
A Proof of Lemma 1

From Section 2.3 and 2.4 in [19], we know that the policy whose induced trajectory distribution is
Equation (6) takes the following energy-based form:

πθ(at|st,m) = exp(Qsoft(st, at,m)− Vsoft(st,m))

Qsoft(st, at,m) = fθ(st, at,m) + logEst+1∼P (·|st,at,m)[exp(Vsoft(st+1,m))]

Vsoft(st,m) = log

∫
A
exp(Qsoft(st, a

′,m))da′

which corresponds to the optimal policy to the following entropy regularized reinforcement learning
problem (for a certain value of m):

max
π

Eπ

[
T∑
t=1

fθ(st, at,m)− log π(at|st,m)

]
(14)

From Section 2, we know that Equation (14) is exactly the training objective for the adaptive sampler
πω in AIRL. Thus, the trajectory distribution of the optimal policy πω∗ matches pθ(τ |m) defined in
Equation (6).

B Proof of Lemma 2

First, the gradient of Linfo(θ, ψ) w.r.t. θ can be written as:

∂

∂θ
Linfo(θ, ψ) = Em∼p(m),τ∼p(τ |m,θ) log q(m|τ, ψ)

∂

∂θ
log pθ(τ |m) (15)

As pθ(τ |m) is an energy-based distribution (Equation (6)), we need to derive the gradient of
log p(τ |m, θ) w.r.t. θ:

∂

∂θ
log p(τ |m, θ) = ∂

∂θ

[
log

(
η(s1)

T∏
t=1

P (st+1|st, at)

)
+

T∑
t=1

fθ(st, at,m)− logZ(θ)

]
(16)

=

T∑
t=1

∂

∂θ
fθ(st, at,m)− ∂

∂θ
logZ(θ) (17)

=

T∑
t=1

∂

∂θ
fθ(st, at,m)− Eτ∼p(τ |m,θ)

[
T∑
t=1

∂

∂θ
fθ(st, at,m)

]
(18)

Substituting Equation (18) into Equation (15), we get:

Em∼p(m),τ∼pθ(τ |m)

[
log qψ(m|τ)

[
T∑
t=1

∂

∂θ
fθ(st, at,m)− Eτ ′∼pθ(τ |m)

T∑
t=1

∂

∂θ
fθ(s

′
t, a
′
t,m)

]]
With Lemma 1, we know that when ω is trained to optimality, we can sample from pπ∗ω (τ |m) to
construct an unbiased gradient estimation.

C Meta-Testing Procedure of PEMIRL

We summarize the meta-test stage of PEMIRL for adapting reward functions to new tasks in Algo-
rithm 2.

D Graphical Model of PEMIRL

Here we show the graphical model of the PEMIRL framework in Figure 4.

13

Algorithm 2 PEMIRL Meta-Test for Reward Adaptation
Input: A test context variable m ∼ p(m), a test expert demonstration τE ∼ pπE (τ |m), and
ground-truth reward r(s, a,m).
Infer the latent context variable from the test demonstration: m̂ ∼ qψ(m|τE).
Train a policy using TRPO w.r.t. adapted reward function fθ(s, a, m̂).
Evaluate the learned policy with r(s, a,m).

Figure 4: Graphical model underlying PEMIRL.

E Ablation Studies

In this section, we perform ablation studies on the sensitivity of the latent dimensions, importance
of the mutual information loss (Linfo) term, and stochasticity of the environment. We conduct each
ablation study on the Point-Maze-Shift environment to evaluation the reward adaptation performance.

Sensitivity of the latent dimension. We first investigate the sensitivity of different latent dimensions
by running PEMIRL with latent dimension picked from {1, 3, 5} on Point-Maze-Shift where the
ground-truth latent dimension is 3. The results are summarized in Table 3. We can observe that
PEMIRL with various latent dimension specifications all outperform the best baseline (return -28.61)
stably and is hence robust to dimension mis-specifications.

Importance of Linfo. As shown in Table 4, the reward function learned by PEMIRL without the
mutual information objective failed to induce a good policy in the reward adaptation setting, which
demonstrates the importance of using Linfo.

Performance on stochastic environment. We create a stochastic version of Point-Maze-Shift (maze
size: 60×100 cm) by changing its deterministic transition dynamics into a stochastic one. Specifically,
p(st+1|st, at) is now realized as a Gaussian with standard deviation being 1 cm. As shown in Table 5,
the average return of PEMIRL outperforms the best baseline Meta-IL by a large margin.

F Additional Experimental Details

F.1 Network Architectures

For all methods except AIRL, qψ(m|τ) and πω(a|s,m) are represented as 2-layer fully-connected
neural networks with 128 and 64 hidden units respectively and ReLU as the activation function.

Following [11], to alleviate the reward ambiguity problem, we represent the reward function with two
components (a context-dependent disentangled reward estimator rθ(s,m) and a context-dependent
potential function hφ(s,m)):

fθ,φ(st, at, st+1,m) = rθ(st,m) + γhφ(st+1,m)− hφ(st,m)

Here rθ(s,m) and hφ(s,m) are realized as a 2-layer fully-connected neural networks with 32 hidden
units.

F.2 Environment Details

Point-Maze. The ground-truth reward corresponds to negative distance toward the goal position
as well as controlling the pointmass from moving too fast. We use 100 meta-training tasks and 30
meta-training tasks.

14

latent dim. return

1 −10.58± 1.27
3 −14.13± 1.21
5 −15.41± 1.40

Table 3: PEMIRL is ro-
bust to latent dimensions.

method return

PEMIRL w/o MI −39.24± 3.48
PEMIRL −14.13± 1.21

Table 4: The MI term is impor-
tant for training PEMIRL.

method return

Meta-IL −30.58± 4.17
PEMIRL −17.39± 0.84

Table 5: PEMIRL excels
in stochastic env.

Ant. The ground-truth reward corresponds to moving as far as possible forward or backward without
being flipped. We have 2 tasks in this domain.

Sweeper. The ground-truth reward is the negative distance from the sweeper to the object plus the
negative distance from the object to the goal position. We train all methods on 100 meta-training
tasks and test them on 30 meta-test tasks.

Sawyer Pushing. The ground-truth reward in this domain is similar to Sweeper, and we also use 100
meta-training tasks and 30 meta-test tasks.

F.3 Training Details

Training the policy. During training TRPO, we use an entropy regularizer 1.0 for Point-Maze, and 0.1
for the other three domains. We find that adding an imitation objective in PEMIRL that maximizes
the log-likelihood of the sampled expert trajectory conditioned on the latent context variable inferred
by qψ with scaling factor 0.01 accelerates policy training.

Training the inference network and the reward model. We train qψ(m|τ), rθ(s,m) and hφ(s,m)
using the Adam optimizer with default hyperparameters.

Scaling up the mutual information regularization. Note that in Equation 10, β does not necessarily
need to be equal to 1. Adjusting β is equivalent to scaling Linfo(θ, ψ). We scale Linfo(θ, ψ) by 0.1 for
all of our experiments.

Policy and inference network initialization. We initialize and qψ(m|τ) using Meta-IL discussed in
Section 5 while randomly initializing the policy πω(a|s,m).

Stabilizing adversarial training. As in [11], we mix policy samples generated from previous 20
training iterations and use them as negatives when training the disriminator. We find that such a
strategy prevents the discriminator from overfitting to samples from the current iteration.

F.4 Data Efficiency

During meta-training, for the Point-Maze environment, it takes about 32M simulation steps to
converge (similar to other methods such as Meta-InfoGAIL that takes 28M), which amounts to about
2 hours on one Nvidia Titan-Xp GPU; for the Ant environment, it takes about 13.8M simulation steps
(Meta-InfoGAIL takes 12M) and about 40 hours on the same hardware (the state-action dimension is
much larger than that of Point-Maze).

At meta-testing phase, the data efficiency of PEMIRL is comparable to RL training with the oracle
ground-truth reward as shown in Table 6.

Point-Maze-Shift Disabled-Ant

RL w/ oracle reward 4M env steps 15M env steps
PEMIRL 5.4M env steps 18M env steps

Table 6: Comparison on data efficiency between RL trained with reward learned by PERMIL and
RL trained with oracle reward. The methods have been shown to have similar data efficiency on
Point-Maze-Shift and Disabled-Ant.

15

	Proof of Lemma 1
	Proof of Lemma 2
	Meta-Testing Procedure of PEMIRL
	Graphical Model of PEMIRL
	Ablation Studies
	Additional Experimental Details
	Network Architectures
	Environment Details
	Training Details
	Data Efficiency

