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Abstract

Attention is a powerful and ubiquitous mechanism for allowing neural models to
focus on particular salient pieces of information by taking their weighted average
when making predictions. In particular, multi-headed attention is a driving force
behind many recent state-of-the-art[natural Tanguage processing (NLP)|models such
as Transformer-based MT models and BERT. These models apply multiple attention
mechanisms in parallel, with each attention “head” potentially focusing on different
parts of the input, which makes it possible to express sophisticated functions beyond
the simple weighted average. In this paper we make the surprising observation
that even if models have been trained using multiple heads, in practice, a large
percentage of attention heads can be removed at test time without significantly
impacting performance. In fact, some layers can even be reduced to a single
head. We further examine greedy algorithms for pruning down models, and
the potential speed, memory efficiency, and accuracy improvements obtainable
therefrom. Finally, we analyze the results with respect to which parts of the model
are more reliant on having multiple heads, and provide precursory evidence that
training dynamics play a role in the gains provided by multi-head attentiorﬂ

1 Introduction

Transformers (Vaswani et al., 2017)) have shown state of the art performance across a variety of
NLP tasks, including, but not limited to, machine translation (Vaswani et al.| 2017; |Ott et al., 2018)),
question answering (Devlin et al., [2018)), text classification (Radford et al.,[2018]), and semantic role
labeling (Strubell et al.| | 2018)). Central to its architectural improvements, the Transformer extends the
standard attention mechanism (Bahdanau et al., 2015;|Cho et al.,|2014])) viajmulti-headed attention|
where attention is computed independently by IV}, parallel attention mechanisms (heads). It
has been shown that beyond improving performance, can help with subject-verb agreement
(Tang et al., 2018) and that some heads are predictive of dependency structures (Raganato and:
Tiedemann, 2018). Since then, several extensions to the general methodology have been proposed
(Ahmed et al.,[2017; |Shen et al., [2018)).

!Code to replicate our experiments is provided at https://github.com/pmichel31415/
are-16-heads-really-better-than-1
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However, it is still not entirely clear: what do the multiple heads in these models buy us? In this paper,
we make the surprising observation that — in both Transformer-based models for machine translation
and BERT-based (Devlin et al., [2018) natural language inference — most attention heads can be
individually removed after training without any significant downside in terms of test performance
(§3.2). Remarkably, many attention layers can even be individually reduced to a single attention head
without impacting test performance (§3.3).

Based on this observation, we further propose a simple algorithm that greedily and iteratively prunes
away attention heads that seem to be contributing less to the model. By jointly removing attention
heads from the entire network, without restricting pruning to a single layer, we find that large parts of
the network can be removed with little to no consequences, but that the majority of heads must remain
to avoid catastrophic drops in performance (§4). We further find that this has significant benefits for
inference-time efficiency, resulting in up to a 17.5% increase in inference speed for a BERT-based
model.

We then delve into further analysis. A closer look at the case of machine translation reveals that
the encoder-decoder attention layers are particularly sensitive to pruning, much more than the self-
attention layers, suggesting that multi-headedness plays a critical role in this component (§3). Finally,
we provide evidence that the distinction between important and unimporant heads increases as training
progresses, suggesting an interaction between multi-headedness and training dynamics (§6).

2 Background: Attention, Multi-headed Attention, and Masking

In this section we lay out the notational groundwork regarding attention, and also describe our method
for masking out attention heads.

2.1 Single-headed Attention

We briefly recall how vanilla attention operates. We focus on scaled bilinear attention (Luong et al.,
2015)), the variant most commonly used in layers. Given a sequence of n d-dimensional
vectors X = x1,...,7, € R% and a query vector ¢ € R, the attention layer parametrized by
Wi, Wy, Wy, W, € R¥*? computes the weighted sum:

n
Attw, w, w, w, (%,0) = Wo Y i W,m;
i=1
QWi Wi )
Vd
In self-attention, every x; is used as the query ¢ to compute a new sequence of representations,

whereas in sequence-to-sequence models g is typically a decoder state while x corresponds to the
encoder output.

where a; = softmax (

2.2 Multi-headed Attention

In multi-headed attention (MHA), N;, independently parameterized attention layers are applied in
parallel to obtain the final result:
Nh,
MHALt(x, ) = > Attyyp wn o w (X, 9) (1)
h=1

where W', Wr W € R%*4 and W} € R4 When dj, = d,mis strictly more expressive
than vanilla attention. However, to keep the number of parameters constant, dj, is typically set to
Nih, in which case [MHA|can be seen as an ensemble of low-rank vanilla attention layer In the

following, we use Atty, () as a shorthand for the output of head A on input z.

To allow the different attention heads to interact with each other, transformers apply a non-linear
feed-forward network over the[MHAJs output, at each transformer layer (Vaswani et al.| 2017).

2This notation, equivalent to the “concatenation” formulation from Vaswani et al.| (2017), is used to ease
exposition in the following sections.
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Figure 1: Distribution of heads by model score after masking.
2.3 Masking Attention Heads

In order to perform ablation experiments on the heads, we modify the formula for MHALt:
Ny,
MHAtt(x, q) = > EnAttyyn wn wi wn (X, q)
h=1
where the £, are mask variables with values in {0, 1}. When all &, are equal to 1, this is equivalent
to the formulation in Equation[T} In order to mask head h, we simply set &, = 0.

3 Are All Attention Heads Important?

We perform a series of experiments in which we remove one or more attention heads from a given
architecture at test time, and measure the performance difference. We first remove a single attention
head at each time (§3.2)) and then remove every head in an entire layer except for one (§3.3).

3.1 Experimental Setup

In all following experiments, we consider two trained models:

WMT This is the original “large” transformer architecture from|Vaswani et al.|[2017 with 6 layers
and 16 heads per layer, trained on the WMT2014 English to French corpus. We use the pretrained
model of Ott et al.|[201 8E| and report BLEU scores on the newstest2013 test set. In accordance
with |Ott et al.| 2018, we compute BLEU scores on the tokenized output of the model using Moses
(Koehn et al.,[2007). Statistical significance is tested with paired bootstrap resampling (Koehn| [2004)
using compare—mtﬂ (Neubig et al., |2019) with 1000 resamples. A particularity of this model is
that it features 3 distinct attention mechanism: encoder self-attention (Enc-Enc), encoder-decoder
attention (Enc-Dec) and decoder self-attention (Dec-Dec), all of which use[MHA]

BERT BERT (Devlin et al.,[2018) is a single transformer pre-trained on an unsupervised cloze-
style “masked language modeling task” and then fine-tuned on specific tasks. At the time of its
inception, it achieved state-of-the-art performance on a variety of [NLP|tasks. We use the pre-trained
base—uncased model of [Devlin et al.|[2018| with 12 layers and 12 attention heads which we
fine-tune and evaluate on MultiNLI (Williams et al., |2018)). We report accuracies on the “matched”
validation set. We test for statistical significance using the t-test. In contrast with the WMT model,
BERT only features one attention mechanism (self-attention in each layer).

3.2 Ablating One Head

To understand the contribution of a particular attention head h, we evaluate the model’s performance
while masking that head (i.e. replacing Aty (x) with zeros). If the performance sans h is significantly

*https://github.com/pytorch/fairseq/tree/master/examples/translation
*nttps://github.com/neulab/compare-mt
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] 0.03 0.07 0.05 -0.06 0.03 -0.53 0.09 -0.33 0.06 0.03 0.11 0.04 0.01 -0.04 0.04 0.00
2 0.01 0.04 0.10 0.20 0.06 0.03 0.00 0.09 0.10 0.04 0.15 0.03 0.05 0.04 0.14 0.04
3 0.05 -0.01 0.08 0.09 0.11 0.02 0.03 0.03 -0.00 0.13 0.09 0.09 -0.11 0.24 0.07 -0.04
4 -0.02 0.03 0.13 0.06 -0.05 0.13 0.14 0.05 0.02 0.14 0.05 0.06 0.03 -0.06 -0.10 -0.06
5 -0.31 -0.11 -0.04 0.12 0.10 0.02 0.09 0.08 0.04 0.21 -0.02 0.02 -0.03 -0.04 0.07 -0.02
6 0.06 0.07 -0.31 0.15 -0.19 0.15 0.11 0.05 0.01 -0.08 0.06 0.01 0.01 0.02 0.07 0.05

Table 1: Difference in BLEU score for each head of the encoder’s self attention mechanism.
Underlined numbers indicate that the change is statistically significant with p < 0.01. The base
BLEU score is 36.05.

Layer | Enc-Enc  Enc-Dec  Dec-Dec Layer | Layer |

1 -1.31 0.24 -0.03 1 -0.01% 7 0.05%

2 -0.16 0.06 0.12 2 0.10% 8 -0.72%

3 0.12 0.05 0.18 3 -0.14% 9 -0.96%

4 -0.15 -0.24 0.17 4 -0.53% 10 0.07%

5 0.02 -1.55 -0.04 5 -0.29% 11 -0.19%

6 -0.36 -13.56 0.24 6 -0.52% 12 -0.12%
Table 2: Best delta BLEU by layer when Table 3: Best delta accuracy by layer when
only one head is kept in the WMT model. only one head is kept in the BERT model.
Underlined numbers indicate that the change None of these results are statistically signifi-
is statistically significant with p < 0.01. cant with p < 0.01.

worse than the full model’s, h is obviously important; if the performance is comparable, h is redundant
given the rest of the model.

Figures [Ta] and [TB] shows the distribution of heads in term of the model’s score after masking it,
for WMT and BERT respectively. We observe that the majority of attention heads can be removed
without deviating too much from the original score. Surprisingly, in some cases removing an attention
head results in an increase in BLEU/accuracy.

To get a finer-grained view on these results we zoom in on the encoder self-attention layers of the
WMT model in Table[I] Notably, we see that only 8 (out of 96) heads cause a statistically significant
change in performance when they are removed from the model, half of which actually result in a
higher BLEU score. This leads us to our first observation: at test time, most heads are redundant
given the rest of the model.

3.3 Ablating All Heads but One

This observation begets the question: is more than one head even needed? Therefore, we compute the
difference in performance when all heads except one are removed, within a single layer. In Table 2]
and Table 3] we report the best score for each layer in the model, i.e. the score when reducing the
entire layer to the single most important head.

We find that, for most layers, one head is indeed sufficient at test time, even though the network was
trained with 12 or 16 attention heads. This is remarkable because these layers can be reduced to
single-headed attention with only 1/16th (resp. 1/12th) of the number of parameters of a vanilla
attention layer. However, some layers do require multiple attention heads; for example, substituting
the last layer in the encoder-decoder attention of WMT with a single head degrades performance by

at least 13.5 BLEU points. We further analyze when different modeling components depend on more
heads in §B}

Additionally, we verify that this result holds even when we don’t have access to the evaluation set
when selecting the head that is “best on its own”. For this purpose, we select the best head for
each layer on a validation set (newstest2013 for WMT and a 5,000-sized randomly selected
subset of the training set of MNLI for BERT) and evaluate the model’s performance on a test set
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Figure 2: Cross-task analysis of effect of pruning on accuracy

(newstest2014 for WMT and the MNLI-matched validation set for BERT). We observe that
similar findings hold: keeping only one head does not result in a statistically significant change in
performance for 50% (resp. 100%) of layers of WMT (resp. BERT). The detailed results can be
found in Appendix A.

3.4 Are Important Heads the Same Across Datasets?

There is a caveat to our two previous experiments: these results are only valid on specific (and rather
small) test sets, casting doubt on their generalizability to other datasets. As a first step to understand
whether some heads are universally important, we perform the same ablation study on a second,
out-of-domain test set. Specifically, we consider the MNLI “mismatched” validation set for BERT
and the MTNT English to French test set (Michel and Neubig, [2018) for the WMT model, both of
which have been assembled for the very purpose of providing contrastive, out-of-domain test suites
for their respective tasks.

We perform the same ablation study as §3.2] on each of these datasets and report results in Figures [2a]
and[Zb] We notice that there is a positive, > 0.5 correlation (p < 001) between the effect of removing
a head on both datasets. Moreover, heads that have the highest effect on performance on one domain
tend to have the same effect on the other, which suggests that the most important heads from §3.2]are
indeed “universally” important.

4 Iterative Pruning of Attention Heads

In our ablation experiments (§3.2]and §3.3)), we observed the effect of removing one or more heads
within a single layer, without considering what would happen if we altered two or more different
layers at the same time. To test the compounding effect of pruning multiple heads from across the
entire model, we sort all the attention heads in the model according to a proxy importance score
(described below), and then remove the heads one by one. We use this iterative, heuristic approach to
avoid combinatorial search, which is impractical given the number of heads and the time it takes to
evaluate each model.
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Figure 3: Evolution of accuracy by number of heads pruned according to [}, (solid blue) and individual
oracle performance difference (dashed green).

4.1 Head Importance Score for Pruning

As a proxy score for head importance, we look at the expected sensitivity of the model to the mask
variables &;, defined in

aL(x)

— 2
a6 2

I, =Epox ’

where X is the data distribution and £(z) the loss on sample x. Intuitively, if Ij, has a high value then
changing &}, is liable to have a large effect on the model. In particular we find the absolute value to be
crucial to avoid datapoints with highly negative or positive contributions from nullifying each other
in the sum. Plugging Equation [T]into Equation [2]and applying the chain rule yields the following
final expression for Ij,:

oL
Ih = EINX Atth(x)TaAttfji)B)

This formulation is reminiscent of the wealth of literature on pruning neural networks (LeCun et al.,
1990; Hassibi and Storkl [1993; [Molchanov et al.,|2017, inter alia). In particular, it is equivalent to the
Taylor expansion method from|Molchanov et al.[(2017).

As far as performance is concerned, estimating [, only requires performing a forward and backward
pass, and therefore is not slower than training. In practice, we compute the expectation over the
training data or a subset thereofﬂ As recommended by Molchanov et al.|(2017) we normalize the
importance scores by layer (using the {5 norm).

4.2 Effect of Pruning on BLEU/Accuracy

Figures @ (for WMT) and B;Bl (for BERT) describe the effect of attention-head pruning on model
performance while incrementally removing 10% of the total number of heads in order of increasing
I, at each step. We also report results when the pruning order is determined by the score difference
from §|ZZ| (in dashed lines), but find that using I}, is faster and yields better results.

We observe that this approach allows us to prune up to 20% and 40% of heads from WMT and
BERT (respectively), without incurring any noticeable negative impact. Performance drops sharply
when pruning further, meaning that neither model can be reduced to a purely single-head attention
model without retraining or incurring substantial losses to performance. We refer to Appendix B for
experiments on four additional datasets.

SFor the WMT model we use all newstest20[09-12] sets to estimate 1.



4.3 Effect of Pruning on Efficiency

Beyond the downstream task performance, there are intrinsic advantages to pruning heads. First, each
head represents a non-negligible proportion of the total parameters in each attention layer (6.25%
for WMT, ~ 8.34% for BERT), and thus of the total model (roughly speaking, in both our models,
approximately one third of the total number of parameters is devoted to across all layers)ﬂ
This is appealing in the context of deploying models in memory-constrained settings.

Batch size | 1 4 16 64

Original 17.0£03 673£13 114.0£3.6 124.7+29
Pruned (50%) | 17.3+£0.6 69.1+1.3 134.0+3.6 146.6+3.4
(+1.9%) (+2.7%) (+17.5%) (+17.5%)

Table 4: Average inference speed of BERT on the MNLI-matched validation set in examples per second (£
standard deviation). The speedup relative to the original model is indicated in parentheses.

Moreover, we find that actually pruning the heads (and not just masking) results in an appreciable
increase in inference speed. Table @] reports the number of examples per second processed by BERT,
before and after pruning 50% of all attention heads. Experiments were conducted on two different
machines, both equipped with GeForce GTX 1080Ti GPUs. Each experiment is repeated 3 times on
each machine (for a total of 6 datapoints for each setting). We find that pruning half of the model’s
heads speeds up inference by up to ~ 17.5% for higher batch sizes (this difference vanishes for
smaller batch sizes).

5 When Are More Heads Important? The Case of Machine Translation

As shown in Table 2] not all[MHA]layers can be reduced to a single attention head without significantly
impacting performance. To get a better idea of how much each part of the transformer-based
translation model relies on multi-headedness, we repeat the heuristic pruning experiment from §4] for
each type of attention separately (Enc-Enc, Enc-Dec, and Dec-Dec).

Figure[d shows that performance drops much more rapidly when heads are pruned from the Enc-Dec
attention layers. In particular, pruning more than 60% of the Enc-Dec attention heads will result in
catastrophic performance degradation, while the encoder and decoder self-attention layers can still
produce reasonable translations (with BLEU scores around 30) with only 20% of the original attention
heads. In other words, encoder-decoder attention is much more dependent on multi-headedness than
self-attention.

BLEU

—8— Enc-Enc
51 —A— Enc-Dec
—8— Dec-Dec

0% 20% 40% 60% 80% 100%
Percentage pruned

Figure 4: BLEU when incrementally pruning heads from each attention type in the WMT model.

8Slightly more in WMT because of the Enc-Dec attention.
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6 Dynamics of Head Importance during Training

Previous sections tell us that some heads are more important than others in frained models. To get
more insight into the dynamics of head importance during training, we perform the same incremental
pruning experiment of §4.7]at every epoch. We perform this experiment on a smaller version of WMT
model (6 layers and 8 heads per layer), trained for German to English translation on the smaller
IWSLT 2014 dataset Cettolo et al.| (2015). We refer to this model as IWSLT.

Figure [5] reports, for each level of pruning (by increments of 10% — 0% corresponding to the
original model), the evolution of the model’s score (on newstest2013) for each epoch. For better
readability we display epochs on a logarithmic scale, and only report scores every 5 epochs after
the 10th). To make scores comparable across epochs, the Y axis reports the relative degradation of
BLEU score with respect to the un-pruned model at each epoch. Notably, we find that there are two
distinct regimes: in very early epochs (especially 1 and 2), performance decreases linearly with the
pruning percentage, i.e. the relative decrease in performance is independent from [}, indicating that
most heads are more or less equally important. From epoch 10 onwards, there is a concentration of
unimportant heads that can be pruned while staying within 85 — 90% of the original BLEU score (up
to 40% of total heads).

This suggests that the important heads are determined early (but not immediately) during the training
process. The two phases of training are reminiscent of the analysis by Shwartz-Ziv and Tishby|(2017),
according to which the training of neural networks decomposes into an “empirical risk minimization”
phase, where the model maximizes the mutual information of its intermediate representations with
the labels, and a “compression” phase where the mutual information with the input is minimized. A
more principled investigation of this phenomenon is left to future work.

7 Related work

The use of an attention mechanism in and in particular jneural machine translation (NMT)|
can be traced back to |Bahdanau et al.| (2015) and (Cho et al.| (2014), and most contemporaneous
implementations are based on the formulation from [Luong et al.| (2015). Attention was shortly
adapted (successfully) to other tasks, often achieving then state-of-the-art performance in
reading comprehension (Cheng et al.l 2016), natural language inference (Parikh et al., [2016)) or
abstractive summarization (Paulus et al., [2017) to cite a few. Multi-headed attention was first
introduced by [Vaswani et al.| (2017) for[NMT|and English constituency parsing, and later adopted
for transfer learning (Radford et al.,[2018; [Devlin et al., 2018)), language modeling (Dai et al., 2019
Radford et al.,|2019)), or semantic role labeling (Strubell et al.| 2018)), among others.

There is a rich literature on pruning trained neural networks, going back to|LeCun et al.|(1990) and
Hassibi and Stork|(1993)) in the early 90s and reinvigorated after the advent of deep learning, with two



orthogonal approaches: fine-grained “weight-by-weight” pruning (Han et al.,|2015) and structured
pruning (Anwar et al., 2017} [Li et al., 2016; Molchanov et al., 2017), wherein entire parts of the
model are pruned. In , structured pruning for auto-sizing feed-forward language models was
first investigated by Murray and Chiang|(2015)). More recently, fine-grained pruning approaches have
been popularized by See et al. (2016) and |Kim and Rush|(2016) (mostly on[NMT).

Concurrently to our own work, [Voita et al.| (2019) have made to a similar observation on multi-head
attention. Their approach involves using LRP (Binder et al.,[2016) for determining important heads
and looking at specific properties such as attending to adjacent positions, rare words or syntactically
related words. They propose an alternate pruning mechanism based on doing gradient descent on
the mask variables &;,. While their approach and results are complementary to this paper, our study
provides additional evidence of this phenomenon beyond as well as an analysis of the training
dynamics of pruning attention heads.

8 Conclusion

We have observed that[MHA]|does not always leverage its theoretically superior expressiveness over
vanilla attention to the fullest extent. Specifically, we demonstrated that in a variety of settings, several
heads can be removed from trained transformer models without statistically significant degradation in
test performance, and that some layers can be reduced to only one head. Additionally, we have shown
that in machine translation models, the encoder-decoder attention layers are much more reliant on
multi-headedness than the self-attention layers, and provided evidence that the relative importance
of each head is determined in the early stages of training. We hope that these observations will
advance our understanding of and inspire models that invest their parameters and attention
more efficiently.
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