Supplementary material: First Order Motion Model
for Image Animation

Aliaksandr Siarohin Stéphane Lathuiliere
DISI, University of Trento DISI, University of Trento
aliaksandr.siarohin@unitn.it LTCI, Télécom Paris, Institut polytechnique de Paris
stephane.lathuilire@telecom-paris.fr

Sergey Tulyakov Elisa Ricci Nicu Sebe
Snap Inc. DISI, University of Trento DISI, University of Trento
stulyakov@snap.com Fondazione Bruno Kessler Huawei Technologies Ireland
e.ricci@unitn.it niculae.sebe@unitn.it

In this supplementary material, we provide derivations leading to the equations used in the main
paper in Sec. [A] Then, we provide implementation details in Sec. [B] Finally, in Sec. [C} we report
further qualitative results of our method against the state of the art.

A Detailed Derivations

A.1 Approximating Motion with Local Affine Transformations

Here, we detail the derivation leading to the approximation of 7s. p near the keypoint z; in Eq. (4)
of the main paper. Using first order Taylor expansion we can obtain:

Toen(2) = Toen(zx) + (jZTsHD(@ _) (2= 20) + o(l — z&) ()

Ts« D can be written as the composition of two transformations:

Tsep = Ts«r © TR«D 2

In order to compute the zeroth order term, we estimate the transformation Tg . p near the point z
in the driving frame D, e.g px, = TR« D (2k). Then we can estimate the transformation 7g. g near

py in the reference R.. Since pr, = Trp (21) and TF{LD = Tb«R, We can write z;, = ToRr (P).
Consequently, we obtain:

Ts<p(2x) = Ts<r © TRD(2k)
=Tser ° Tp.Lr(2k)
=Tser o T r © TDor (k)
= Tser(pk)- 3)

Concerning the first order term, we apply the function composition rule in Eq. () and obtain:
d d d ___
(£Rep6)ms) = (£ Ten®prcoen) (ETin@)n) @

dz
Since the matrix inverse of the Jacobian is equal to the Jacobian of the inverse function, and since
pr = TreD(2k), Eq. @) can be rewritten:
-1
p=pk) (&)

d d
=z | = | 5 Ts
z zk) (dp S<—R(p)
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

((127‘S<—D(z)

Pzpk> <jpTD<—R(p)

After injecting Eqs. (3) and (3)) into (T)), we finally obtain:

Toen(2) ~ Toer(p) + (d’rsmp) _) (CZDTD&R(p) —) (2 = Toer(p) ©

dp

A.2 Equivariance Loss

At training time, we use equivariance constraints that enforces:

Txer = Txev ° Tyer @)

After applying first order Taylor expansion on the left-hand side, we obtain:

Txer(p) = Txer(me) + (;‘;Txmp) _) (0 — i) + ollp — pil). ®)

After applying first order Taylor expansion on the right-hand side in Eq. (7)), we obtain:

d
TxvoTyer () = TxevoTyr(pr)+ <deX<—Y oTy«r p—pk) (p—pr)+o(l[p—pxll), ©)

We can further simplify this expression using derivative of function composition:

d
p—pk> = (dex%Y(p) ,,_p,c> . (10)

Eq. (7) holds only when every coefficient in Taylor expansion of the right and left sides are equal.
Thus, it leads us to the following constaints:

d
(deHY oTyer
P

d
p_TyFR(pk)> <deYeR(p)

Txr(Pk) = Txev © Ty r(Dk), (11)
and
d d d
(dexHR(p) p—pk> = (dexmz(p) pTwR@k)) (deY‘_R(p) p—pk> . 312

A.3 Transferring Relative Motion

In order to transfer only relative motion patterns, we propose to estimate 7s, r (p) near the keypoint
P, by shifting the motion in the driving video to the location of keypoint py, in the source. To this
aim, we introduce Vs, p, (px) = Ts,«RrR(Pk) — Tb,«r(pr) € R? that is the 2D vector from
the landmark position py in D, to its position in S;. We proceed as follows. First, we shift point
coordinates according to —Vs, b, (px) in order to obtain coordinates in D;. Second, we apply the
transformation 7p, . p, . Finally, we translate the points back in the original coordinate space using
Vs, « D, (pk). Formally, it can be written:

Ts.«r(P) = To,D: (T8, <R(P) — Vs,D. (Pk)) + Vs, D, (Pk)
Now, we can compute the value and Jacobian in the pg:

Ts.«r(Pk) = TD,«D, © TD,«R (k) — TD,«R(PK) + TS, <R (k)
and:

(d@m(p)

PP}«) .

Ts,es,(2) ® Ts, «r(Pr) + k(2 — Tser(Pr) + To1 R (PK) — TD, <R (Dk)) (13)

d d trd
o ppk) = (deDteR(p) pm) (deDwR(P) ppk) (desleR(P)

Now using Eq. (6 and treating S; as source and S; as driving frame, we obtain:

with

d —1
Ji = (deDwR(P) p—pk) . (14

d
P=Pk) (deDt <R (p)

Note that, here, (%TgleR(p) ‘ pzm-) canceled out.

B Implementation details

B.1 Architecture details

In order to reduce memory and computational requirements of our model, the keypoint detector and
dense motion predictor both work on resolution of 64 x 64 (instead of 256 x 256). For the two
networks of the motion module, we employ an architecture based on U-Net [3] with five convsxs
- bn - relu - avg — poola o blocks in the encoders and five upsamplesxs - convsxs - bn - relu
blocks in the decoders. In the generator network, we use the Johnson architecture [1] with two
down-sampling blocks, six residual-blocks and two up-sampling blocks. We train our network using
Adam [2] optimizer with learning rate 2e — 4 and batch size 20. We employ learning decay by
dropping the learning rate at % and % iterations, where T is total number of iteration. We chose
T ~ 100k for Tai-Chi-HD and VoxCeleb, and T' = 40k for Nemo and Bair. The model converges in
approximately 2 days using 2 TitanX gpus for Tai-Chi-HD and VoxCeleb.

B.2 Equivariance loss implementation

As explained above our equivariance losses force the keypoint detector to be equivariant to some
transformations Tx. y. In our experiments 7x. vy is implemented using randomly sampled thin
plate splines. We sample spline parameters from normal distributions with zero mean and variance
equal to 0.005 for deformation component and 0.05 for the affine component. For deformation
component we use uniform 5 x 5 grid.

C Additional experiments

C.1 Image Animation

In this section, we report additional qualitative results.

We compare our approach with X2face [5]] and Monkey-Net [4]. In Fig.[I] we show three animation
examples from the VoxCeleb dataset. First, X2face is not capable of generating realistic video
sequences as we can see, for instance in the last frame of the last sequence. Then, Monkey-Net
generates realistic frames but fails to generate specific facial expressions as in the third frame of the
first sequence or in transferring the eye movements as in the last two frames of the second sequence.

In Fig. 2] we show three animation examples from the Nemo dataset. First, we observe that this
dataset is simpler than VoxCeleb since the persons are facing a uniformly black background. With
this simpler dataset, X2Face generates realistic videos. However, it is not capable of inpainting image
parts that are not visible in the source image. For instance, X2Face does not generate the teeth. Our
approach also perform better than Monkey-Net as we can see by comparing the generate teeth in the
first sequence or the closed eyes in the fourth frames of the second and third sequences.

In Fig.[2] we report additional examples for the Tai-Chi-HD dataset. These examples are well in line
with what is reported in the main paper. Both X2Face and Monkey-Net completely fail to generate
realistic videos. The source images are warped without respecting human body structure. Conversely,
our approach is able to deform the person in foreground without affecting the background. Even
though we can see few minor artifacts, our model is able to move each body part independently
following the body motion in the driving video.

Finally, in Fig.] we show three image animation examples on the Bair dataset. Again, we see that
X2Face is not able to transfer motion since it constantly returns frames almost identical with the
source images. Compared to Monkey-Net, our approach performs slightly better since it preserves
better the robot arm as we can see in the second frame of the first sequence or in the fourth frame of
the last sequence.

C.2 Keypoint detection

We now illustrate the keypoints that are learned by our self-supervised approach in Fig.[5} On the
Tai-Chi-HD dataset, the keypoints are semantically consistent since each of them corresponds to a
body part: light green for the right foot, and blue and red for the face for instance. Note that, a light

green keypoint is constantly located in the bottom left corner in order to model background or camera
motion. On VoxCeleb, we observe that, overall, the obtained keypoints are semantically consistent
except for the yellow and green keypoints. For instance, the red and purple keypoints constantly
correspond to the nose and the chin respectively. We observe a similar consistency for the Nemo
dataset. For the Bair dataset, we note that two keypoints (dark blue and light green) correspond to the
robotic arm.

C.3 Visualizing occlusion masks

In Fig. @ we visualize the predicted occlusion masks Og. p on the Tai-Chi-HD, VoxCeleb and Nemo
datasets. In the first sequence, when the person in the driving video is moving backward (second to
fourth frames), the occlusion mask becomes black (corresponding to 0) in the background regions
that are occluded in the source frame. It indicates that these parts cannot be generated by warping
the source image features and must be inpainted. A similar observation can be made on the example
sequence of VoxCeleb. Indeed, we see that when the face is rotating, the mask has low values (dark
grey) in the neck region and in the right face side (in the left-hand side of the image) that are not
visible in the source Frame. Then, since the driving video example from Nemo contains only little
motion, the predicted mask is almost completely white. Overall, these three examples show that the
occlusion masks truly indicate occluded regions even if no specific training loss is employed in order
to lead to this behaviour. Finally, the predicted occlusion masks are more difficult to interpret in the
case of the Bair dataset. Indeed, the robotic arm is masked out in every frame whereas we could
expect that the model generates it by warping. A possible explanation is that, since in this particular
dataset, the moving object is always the same, the network can generate without warping the source
image. We observe also that masks have low values for the regions corresponding to the arm shadow.
It is explained by the fact that shadows cannot be obtained by image warping and that they need to be
added by the generator.

References

[1] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. In ECCV, 2016.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /ICLR, 2014.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In MICCAI, 2015.

[4] Aliaksandr Siarohin, Stéphane Lathuiliere, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. Animating arbitrary
objects via deep motion transfer. In CVPR, 2019.

[5] Olivia Wiles, A Sophia Koepke, and Andrew Zisserman. X2face: A network for controlling face generation
using images, audio, and pose codes. In ECCV, 2018.

X2face [5]

Monkey-
Net [4]

Ours

X2face [3]

Monkey-
Net [4]

Ours

Driving
video

X2face [3]

Monkey-
Net [4]

Ours

Figure 1: Qualitative comparison with state of the art for the task of image animation on different
sequences from the VoxCeleb dataset.

Driving
video

X2face [55]

Monkey-
Net

Ours

Driving
video

X2face [3]

Monkey-
Net [4]

Ours

Driving
video

X2face [3]

Monkey-
Net [4]

Ours

Figure 2: Qualitative comparison with state of the art for the task of image animation on different
sequences from the Nemo dataset.

X2face [55]

Monkey-
Net [4]

Ours

X2face [55]

Monkey-
Net [4]

Ours

X2face [55]

Monkey-
Net [4]

Ours

Figure 3: Qualitative comparison with state of the art for the task of image animation on different
sequences from the 7ai-Chi-HD dataset.

Driving

X2face [5]

Monkey-
Net [4]

Ours

Driving
video

X2face [55]

Monkey-
Net [4]

Ours

X2face [3]

Monkey-
Net [4]

Ours

Figure 4: Qualitative comparison with state of the art for the task of image animation on different
sequences from the Bair dataset.

Q
T
S
2

])
-)\ -) ol E 2 .
F ~3 2 A
sy \ s vre o R s S g o iy o s S - oo p—
3 A 2 T4 5 t 4)
5 < | s ! - o ’
@

VoxCeleb

Nemo

Bair

Figure 5: Keypoint visualization for the four datasets.

Occlusion

Output
Driving
video
Occlusion
Output
Driving
video
Occlusion
Output
Driving
video
Occlusion
Output

Figure 6: Visualization of occlusion masks and images obtained after deformation on Tai-Chi-HD,
VoxCeleb, Nemo and Bair datasets.

	Detailed Derivations
	Approximating Motion with Local Affine Transformations
	Equivariance Loss
	Transferring Relative Motion

	Implementation details
	Architecture details
	Equivariance loss implementation

	Additional experiments
	Image Animation
	Keypoint detection
	Visualizing occlusion masks

