretical PAC-
Bayesian analysis, and is a well-known result. Catoni [7, p. 159–160] for example gives a concise
proof, but for completeness, we provide a step-by-step proof of this result here. The key elements of
the following theorem are the prior ν ∈M1

+, and candidate posterior ρ ∈M1
+.
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Theorem 18. For any measurable function h,

logEν exp(h) = sup
ρ∈M1

+

(
sup
b∈R

Eρ(b ∧ h)−K(ρ; ν)

)
.

In the special case where h is bounded above, then the above equality simplifies to
logEν exp(h) = sup

ρ∈M1
+

(Eρ h−K(ρ; ν)) .

Proof of Theorem 18. The key to this proof is a simple expansion of the relative entropy between an
arbitrary ρ ∈ M1

+ and a specially modified prior ν∗. This ν∗ is defined in terms of the following
requirement on the density function dν∗/dν: almost everywhere [ν], we must have(

dν∗

dν

)
(ω) = g∗(ω) ..=

exp(h(ω))

Eν exp(h)
.

Satisfying this is easy by construction. Just define ν∗ using g∗, as

ν∗(A) ..=

∫
A

g∗ dν, A ∈ A.

Since g∗ ≥ 0, it follows that ν∗ is non-negative, and thus a measure on (Ω,A). As long as exp(h) is
ν-integrable, we have ∫

A

g∗ dν = (Eν exp(h))
−1
∫
A

exp(h(ω)) dν(ω) ≤ 1,

and also that ν∗(Ω) = 1, so ν∗ ∈M1
+. Furthermore, note that ν∗ � ν and ν � ν∗.

Now, before proving all the necessary facts, let us run through the primary step of the argument using
the following series of identities, which should be rather intuitive even at first glance:

K(ρ; ν∗) = Eρ log

(
dρ

dν∗

)
= Eρ log

(
dρ

dν

dν

dν∗

)
(15)

= Eρ

(
log

dρ

dν
+ log

dν

dν∗

)
(16)

= Eρ

(
log

dρ

dν
+ logEν exp(h)− h

)
.

When the left-hand side is finite, so is the right-hand side, and they are equal. Furthermore, when the
left-hand side is infinite, so is the right-hand side.

To prove the above chain of equalities, first start by writing g(ω) = (dν∗/dν)(ω), and observe that
by the chain rule (Lemma 14), we have∫

A

(
1

g(ω)

)
dν∗ =

∫
A

(
1

g(ω)

)
g(ω) dν(ω) = ν(A),

for any A ∈ A. By ν � ν∗ and the Radon-Nikodym theorem, it follows that almost everywhere [ν],
we have (

dν

dν∗

)
(ω) =

1

g(ω)
=

Eν exp(h)

exp(h(ω))
, (17)

which justifies writing dν/dν∗ = 1/(dν∗/dν). Another basic fact using the chain rule (Lemma 14)
is that for each A ∈ A,∫

A

(
dρ

dν

)
(ω)

(
Eν exp(h)

exp(h(ω))

)
dν∗(ω) =

∫
A

(
dρ

dν

)
(ω)

(
Eν exp(h)

exp(h(ω))

)(
exp(h(ω))

Eν exp(h)

)
dν(ω)

=

∫
A

dρ

dν
dν

= ρ(A)

=

∫
A

dρ

dν∗
dν∗

13



where the final three equalities follow from the Radon-Nikodym theorem and ρ� ν and ρ� ν∗.
Taking this basic fact and plugging in (17), we have∫

A

dρ

dν

dν

dν∗
dν∗ =

∫
A

dρ

dν∗
dν∗, A ∈ A

and then by uniqueness of the density function, that almost everywhere [ν∗],
dρ

dν

dν

dν∗
=

dρ

dν∗
.

Since any statement a.e. [ν∗] holds a.e. [ρ] by ρ� ν∗, this proves (15).

The first equality holds from the definition of relative entropy, and with (15) now established, the
remaining two equalities follow immediately from (17).

The next step is to show that we can meaningfully write

Eρ

(
log

dρ

dν
+ logEν exp(h)− h

)
= K(ρ; ν) + logEν exp(h)−Eρ h (18)

in the sense that both sides are well-defined, and take on equal values in R ∪ {∞}. To prove this,
we would like to use the basic additivity property of Lebesgue integrals [4, Theorem 1.6.3]. First
observe that the integrand of the left-hand side is well-defined and equal to K(ρ; ν∗). We need to
show that the right-hand side is also well-defined. The first term K(ρ; ν) ≥ 0 > −∞ by Lemma 15,
and thus while it cannot be −∞, it takes values in R ∪ {∞}. The remaining term depends on h. In
the case that h is bounded above, we have that Eρ h <∞, meaning that the right-hand side of (18) is
well-defined, which implies via additivity that both sides of (18) take values in R ∪ {∞}, and are
equal in both the finite and infinite cases.

Note that when h is not bounded above, this leaves the possibility that Eρ h =∞, which would lead
to the ambiguous∞−∞ on the right-hand side of (18), spoiling the additivity property.

With the assumption of h bounded above, and re-arranging some terms, we can write
K(ρ; ν∗) = logEν exp(h)− (Eρ h−K(ρ; ν)) .

By non-negativity of the relative entropy (Lemma 15), the left-hand side is minimized when ρ = ν∗,
in which case it takes the value K(ν∗; ν∗) = 0. Note that as ν∗ ∈M1

+, the supremum of the term in
parentheses on the right-hand side is achieved at ρ = ν∗. This means we can write

logEν exp(h) = sup
ρ∈M1

+

(Eρ h−K(ρ; ν)) (19)

for h bounded above.

To complete the proof, we must consider the case where h is unbounded. As preparation, create
a measurable function sequence (hk) defined by hk = bk ∧ h, where (bk) satisfies bk ↑ ∞ and is
increasing. Since we have

lim
k→∞

exp(hk(ω)) = exp(h(ω))

pointwise in ω ∈ Ω, and hk ≤ hk+1 ≤ . . . ≤ h for any k, by the monotone convergence theorem,
we have

lim
k→∞

Eν exp(hk) = Eν exp(h),

and using the continuity of the log function,

lim
k→∞

logEν exp(hk) = log

(
lim
k→∞

Eν exp(hk)

)
= logEν exp(h).

This means we can write
logEν exp(h) = sup

b∈R
logEν exp(b ∧ h)

= sup
b∈R

sup
ρ∈M1

+

(Eρ(b ∧ h)−K(ρ; ν)) (20)

= sup
ρ∈M1

+

sup
b∈R

(Eρ(b ∧ h)−K(ρ; ν)) (21)

= sup
ρ∈M1

+

(
sup
b∈R

Eρ(b ∧ h)−K(ρ; ν)

)
.
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Since for any b ∈ R, we have that b ∧ h ≤ b < ∞, we can use (19), the key identity for the case
of bounded functions, which immediately implies (20). Finally, regarding the swap of supremum
operations, note that the function of interest is

f(ρ, b) = Eρ(b ∧ h)−K(ρ; ν), (ρ, b) ∈M1
+ × R.

For an arbitrary sequence (ρk, bk), observe that for all k,

f(ρk, bk) ≤ sup
ρ
f(ρ, bk) ≤ sup

b
sup
ρ
f(ρ, b)

f(ρk, bk) ≤ sup
b
f(ρk, b) ≤ sup

ρ
sup
b
f(ρ, b).

If f is unbounded onM1
+×R, then the sequence (ρk, bk) can be constructed such that f(ρk, bk)→∞

as k →∞, implying that in both cases the supremum is infinite, so equality holds trivially. On the
other hand, when f is bounded above, the sequence can be constructed such that f(ρk, bk)→ B, and
so the above inequalities imply

B = lim
k→∞

f(ρk, bk) ≤ sup
b

sup
ρ
f(ρ, b) ≤ B

B = lim
k→∞

f(ρk, bk) ≤ sup
ρ

sup
b
f(ρ, b) ≤ B

and thus, as desired, the step to (21) holds. This concludes the chain of equalities and the proof.

A.2 Proofs of results in the main text

Proof of Lemma 3. Start with the following elementary inequality: if X is a random variable such
that E eX ≤ 1, then for any δ ∈ (0, 1), we have that X exceeds log(δ−1) with probability no greater
than δ. To see this, observe that

P{X ≥ log(δ−1)} = P{exp(X) ≥ 1/δ} = E I{δ exp(X) ≥ 1} ≤ E δeX ≤ δ. (22)

Next, we set the function h in Theorem 18 to be a sum of functions depending on both the data and
the noise, as

h(ε) =

n∑
i=1

f(xi, ε)− n logEµ exp(f(x, ε)).

Since f is bounded on R2 by hypothesis, we have that h is also bounded. Using Theorem 18, we have

B0
..= sup

ρ∈M1
+

(Eρ h(ε)−K(ρ; ν))

= logEν

(
exp (

∑n
i=1 f(xi, ε))

(Eµ exp(f(x, ε)))n

)
.

Next, taking expectation with respect to the sample, observe that

E exp(B0) = E

∫ (
exp (

∑n
i=1 f(xi, ε))

(Eµ exp(f(x, ε)))n

)
ν(ε)

=

∫ (
E exp (

∑n
i=1 f(xi, ε))

(Eµ exp(f(x, ε)))n

)
ν(ε)

= 1.

The above equalities follow from straightforward algebraic manipulations, independence of the data,
and taking the integration over the sample inside the integration over the noise, valid using Fubini’s
theorem. Applying (22) with X = B0, noting that the only randomness is due to the sample, it holds
that for probability at least 1− δ, uniform in the choice of ρ, we have

Eρ h(ε)−K(ρ; ν) ≤ log(δ−1).

Plugging in the above definition of h and dividing by n, we have

1

n

n∑
i=1

∫
f(xi, ε) dρ(ε) ≤

∫
logEµ exp(f(x, ε)) dρ(ε) +

K(ρ; ν) + log(δ−1)

n
.
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Finally, since the noise observations are iid, we have

1

n

n∑
i=1

∫
f(xi, ε) dρ(ε) =

1

n

n∑
i=1

∫
f(xi, εi) dρ(εi)

= E

(
1

n

n∑
i=1

f(xi, εi)

)
with expectation over the noise sample. This equality yields the desired result.

Proof of Proposition 4. First, note that the upper bound derived from (5) holds uniformly in the
choice of θ on a (1− δ) high-probability event. Setting θ = 1/2 and solving for the optimal s > 0
setting is just calculus. It remains to obtain a corresponding lower bound on x̂ − Eµ x. To do so,
consider the analogous setting of Bernoulli ν and ρ, but this time on the domain {−1, 0}, with
ρ{−1} = θ and ν{−1} = 1/2. Using (1) and Lemma 3 again, we have(

−θ
s

)
x̂ ≤ −θEµ x

s
+
θEµ x

2

2s2
+

1

n

(
θ log(2θ) + (1− θ) log(2(1− θ)) + log(δ−1)

)
where we note Eρ ε = −θ and Eρ ε

2 = Eρ |ε| = θ. This yields a high-probability lower bound in
the desired form when we set θ = 1/2, since an upper bound on −x̂+ Eµ x is equivalent to a lower
bound on x̂ − Eµ x. However, since we have changed the prior in this case, the high-probability
event here need not be the same as that for the upper bound, and as such, we must take a union bound
over these two events to obtain the desired final result.

Proof of Theorem 6. For clean notation, denote the empirical risk as

R̂(h) =
1

n

n∑
i=1

l(h; zi), h ∈ H.

Using a classical Chernoff bound specialized to the case of Bernoulli observations (Lemma 17), we
have that for any h ∈ H, it holds that

P
{
R(h)− R̂(h) > ε

}
≤ exp

(
−2nε2

)
.

Rearranging terms, it follows immediately that with probability no less than 1− ν(h) δ, we have

R(h)− R̂(h) ≤ ε∗(h) ..=

√
log(1/ν(h)) + log(1/δ)

2n
.

The desired result follows from a union bound:

P
{
∃h ∈ H s.t. R(h)− R̂(h) > ε∗(h)

}
≤ P

⋃
h∈H

{
R(h)− R̂(h) > ε∗(h)

}
≤
∑
h∈H

P
{
R(h)− R̂(h) > ε∗(h)

}
≤
∑
h∈H

ν(h)δ

= δ.

The event on the left-hand side of the above inequality is precisely that of the hypothesis, namely
the “bad event” on which the sample is such that the risk R(h) exceeds the given bound for some
candidate h ∈ H.

Proof of Theorem 7. We start by making use of the pointwise deviation bound given in Proposition
4, which tells us that with (1− 2δ) high probability

R(h) ≤ s

n

n∑
i=1

ψ

(
l(h; zi)

s

)
+

√
2m2(h) log(δ−1)

n
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for any pre-fixed h ∈ H. Replacing δ with ν(h)δ gives the key error level

ε∗(h) ..=

√
2m2(h) (log(1/ν(h)) + log(1/δ))

n
,

and using the union bound argument in the proof of Theorem 6, we have

P
{
∃h ∈ H s.t. R(h)− R̂ψ(h) > ε∗(h)

}
≤ 2δ.

Proof of Theorem 9. To begin, let us recall a useful “change of measures” inequality,6 which can be
immediately derived from our proof of Theorem 18. In particular, recall from identity (18) that given
some prior ν and constructing ν∗ such that almost everywhere [ν] one has(

dν∗

dρ

)
(h) =

exp(ϕ(h))

Eν exp(ϕ)
,

it follows that

K(ρ; ν∗) = Eρ

(
log

dρ

dν
+ logEν exp(ϕ)− ϕ

)
= K(ρ; ν) + logEν exp(ϕ)−Eρ ϕ

whenever Eρ ϕ < ∞. In the case where Eρ ϕ = ∞, upper bounds are of course meaningless.
Re-arranging, observe that since K(ρ; ν∗) ≥ 0, it follows that

Eρ ϕ ≤K(ρ; ν) + logEν exp(ϕ). (23)

This inequality given in (23) is deterministic, holds for any choice of ρ, and is a standard technical
tool in deriving PAC-Bayes bounds.

We shall introduce a minor modification to this now-standard strategy in order to make the subsequent
results more lucid. Instead of ν∗ as just characterized above, define ν∗n such that almost surely [ν],
we have (

dν∗n
dρ

)
(h) = g(h) ..=

exp(ϕ(h))

Eν exp(ϕ/cn)
,

where 1 ≤ cn < ∞ is a function of the sample size n, which increases monotonically as cn ↑ ∞
when n→∞ (e.g., setting cn =

√
n). To explicitly construct such a measure, one can define it by

ν∗n(A) ..=
∫
A
g dν, for all A ⊂ A, where (H,A) is our measurable space of interest. In this paper,

we always7 have ϕ > −∞, implying that Eν exp(ϕ) > 0. Also by assumption, since R is bounded
over h ∈ H, we have Eν exp(ϕ) <∞, which in turn implies

0 < ν∗n(H) =
Eν exp(ϕ)

Eν exp(ϕ/cn)
<∞,

and so ν∗n is a finite measure. Note however that both ν∗n(H) > 1 and ν∗n(H) < 1 are possible, so in
general ν∗n need not be a probability measure. By construction, we have ν∗n � ν. Since ϕ(h) > −∞
for all h ∈ H, we have that g > 0 and thus the measurability of g implies the measurability of 1/g.
Using the chain rule (Lemma 14), it follows that for any A ∈ A,∫

A

(
1

g

)
dν∗n =

∫
A

(
1

g

)
(g) dν = ν(A).

As such, we have ν � ν∗n, and by the Radon-Nikonym theorem, we may write 1/g = dν/dν∗n since
such a function is unique almost everywhere [ν∗n]. As long as ρ� ν, which in turn implies ρ� ν∗n,
so that with use of the chain rule and Radon-Nikodym, we have∫

A

(
dρ

dν

)(
1

g

)
dν∗n =

∫
A

(
dρ

dν

)(
1

g

)
g dν = ρ(A) =

∫
A

(
dρ

dν∗n

)
dν∗n.

6There are other very closely related approaches to this proof. See Tolstikhin and Seldin [21], Bégin et al.
[5] for some recent examples. Furthermore, we note that the key facts used here are also present in Catoni [8].

7We will only be using ϕ ∝ R− R̂ψ , so this statement holds via R ≥ 0 and ‖Rψ‖∞ <∞.
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Taking the two ends of this string of equalities, by Radon-Nikodym it holds that

dρ

dν

dν

ν∗n
=

dρ

dν∗n

a.e. [ν∗n], and thus a.e. [ρ] as well. Following the argument of Theorem 18, we have that

K(ρ; ν∗n) = K(ρ; ν) + logEν exp(ϕ/cn)−Eρ ϕ.

The tradeoff for using ν∗n which need not be a probability comes in deriving a lower bound on
K(ν; ν∗n). In Lemma 15 we showed how the relative entropy between probability measures is
non-negative. Non-negativity does not necessarily hold for general measures, but analogous lower
bounds can be readily derived for our special case as

K(ρ; ν∗n) = Eρ log
dρ

dν∗n
= Eν∗

n

dρ

dν∗n
log

dρ

dν∗n
≥ Eν∗

n

(
dρ

dν∗n
− 1

)
= 1− ν∗n(H),

where the last inequality uses the fact that ρ is a probability and ρ(A) =
∫
A

(dρ/dν∗n) dν∗n for all
A ∈ A. Taking this with our decomposition of K(ρ; ν∗n), we have

Eρ ϕ ≤K(ρ; ν) + logEν exp (ϕ/cn)− 1 + ν∗n(H), (24)

which amounts to a revised inequality based on change of measures, analogous to (23).

To keep notation clean, write

X(h) ..= R(h)− s

n

n∑
i=1

ψ

(
l(h; zi)

s

)
= R(h)− R̂ψ(h)

m2(h) ..= Eµ l(h; z)2

v(h) ..= Eµ(l(h; z)−R(h))2

Noting that X(h) is random with dependence on the sample, via Markov’s inequality we have

Eν e
X ≤ EnEν e

X

δ
, (25)

with probability no less than 1− δ. Here probability and En are with respect to the sample. Since R̂ψ
is bounded, as long as EρR <∞, we have EρX <∞, which lets us use the change of measures
inequality in a meaningful way. Now for cn > 0, observe that we have

cnEρX = Eρ cnX ≤K(ρ; ν) + logEν exp (X)− 1 + ν∗n(H)

≤K(ρ; ν) + log(δ−1) + logEnEν exp (X)− 1 + ν∗n(H)

= K(ρ; ν) + log(δ−1) + logEν En exp (X)− 1 + ν∗n(H)

with probability no less than 1− δ. The first inequality follows from modified change of measures
(24), the second inequality follows from (25), and the final interchange of integration operations
is valid using Fubini’s theorem [4]. Note that the 1 − δ “good event” depends only on ν (fixed in
advance) and not ρ. Thus, the above inequality holds on the good event, uniformly in ρ.

It remains to bound En exp(cX), for an arbitrary constant c > 0 (here we will have c = 1). Start by
breaking up the one-sided deviations as

X = R− R̂ψ =
(
R−En R̂ψ

)
+
(
En R̂ψ − R̂ψ

)
,

writing X(1)
..= R−En R̂ψ and X(2)

..= En R̂ψ − R̂ψ for convenience. We will take the terms X(1)

and X(2) one at a time. First, note that the function ψ can be written

ψ(u) =

(
u− u3

6

)(
I{u ≤

√
2} − I{u < −

√
2}
)

+
2
√

2

3

(
1− I{u ≤

√
2} − I{u < −

√
2}
)
.

(26)

Again for notational simplicity, writeL = l(h; z) andLi = l(h; zi), i ∈ [n], where h ∈ H is arbitrary.
Write E+

i
..=
{
Li ≤ s

√
2
}

and E−i ..=
{
Li < −s

√
2
}

. We are assuming non-negative losses, so that
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L ≥ 0. This means that I(E−i ) = 0 and P E−i = 0. We use this, as well as 1−P E+
i ≥ 0, in addition

to (26) in order to bound the expectation of our estimator R̂ψ from below, as follows.

En R̂ψ =
s

n

n∑
i=1

Eµ ψ

(
Li
s

)

=
s

n

n∑
i=1

[
Eµ

(
Li
s
− L3

i

6s3

)(
I(E+

i )− I(E−i )
)

+
2
√

2

3

(
1−P E+

i −P E−i
)]

≥ s

n

n∑
i=1

Eµ

(
Li
s
− L3

i

6s3

)
I(E+

i )

= Eµ LI{L ≤ s
√

2} − 1

6s2
Eµ L

3I{L ≤ s
√

2}

= R−Eµ LI{X > s
√

2} − 1

6s2
Eµ L

3I{L ≤ s
√

2}.

By assumption, we have Eµ L
3I{L ≤ s

√
2} ≤ EL3 ≤M3 <∞, implying that this lower bound is

non-trivial. Next we obtain a one-sided bound on the tails of the loss by

P
{
L > s

√
2
}

= P
{
L−R > s

√
2−R

}
≤ P

{
|L−R| > s

√
2−R

}
≤ Eµ |L−R|2(

s
√

2−R
)2 .

Note that the first inequality makes use of s
√

2 > R, which is implied by the bounds assumed on R,
namely that 1/2 ≥ R

√
log(δ−1)/(nM2).

Returning to the lower bound on R̂ψ , using Hölder’s inequality in conjunction with the tail bound we
just obtained, we get an upper bound in the form of

Eµ LI{L > s
√

2} = Eµ |LI{L > s
√

2}|

≤
√
Eµ L2 P{L > s

√
2}

≤
√

Eµ L2 Eµ |L−R|2(
s
√

2−R
)2 .

This means we can now say

En R̂ψ ≥ R−
√

Eµ L2 Eµ |L−R|2(
s
√

2−R
)2 − 1

6s2
Eµ L

3I{L ≤ s
√

2},

which re-arranged and written more succinctly gives us

X(1)(h) ≤
√

m2(h)v(h)(
s
√

2−R
)2 +

Eµ |l(h; z)|3

6s2

≤
√

M2V(
s
√

2−R
)2 +

M3

6s2

=

√√√√ V log(δ−1)

n
(

1−R
√

log(δ−1)/(nM2)
)2 +

M3 log(δ−1)

3M2n

≤ B(1)

..= 2

√
V log(δ−1)

n
+
M3 log(δ−1)

3M2n
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as desired. The final inequality uses the assumed bound on R. Note that this is a deterministic bound,
in that it is free of both the choice of h (i.e., random draw from ν or ρ) and the sample, which we are
integrating over.

Next, we look at the remaining deviations X(2) = En R̂ψ − R̂ψ. Writing Yi ..= (s/n)ψ(Li/s), we
have X(2) =

∑n
i=1(EYi − Yi). Since 0 ≤ ψ(u) ≤ 2

√
2/3 for u ≥ 0, and L ≥ 0, we have that

0 ≤ Yi ≤ 2
√

2s/(3n). It follows from Hoeffding’s inequality that for all ε > 0, we have

P
{
X(2) > ε

}
≤ exp

(
−2ε2

n(2
√

2s/(3n))2

)
= exp

(
−9ε2 log(δ−1)

2M2

)
. (27)

Note that this bound does not depend on the setting of δ ∈ (0, 1), which is fixed in advance. Also
note that while we are dealing with the sum of bounded, independent random variables, the scaling
factor s ∝

√
n makes it such that these deviations converge to some potentially non-zero constant in

the n→∞ limit, which is why n does not appear in the exponential on the right-hand side.

In any case, we can still readily use these sub-Gaussian tail bounds to control the expectation. Using
the classic identity relating the expectation to the tails of a distribution,

En exp
(
cX(2)

)
=

∫ ∞
0

P
{

exp
(
cX(2)

)
> ε
}
dε

=

∫ ∞
−∞

P
{

exp
(
cX(2)

)
> exp(ε)

}
exp(ε) dε (28)

where the second equality follows using integration by substitution. The right-hand side of (28) is
readily controlled as follows. Using (27) above, we have

P
{

exp
(
cX(2)

)
> exp(ε)

}
= P

{
X(2) > ε/c

}
≤ exp

(
−ε2

2σ2

)
where we have set σ2 ..= c2M2/(9 log(δ−1)). The key bound of interest can be compactly written as

En exp
(
cX(2)

)
≤ 2

∫ ∞
−∞

exp

(
− ε2

2σ2
+ ε

)
dε

= 2

∫ ∞
−∞

exp

(
− 1

2σ2

(
ε− σ2

)2
+
σ2

2

)
dε

= 2
√

2πσ exp

(
σ2

2

)∫ ∞
−∞

1√
2πσ

exp

(
− 1

2σ2

(
ε− σ2

)2)
dε

= 2
√

2πσ exp

(
σ2

2

)
.

Note that the first equality uses the usual “complete the square” identity, and the rest follows from
basic properties of the Gaussian integral. Filling in the definition of σ, we have

En exp
(
cX(2)

)
≤ 2
√

2π

(
c

√
M2

9 log(δ−1)

)
exp

(
c2M2

9 log(δ−1)

)
.

The right-hand side of this inequality is free of the choice of h ∈ H, and thus taking expectation with
respect to ν yields the same bound, i.e., the same bound holds for Eν En exp(cX(2)). Taking the log
of this upper bound, we thus may conclude that

logEν En exp(cX(2)) ≤
1

2

[
log(8πM2c

2)− log(9 log(δ−1))
]

+
c2M2

9 log(δ−1)

≤ 1

2
log(8πM2c

2) + c2M2

on an event of probability no less than 1 − δ. The latter inequality uses δ ≤ exp(−1/9). For the
result of interest here, we can let c = 1.
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Finally, going back to the bound on cnEρX , we can control the key term by

logEν En exp (X) = logEν En exp
(
X(1) +X(2)

)
= logEν

[
exp

(
X(1)

)
En exp

(
X(2)

)]
≤ B(1) + logEν En exp

(
X(2)

)
≤ B(1) +

1

2
log(8πM2c

2) + c2M2.

Setting cn =
√
n, we have

√
nEρX ≤K(ρ; ν) + log(δ−1) + logEν En exp (X)− 1 + ν∗n(H)

≤K(ρ; ν) + log(δ−1) + 2

√
V log(δ−1)

n
+
M3 log(δ−1)

3M2n
+

log(8πM2)

2
+M2 − 1 + ν∗n(H).

Dividing both sides by
√
n yields the desired result.

Proof of Proposition 12. To keep the notation clean, write X = X(h) = −
√
nR̂ψ(h). Similar to

the proof of Theorem 18, we have

K(ρ; ρ̂) = Eρ log

(
dρ

dρ̂

)
= Eρ log

(
dρ

dν

dν

dρ̂

)
= Eρ

(
log

dρ

dν
+ logEν exp(X)−X

)
= K(ρ; ν) + logEν exp(X)−EρX

whenever EρX <∞. Using non-negativity of the relative entropy (Lemma 15), the left-hand side of
this chain of equalities is minimized in ρ at ρ = ρ̂. Since logEν exp(X) is free of ρ, it follows that

ρ̂ ∈ arg min
ρ

(K(ρ; ν) + Eρ(−1)X)

= arg min
ρ

(
K(ρ; ν)√

n
+ Eρ R̂ψ(h)

)
= arg min

ρ

(
K(ρ; ν)√

n
+ Eρ R̂ψ(h) + C

)
where C is any term which is constant in ρ, for example all the terms in the upper bound of Theorem
9 besides Ĝρ,ψ + K(ρ; ν)/

√
n. This proves the result regarding the form of the new optimal Gibbs

posterior.

Evaluating the risk bound under this posterior is straightforward computation. Observe that

K(ρ̂; ν) = Eρ̂ log
dρ̂

dν
= Eρ̂ (X(h)− logEν exp (X))

= −
√
nEρ̂ R̂ψ − logEν exp

(
−
√
nR̂ψ

)
= logEν exp

(√
nR̂ψ

)
−
√
nEρ̂ R̂ψ.

Substituting this into the upper bound of Theorem 9, the robust empirical mean estimate terms cancel,
and we have

Gρ̂ ..= Eρ̂R ≤
1√
n

(
logEν exp

(√
nR̂ψ

)
+

log(8πM2δ
−2)

2
+M2 + ν∗n(H)− 1

)
+O

(
1

n

)
.
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