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A.1 Properties of expectation term /o, /3 and I,

The differential equations of learning dynamics (3) and (5) in the main text have expectation terms,
I5(21, 22), I3(21, 22, 23) and I4(z1, 22, 23, 24). Since their zs are either xge) = £TEeJZ- or y,(f) =
¢7%°B,,, any tuple (2, 2o, . ..) follows multivatiate normal distribution N'(z|0, (z - z7)) when
N — oo by generalized central limit theorem, provided that the input £ has zero mean and finite
covariance. Thus the expectation terms only depend on the covariance matrix (z - z%'), and their
T ) = R and 0yl =

elements can be calculated as {xf;e)g;](.f)> = Ql(,j
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Note that all the covariance matrix is symmetric. Their left-bottom sides are not shown for notational
simplicity. Substituting these for I's shown in equations (3) and (5) in the main text, we see that the
‘speed’ of e-th order parameters can be dependent only on 1-st, (e + 1)-th, and (2e + 1)-th order
parameters.

Here we prove the following proposition, in order to show that the ‘speed’ of e-th order parameters
are not dependent on (2¢ + 1)-th order parameters.

Proposition. The expectation term I3(z1, 22, 23) := [ dz1dzadz3 ¢'(21)229(23) N(2]|0, C) does
not depend on Cls.

Proof. Since C'is positive-semidefinite, we can write C' = VVT for some squared matrix V. Thus,
when & ~ N (0, Iy), AE ~ N (0, C) holds. Therefore, we can regard that z;(i = 1,2, 3) is generated
by z; = 'UZT€ where v; is i-th row vector of V' and & follows the standard normal distribution.
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We can write vy = c¢;v; + c3vs + v+ for some coefficient ¢1,c3 € R and some vector v+
perpendicular to v1 and vs. Then I3 is written as

I3(21, 22, 23) = (9'(21)229(23)) = c1(g'(21)219(23)) + c3(g (21)239(23)) + (g (z1) v €g(z3)).

Since & ~ N(0, Iy) and v+ L vy, w3 hold, (21, 23) and v7¢ is independent. Therefore the third
term in the right hand side of the equation above is

(g (z1)v" T €g(23)) = (¢ (21)g(23)) (0" T€) = 0.
In addition, we can determine c¢; and c3 by solving
012 = Ug’l}l = (Cl'l)? + Cg’l)g1 + ’UJ_T)’Ul = 61011 + 63013 and
Cos = 1151)3 = (C{U{ + C3’U3T + ’ULT)’Ug = ¢1C13 + ¢c3Cs3.

Together with these, we get

(C12C033 — C13Ca3) I3(21, 21, 23) + (C11C23 — C12C13) I3(21, 23, 23)
C11Cs3 — Cy ’

I3(z21, 22, 23) =

which shows that I3 is independent to Co. H

A.2 Full expression of order parameter system

Here we describe the whole system of the order parameters, with specific eigenvalue distribution of
3.

A.2.1 CasewithY =oly

In this case, the order parameters are

Order variables : Qgg), RES), Dij, Ein
Order constants : Té%, Fom.

Note that QS) is identical to Qg?). This is same for R and T'. The order parameter system is described
as following, with omitting (°)-s for notational simplicity:
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for g(x) = erf(x/+/2) activation, as ? showed.

A.2.2 Case with X which has two distinct eigenvalues, \; of multiplicity 7, /N and A, of
multiplicity o NV

In this case, the order parameters are

Order variables: Q. Q\Y, R\, R}, Dy Ei
Order constants : 70 7). Fom.



Since X2 —

(A1 +A2)S + A Ao Iy = 0, the relation Q7

= (M1 + )\2)Q( )

is same for R and 7. Then the order parameter system is described as followmg
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A.3 Dependence of learning trajectory on initial conditions on macroscopic
parameters

(@) Macroscopic , (b Macroscopic
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Figure A.1: Dynamics of generalization error €, and order parameters ();; and R;, computed
with macroscopic system, and its variability by random weight initialization. Network size: N-
2-1. Learning rate: 7 = 0.1. Eigenvalues of ¥: A\; = 0.3 with multiplicity 0.5N, Ay = 1.7
with multiplicity 0.5N. Black lines: dynamics of €,. Blue lines: @11, Q12,Q22. Green lines:
Ri1, Ri2, Ro1, Ros. (a) N = 10°, (b) N = 107. In both figures, solid curves and shades represent
mean and standard deviation of 100 trials, respectively (note that mean and standard deviation of loss
are computed in logarithmic scale).

In the statistical mechanical formulation, by considering N as large, the dynamics of the system
is reduced to macroscopic differential equations with small (N-independent) dimensions. The
macroscopic system we derived is deterministic in the sense that randomness brought by stochastic
gradient descent is vanished. However, note that the trajectory of the macroscopic state can vary in
accordance with its initial condition. Figure[AT|shows this variability with shades.

How does the initial condition affect the learning trajectory? Consider a typical initialization that the

microscopic parameters J1, Jo, By and By are initialized as (J;)x, (Bn)k T N(0,1/N). Then
the mean and variance of corresponding initial macroscopic parameters (J, R and T" are

Q] = pe VIQW) = 22 EQI) =0, VQY)] =12
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With N — oo, these probabilistic parameters converge to (Q(®), R(®), T(©)) = (u Ik, 0, pelns).
However, the solution trajectory starting from just (pe I, 0, pte Ipr) cannot break the weight symmetry
at all. To argue practical learning trajectory, we have to consider the initial value slightly off from
that point. How close the initial condition is to that point affects how long it takes to break the weight



symmetry, that is, the plateau length. This is why Figure (b) with N = 107 exhibits plateau
slightly longer than that of Figure (a) with N = 105,
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